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Abstract
M-eigenvalues of fourth-order partially symmetric tensors play an important role in
many real fields such as quantum entanglement and nonlinear elastic materials
analysis. In this paper, we give two bounds for the maximal absolute value of all the
M-eigenvalues (called the M-spectral radius) of a fourth-order partially symmetric
tensor and discuss the relation of them. A numerical example is given to explain the
proposed results.
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1 Introduction
A fourth-order real tensor A = (ai1i2i3i4 ) ∈ R

m×n×m×n is called partially symmetric [1] if it
has the following symmetry:

ai1i2i3i4 = ai3i2i1i4 = ai1i4i3i2 , ∀i1, i3 ∈ [m],∀i2, i4 ∈ [n],

where [m] = {1, 2, . . . , m} and [n] = {1, 2, . . . , n}. Such a tensor often arises in nonlinear elas-
tic materials analysis [2, 3] and entanglement studies in quantum physics [4–6]. For this
tensor, there are many kinds of eigenvalues such as H-eigenvalues, Z-eigenvalues, and D-
eigenvalues [7, 8]; here we only discuss its M-eigenvalues [1, 9].

Definition 1 ([9]) Let A = (ai1i2i3i4 ) ∈ R
m×n×m×n be a partially symmetric tensor, and let

λ ∈R. Suppose that there are real vectors x ∈R
m and y ∈R

n such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A · yxy = λx,
Axyx· = λy,
xT x = 1,
yT y = 1,

(1)

where A · yxy ∈ R
m and Axyx· ∈R

n with ith components

(A · yxy)i =
∑

i3∈[m]

∑

i2,i4∈[n]

aii2i3i4 yi2 xi3 yi4
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and

(Axyx·)i =
∑

i1,i3∈[m]

∑

i2∈[n]

ai1i2i3ixi1 yi2 xi3 .

Then λ is called an M-eigenvalue ofAwith left M-eigenvector x and right M-eigenvector y.

Note that M-eigenvalues of a fourth-order partially symmetric tensor always exist [1].
They have a close relation to many problems in the theory of elasticity and quantum
physics [1, 9, 10]. For example, the largest M-eigenvalue of A = (ai1i2i3i4 ) ∈ R

m×n×m×n,
denoted by

λ� = max{λ : λ is an M-eigenvalue of A},

is the optimum solution of the problem (for details, see [9])

max f (x, y) =
m∑

i1,i3=1

n∑

i2,i4=1

ai1i2i3i4 xi1 yi2 xi3 yi4 ,

s.t. xT x = 1, yT y = 1, x ∈R
m, y ∈R

n.

The outer product λx ◦ y ◦ x ◦ y, where

(λx ◦ y ◦ x ◦ y)i1i2i3i4 = λxi1 yi2 xi3 yi4 , ∀i1, i3 ∈ [m],∀i2, i4 ∈ [n]

and λ is an M-eigenvalue with the maximal absolute value of A = (ai1i2i3i4 ) ∈ R
m×n×m×n

with left M-eigenvector x ∈ R
m and right M-eigenvector y ∈ R

n, is a partially symmetric
best rank-one approximation of A [1], which has wide applications in signal and image
processing, wireless communication systems, and independent component analysis [11–
14]. The M-spectral radius of A = (ai1i2i3i4 ) ∈R

m×n×m×n, denoted by

ρM(A) = max
{|λ| : λ is an M-eigenvalue of A

}
,

has significant impacts on identifying nonsingular M -tensors, which satisfy the strong
ellipticity condition [10].

To our knowledge, there are few results about bounds for the M-spectral radius of a
fourth-order partially symmetric tensor. In this paper, we present two bounds for the M-
spectral radius and discuss their relation. A numerical example is also given to explain the
proposed results.

2 Two bounds for the M-spectral radius
In this section, we give two bounds for the M-spectral radius of fourth-order partially
symmetric tensors and discuss their relation.

Theorem 1 Let A = (ai1i2i3i4 ) ∈R
m×n×m×n be a partially symmetric tensor. Then

ρM(A) ≤
√

max
i∈[m]

{
Ri(A)

} · max
l∈[n]

{
Cl(A)

}
, (2)
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where

Ri(A) =
∑

i3∈[m]

∑

i2,i4∈[n]

|aii2i3i4 |, Cl(A) =
∑

i1,i3∈[m]

∑

i2∈[n]

|ai1i2i3l|.

