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Abstract
This paper proposes a proximal iteratively reweighted algorithm to recover a low-rank
matrix based on the weighted fixed point method. The weighted singular value
thresholding problem gains a closed form solution because of the special properties
of nonconvex surrogate functions. Besides, this study also has shown that the
proximal iteratively reweighted algorithm lessens the objective function value
monotonically, and any limit point is a stationary point theoretically.
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1 Introduction
The low-rank matrix recovery problem has been a research hotpot recently [1, 2], and it
has a range of applications in many fields such as signal or image processing [3, 4], sub-
space segmentation [5], collaborative filtering [6], and system identification [7]. Matrix
rank minimization under affine equality constraints is generally formulated as follows:

min
X

rank(X) s.t. A(X) = b, (1.1)

where the linear map A : Rm×n → RP and the vector b are known.
Unfortunately, solving the above rank minimization problem (1.1) directly is an NP-

hard problem [8], thus this problem is computationally infeasible. Therefore, the convex
relations of these methods have been proposed and studied in the literature. For exam-
ple, Recht et al. [8] proposed a nuclear norm minimization method for the matrix recon-
struction. The tightest convex relaxation of problem (1.1) is the following nuclear norm
minimization problem:

min
X

‖X‖� s.t. A(X) = b, (1.2)

where ‖X‖� =
∑r

i=1 σi(X) is the sum of all the singular values of X ∈ Rm×n with rank(X) = r
(without loss of generality, n ≤ m). It has been shown that problem (1.2) shares common
solutions with problem (1.1) under some sufficient conditions (see, e.g., [8, 9]).

However, the exact recovery of the low-rank matrix requires more measurements via
nuclear norm minimization. Recently, some experimental observations and theoretical
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guarantees have shown the superiority of �p quasi-norm minimization to �1 minimiza-
tion in compressive sampling [10]. Therefore, the �p quasi-norm minimization [11–13]
was introduced instead of the nuclear norm minimization in order to give a better approx-
imation to the original problem (1.1). Therefore, the �p quasi-norm minimization can be
formulated as

min
X

‖X‖p
p s.t. A(X) = b, (1.3)

where ‖X‖p = (
∑r

i=1 σ
p
i (X))1/p for some p ∈ (0, 1).

However, in practice, the observed data in the low-rank matrix recovery problem may be
contaminated with noise, namely b = AX + e, where e contains measurement errors dom-
inated by certain normal distribution. In order to recover the low-rank matrix robustly,
problem (1.3) can be modified to

min
X

‖X‖p
p s.t.

∥
∥A(X) – b

∥
∥

2 ≤ ε, (1.4)

where ‖ · ‖2 is the �2 norm of vector and ε ≥ ‖e‖2 is some constant.
Under some conditions, problems (1.3) and (1.4) can be rewritten as the following un-

constrained model:

min
X

τ‖X‖p
p +

1
2
∥
∥A(X) – b

∥
∥2

2, (1.5)

where τ > 0 is a given parameter. Since the above problem (1.5) is nonconvex and NP-
hard, thus the researchers throughout the world proposed and analyzed some iterative
reweighted algorithms [13–15]. The key idea of the iterative reweighted technique is to
solve a convex problem with a given weight at each iteration and update the weight at
every turn.

Different from previous studies, based on the weighted fixed point method, this paper
puts forward a proximal iteratively reweighted algorithm to recover a low-rank matrix.
Due to the special properties of nonconvex surrogate functions, the algorithm iteratively
has a closed form solution to solve a weighted singular value thresholding problem. Also,
in theory, this study has proved that the proximal iteratively reweighted algorithm de-
creases the objective function value monotonically, and any limit point is a stationary
point.

The remainder of this paper is organized as follows. Section 2 introduces some nota-
tions and preliminary lemmas, and Section 3 describes the main results. The conclusion
is followed in Section 4.

2 Preliminaries
Recently, Lai et al. [13] considered the following unconstrained problem:

min
X

F(X) = τ tr
((

XT X + εI
)p/2) +

1
2
∥
∥A(X) – b

∥
∥2

2, (2.1)
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where I is the n × n identity matrix and ε > 0 is a smoothing parameter. By the definition
in [13], we have

tr
((

XT X + εI
)p/2) =

n∑

i=1

(
σi(X)2 + ε

)p/2. (2.2)

Lemma 2.1 ([16]) Let ϕ(X) = ψ ◦σ (X) =
∑n

i=1(|σi(X)|+ε)p, where the function ϕ : Rm×n →
[–∞, +∞] with n ≤ m is orthogonally invariant; ψ : Rm×n → [–∞, +∞] is an absolutely
symmetric function and p ∈ (0, 1), then ϕ = ψ ◦ σ is subdifferentiable at matrix X ∈ R

m×n

and

∂ϕ(X) = pU Diag

{
ci

(σi(X) + ε)1–p : i ∈ 	

}

V T

with X = U
V T being the SVD of X, and

ci =

{
1, σi(X) > 0,
[–1, 1], σi(X) = 0,

is a constant depending only on the value of σi(X) for each i ∈ 	.

From Lemma 2.1, let m = n and the matrix Y be a semidefinite matrix, then Y = Y T and
the subdifferentiable of the function

ϕ(Y ) =
n∑

i=1

(∣
∣σi(Y )

∣
∣ + ε

)p/2 = tr
(
(Y + εI)p/2) (2.3)

is

∂ϕ(Y ) =
p
2

U1 Diag

{
ci

(σi(Y ) + ε)1– p
2

: i ∈ 	

}

UT
1 ,

with Y = U1
1UT
1 being the SVD of Y , and 	 = {1, 2, . . . , n}.

From (2.3), it is easier to know exactly that ϕ(Y ) is concave, thus –ϕ(Y ) is convex.
Besides, a vector Y ∗ is said to be a subgradient of a convex function f at a point Y if
f (z) ≥ f (Y ) + 〈Y ∗, Y – x〉, for any Z. Therefore, based on the definition of subgradient of
the convex function, we have

–ϕ(Y ) ≥ –ϕ(Yk) + 〈–Gk , Y – Yk〉, (2.4)

where –Gk is the subgradient of –ϕ(Y ) at Yk , i.e., –Gk ∈ ∂(–ϕ(Yk)). The inequality of (2.4)
is equivalent to

ϕ(Y ) ≤ ϕ(Yk) + 〈Gk , Y – Yk〉. (2.5)

Then ϕ(Yk) + 〈Gk , Y – Yk〉 is used as a surrogate function of ϕ(Y ).
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3 Main results
Let Y = XT X, then Y = V
2V T can be obtained, where X = U
V T with U ∈ R

m×n, V ∈
R

n×n, and 
 = Diag{σi(X)} ∈R
n×n, then σi(Y ) = (σi(X))2. From (2.2), (2.3), and (2.5),

tr
((

XT X + εI
)p/2) ≤ tr

((
XT

k Xk + εI
)p/2) +

〈
Wk , XT X – XT

k Xk
〉

(3.1)

can be obtained, whereWk ∈ p
2 V Diag{ ci

((σi(Xk ))2+ε)1– p
2

: i ∈ 	}V T .

In order to introduce the following lemma, the definitions of Lipschitz continuous of a
function and the norm ‖ · ‖F are given, namely a function is Lipschitz continuous with
constant L if, for any x, y, |f (x) – f (y)| ≤ L‖x – y‖; and the ‖ · ‖F of a matrix X is defined as
‖X‖F :=

√∑m
i=1

∑n
j=1 x2

ij.

Lemma 3.1 ([17]) Let f : Rm×n → R be a continuously differentiable function with Lips-
chitz continuous gradient and the Lipschitz constant L(f ). Then, for any L ≥ L(f ),

f (X) ≤ f (Y ) +
〈∇f (Y ), X – Y

〉
+

L
2
‖X – Y‖2

F , ∀X, Y ∈R
m×n. (3.2)

Now let f (X) = 1
2‖A(X) – b‖2

2, thus the Lipschitz constant of the gradient ∇f (X) =
A�(A(X) – b) is L(f ) = λ(A�A), where λ(A�A) is the maximum eigenvalue of A�A.