Proof Suppose that λ is an M-eigenvalue of A and that x ∈ R
m and y ∈ R

n are associated
left M-eigenvector and right M-eigenvector. Then (1) holds. Let

xp = max
k∈[m]

{|xk|
}

, yq = max
k∈[n]

{|yk|
}

.

Since xT x = 1 and yT y = 1, we have

0 < |xp| ≤ 1, 0 < |yq| ≤ 1. (3)

The pth equation of A · yxy = λx is

λxp =
∑

i3∈[m]

∑

i2,i4∈[n]

api2i3i4 yi2 xi3 yi4 . (4)

Taking the absolute values on both sides of (4) and using the triangle inequality give

|λ||xp| ≤
∑

i3∈[m]

∑

i2,i4∈[n]

|api2i3i4 ||yi2 ||xi3 ||yi4 |

≤
∑

i3∈[m]

∑

i2,i4∈[n]

|api2i3i4 ||yq|

= Rp(A)|yq|. (5)

Similarly, by the qth equation of Axyx· = λy we have

|λ||yq| ≤
∑

i1,i3∈[m]

∑

i2∈[n]

|ai1i2i3q||xi1 ||yi2 ||xi3 |

≤
∑

i1,i3∈[m]

∑

i2∈[n]

|ai1i2i3q||xp|

= Cq(A)|xp|. (6)

Multiplying (5) and (6) gives

|λ|2|xp||yq| ≤ Rp(A)Cq(A)|xp||yq|,

which, together with (3), yields

|λ|2 ≤ Rp(A)Cq(A) ≤ max
i∈[m],l∈[n]

{
Ri(A)Cl(A)

}
. (7)

Since (7) holds for all M-eigenvalues of A, we have

ρM(A) ≤
√

max
i∈[m],l∈[n]

{
Ri(A)Cl(A)

}
=

√

max
i∈[m]

{
Ri(A)

} · max
l∈[n]

{
Cl(A)

}
,

and the conclusion follows. �
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Theorem 2 Let A = (ai1i2i3i4 ) ∈ R
m×n×m×n be a partially symmetric tensor, and let α be

any subset of [m] and β be any subset of [n]. Then

ρM(A) ≤ min{μ1,μ2}, (8)

where

μ1 = min
α⊆[m]

{

max
p∈[m],q∈[n]

{
1
2
(
Rα

p (A) +
√

Rα
p (A)2 + 4

(
Rp(A) – Rα

p (A)
)
Cq(A)

)
}}

,

μ2 = min
β⊆[n]

{

max
p∈[m],q∈[n]

{
1
2
(
Cβ

q (A) +
√

Cβ
q (A)2 + 4

(
Cq(A) – Cβ

q (A)
)
Rp(A)

)
}}

,

and

Rα
p (A) =

∑

i3∈α

∑

i2,i4∈[n]

|api2i3i4 |, Cβ
q (A) =

∑

i2∈β

∑

i1,i3∈[m]

|ai1i2i3q|.

Proof Assume that λ is an M-eigenvalue of A and that x ∈ R
m and y ∈ R

n are the corre-
sponding left M-eigenvector and right M-eigenvector. Then (1) holds. Let

|xp| = max
k∈[m]

{|xk|
}

, |yq| = max
k∈[n]

{|yk|
}

.

Then (3) holds. The pth equation of A · yxy = λx can be rewritten as

λxp =
∑

i3∈α

∑

i2,i4∈[n]

api2i3i4 yi2 xi3 yi4 +
∑

i3 /∈α

∑

i2,i4∈[n]

api2i3i4 yi2 xi3 yi4 . (9)

By the technique for the inequality in Theorem 1, we obtain from (9) that

|λ||xp| ≤
∑

i3∈α

∑

i2,i4∈[n]

|api2i3i4 ||yi2 ||xp||yi4 | +
∑

i3 /∈α

∑

i2,i4∈[n]

|api2i3i4 ||yi2 ||xi3 ||yq|

≤
∑

i3∈α

∑

i2,i4∈[n]

|api2i3i4 ||xp| +
∑

i3 /∈α

∑

i2,i4∈[n]

|api2i3i4 ||yq|

= Rα
p (A)|xp| +

(
Rp(A) – Rα

p (A)
)|yq|,

that is,

(|λ| – Rα
p (A)

)|xp| ≤
(
Rp(A) – Rα

p (A)
)|yq|. (10)

In addition, by the qth equation of Axyx· = λy we have

|λ||yq| ≤
∑

i1,i3∈[m]

∑

i2∈[n]

|ai1i2i3q||xp| = Cq(A)|xp|. (11)

Multiplying (10) with (11) and using (3) yield

(|λ| – Rα
p (A)

)|λ| ≤ (
Rp(A) – Rα

p (A)
)
Cq(A). (12)
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Then

|λ| ≤ 1
2
(
Rα

p (A) +
√

Rα
p (A)2 + 4

(
Rp(A) – Rα

p (A)
)
Cq(A)

)

≤ max
p∈[m],q∈[n]

{
1
2
(
Rα

p (A) +
√

Rα
p (A)2 + 4

(
Rp(A) – Rα

p (A)
)
Cq(A)

)
}

. (13)

Note that (13) holds for all M-eigenvalues of A and any α ⊆ [m]. Hence

ρM(A) ≤ μ1. (14)

On the other hand, for the qth equation of Axyx· = λy, we have

λyq =
∑

i2∈β

∑

i1,i3∈[m]

ai1i2i3qxi1 yi2 xi3 +
∑

i2 /∈β

∑

i1,i3∈[m]

ai1i2i3qxi1 yi2 xi3 . (15)

Then

|λ||yq| ≤
∑

i2∈β

∑

i1,i3∈[m]

|ai1i2i3q||yq| +
∑

i2 /∈β

∑

i1,i3∈[m]

|ai1i2i3q||xp|

= Cβ
q (A)|yq| +

(
Cq(A) – Cβ

q (A)
)|xp|,

that is,

(|λ| – Cβ
q (A)

)|yq| ≤
(
Cq(A) – Cβ

q (A)
)|xp|. (16)

By the pth equation of A · yxy = λx we have

|λ||xp| ≤
∑

i3∈[m]

∑

i2,i4∈[n]

|api2i3i4 ||yq| = Rp(A)|yq|. (17)

Multiplying (16) with (17) and using (3), we derive

(|λ| – Cβ
q (A)

)|λ| ≤ (
Cq(A) – Cβ

q (A)
)
Rp(A). (18)

Hence

|λ| ≤ 1
2
(
Cβ

q (A) +
√

Cβ
q (A)2 + 4

(
Cq(A) – Cβ

q (A)
)
Rp(A)

)

≤ max
p∈[m],q∈[n]

{
1
2
(
Cβ

q (A) +
√

Cβ
q (A)2 + 4

(
Cq(A) – Cβ

q (A)
)
Rp(A)

)
}

. (19)

Since (19) holds for all M-eigenvalues of A and any β ⊆ [n], we have

ρM(A) ≤ μ2. (20)

From (14) and (20) we have

ρM(A) ≤ min{μ1,μ2}.

The proof is completed. �
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Remark 1 Since

max
p∈[m],q∈[n]

{
1
2
(
Rα

p (A) +
√

Rα
p (A)2 + 4

(
Rp(A) – Rα

p (A)
)
Cq(A)

)
}

= max
p∈[m],q∈[n]

{
1
2
(
Cβ

q (A) +
√

Cβ
q (A)2 + 4

(
Cq(A) – Cβ

q (A)
)
Rp(A)

)
}

=
√

max
p∈[m]

{
Rp(A)

} · max
q∈[n]

{
Cq(A)

}

when α = ∅ and β = ∅, we have

min{μ1,μ2} ≤
√

max
p∈[m]

{
Rp(A)

} · max
q∈[n]

{
Cq(A)

}
.

Therefore, the bound in (8) is tighter than the bound in (2) for the M-spectral radius ρM(A)
of a given tensor A.

Remark 2 Although the bound in (8) is tighter than the bound in (2), it is easier to com-
pute the bound in (2) for the M-spectral radius of a given tensor.

Next, we use a numerical example to show the effectiveness of the bounds in Theorems
1 and 2.

Example 1 Consider the partially symmetric tensor A1 = (ai1i2i3i4 ) ∈ R
3×3×3×3 with

a1111 = 1.1112, a1311 = 6.1096, a3111 = 0.3032, a2121 = 1.4125,

a3131 = 1, a1212 = 0.0788, a2222 = 1, a3222 = 0.6032,

a3232 = 0.3657, a1313 = 2, a2323 = 0.6226, a3333 = 0.3,

and the remaining zero elements. By Theorem 1 we have

ρM(A1) ≤ 12.6843.

By Theorem 2 we have

ρM(A1) ≤ 10.2397.

In fact, ρM(A1) ≈ 7.6841.

3 Conclusions
In this paper, we have presented two bounds for the M-spectral radius of a fourth-order
partially symmetric tensor and have indicated their relation. To show the effectiveness of
the proposed results, a numerical example is also given.
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