By using (2.1), (2.3), (3.1), and (3.2), we update Xk+1 by minimizing the sum of these two
surrogate functions

Xk+1 = arg minϕ
(
XT

k Xk
)

+
〈
Wk , XT X – XT

k Xk
〉
+ f (Xk) +

〈∇f (Xk), X – Xk
〉

+
L(f )

2
‖X – Xk‖2

F

= arg min τ
〈
Wk , XT X

〉
+

ρ

2

∥
∥
∥
∥X –

(

Xk –
1
ρ

∇f (Xk)
)∥

∥
∥
∥

2

F
, (3.3)

where ρ ≥ L(f )
2 .

Lemma 3.2 If the function g(X) = 〈Q, XT X〉 with X ∈R
m×n and Q ∈R

n×n, then the gradi-
ent of g(X) is ∇g(X) = 2XQ.

Proof Consider the auxiliary function θ : R → R, given by θ (t) = g(X + tY ), for any arbi-
trary matrix Y ∈ R

m×n. From the basic calculus, it can be known that θ ′(0) = 〈∇g(X), Y 〉.
By the definition of the derivative of function, it follows that

θ ′(0) = lim
t→0

θ (t) – θ (0)
t

= lim
t→0

g(X + tY ) – g(X)
t

= lim
t→0

〈Q, (X + tY )T (X + tY )〉 – 〈Q, XT X〉
t

= lim
t→0

t〈Q, XT Y 〉 + t〈Q, Y T X〉 + t2〈Q, Y T Y 〉
t

=
〈
Q, XT Y

〉
+

〈
Q, Y T X

〉
= tr

(
QT XT Y

)
+ tr

(
Y T XQ

)
= 〈2XQ, Y 〉 (3.4)

thus the gradient of g(X) is ∇g(X) = 2XQ. �
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Based on the above analysis, this paper proposes the following algorithm.

Algorithm 1 (Proximal iteratively reweighted algorithm to solve problem (2.1))

1: Input: ρ ≥ L(f )
2 , where L(f ) is the Lipschitz constant of f (x).

2: Initialization: k = 0, Wk .
3: Update Xk+1 by solving the following problem:

Xk+1 = arg min τ
〈
XT X, Wk

〉
+

ρ

2

∥
∥
∥
∥X –

(

Xk –
1
ρ

A�(
A(Xk) – b

)
)∥

∥
∥
∥

2

F
.

4: Update the weight Wk+1 by

Wk+1 ∈ –∂
(
–ϕ(Yk+1)

)
, where Yk+1 = XT

k Xk .

5: Output low-rank matrix Xk .

Theorem 3.3 Let ρ ≥ L(f )
2 , where L(f ) is the Lipschitz constant of f (x). The sequence {Xk}

generated in Algorithm 1 satisfies
(1)

F(Xk) – F(Xk+1) ≥
(

ρ –
L(f )

2

)

‖Xk – Xk+1‖2
F .

(2) The sequence {Xk} is bounded.
(3)

∑∞
k=1 ‖Xk – Xk+1‖2

F < 2θ
2ρ–L(f ) . In particular, limk→∞ ‖Xk – Xk+1‖F = 0.

Proof Since Xk+1 is the globally optimal solution of problem (3.3), and the zero matrix is
contained in the subgradient with respect to X. That is, there exists a matrix Xk+1 ∈ such
that

2τXk+1Wk + ∇f (Xk) + ρ(Xk+1 – Xk) = 0. (3.5)

By using the above equality of (3.4) and (3.5), we get

2τ 〈Xk+1Wk , Xk+1 – Xk〉 +
〈∇f (Xk), Xk+1 – Xk

〉
+ ρ‖Xk+1 – Xk‖2

F = 0. (3.6)

Since the function 〈Wk , XT X〉 is a convex function on X, thus

〈
Wk , XT

k Xk
〉
–

〈
Wk , XT

k+1Xk+1
〉 ≥ 2〈Xk+1Wk , Xk – Xk+1〉,

and the above equality also can be rewritten as

〈
Wk , XT

k Xk – XT
k+1Xk+1

〉 ≥ 2〈Xk+1Wk , Xk – Xk+1〉. (3.7)

Then it follows from (3.6) and (3.7) that

τ
〈
Wk , XT

k Xk – XT
k+1Xk+1

〉 ≥ –
〈∇f (Xk), Xk – Xk+1

〉
+ ρ‖Xk+1 – Xk‖2

F . (3.8)
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Let f (X) = 1
2‖A(X) – b‖2

2, and according to Lemma 3.1,

f (Xk) – f (Xk+1) ≥ 〈∇f (Xk), Xk – Xk+1
〉
–

L(f )
2

‖Xk – Xk+1‖2
F (3.9)

can be obtained. Since the function tr((XT X + εI)p/2) is concave, and just like (3.1), then it
can be obtained

tr
((

XT
k Xk + εI

)p/2) – tr
((

XT
k+1Xk+1 + εI

)p/2) ≥ 〈
Wk , XT

k Xk – XT
k+1Xk+1

〉
. (3.10)

Now, combining (3.8), (3.9), and (3.10), we get

F(Xk) – F(Xk+1) = τ tr
((

XT
k Xk + εI

)p/2) + f (Xk) – τ tr
((

XT
k+1Xk+1 + εI

)p/2) – f (Xk+1)

≥
(

ρ –
L(f )

2

)

‖Xk+1 – Xk‖2
F ≥ 0.

Thus, F(Xk) is monotonically decreasing. Given the facts of all inequalities above for
k ≥ 1, it can be obtained

F(X1) – F(Xk+1) ≥
(

ρ –
L(f )

2

) k∑

i=1

‖Xi+1 – Xi‖2
F , (3.11)

and from (3.11) it follows that

(

ρ –
L(f )

2

) k∑

i=1

‖Xi+1 – Xi‖2
F ≤ F(X1) < +∞. (3.12)

Then, for k → ∞, (3.12) implies that

lim
k→∞

‖Xk+1 – Xk‖F = 0.

Since the objective function F(X) in problem (2.1) is nonnegative and satisfies

F(X) → ∞, as ‖X‖F → ∞,

then Xk ∈ {X : 0 ≤ F(X) ≤ F(X1)} and the sequence {Xk} is bounded.
Therefore, the proof has been completed. �

Theorem 3.4 Let {Xk} be the sequence generated in Algorithm 1. Then any accumulation
point of {Xk} is a stationary point X� of the problem. Moreover, for k = 1, 2, . . . , N , there
always exists

min
1≤k≤N

‖Xk+1 – Xk‖2
F ≤ F(X1) – F(X�)

n(ρ – L(f )
2 )

.

Proof Since the sequence {Xk} generated in Algorithm 1 is bounded, there exist an accu-
mulation point X� and a subsequence {Xkj} such that limj→∞ Xkj = X�. Assume that Xkj
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is the solution of problem (3.3), it can be obtained

2τXkj+1Wkj + ∇f (Xkj) + ρ(Xkj+1 – Xkj) = 0.

Let j → ∞, according to Theorem 3.3, limj→∞ ‖Xkj+1 –Xkj‖F = 0 can be obtained. Hence,
there exists the matrix

W� =
p
2

V2 Diag

{
1

((σi(X�))2 + ε)1– p
2

}

V T
2 =

p
2
((

X�)T X� + εI
)p/2–1,

where X� = U2
2V T
2 with U2 ∈R

m×n, V2 ∈R
n×n, and

∑
= Diag{ 1

((σi(X�))2+ε)1– p
2
}.

By the above analysis, it can be known that

τρX�((
X�)T X� + εI

)p/2–1 + ∇f (X�) = 0,

then X� is a stationary point of problem (2.1).
Moreover, by using (3.11), for k = 1, 2, . . . , N , it can be obtained

F(X1) – F(XN+1) ≥
(

ρ –
L(f )

2

) N∑

k=1

‖Xk+1 – Xk‖2
F

≥ N
(

ρ –
L(f )

2

)

min
1≤k≤N

‖Xk+1 – Xk‖2
F .

Thus

min
1≤k≤N

‖Xk+1 – Xk‖2
F ≤ F(X1) – F(XN+1)

n(ρ – L(f )
2 )

≤ F(X1) – F(X�)
n(ρ – L(f )

2 )

can be obtained, which completes the proof. �

4 Conclusion
A proximal iteratively reweighted algorithm based on the weighted fixed point method for
recovering a low-rank matrix problem has been presented in this paper. Due to the special
properties of the nonconvex surrogate function, the algorithm in this study iteratively has
a closed form solution to solving a weighted singular value thresholding problem. Finally,
it has been proved that the algorithm can decrease the objective function value monoton-
ically and any limit point is a stationary point.
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