RESEARCH

Open Access

Extremal values on Zagreb indices of trees with given distance *k*-domination number

Lidan Pei and Xiangfeng Pan*

*Correspondence: xfpan@ustc.edu School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China

Abstract

Let G = (V(G), E(G)) be a graph. A set $D \subseteq V(G)$ is a distance k-dominating set of G if for every vertex $u \in V(G) \setminus D$, $d_G(u, v) \leq k$ for some vertex $v \in D$, where k is a positive integer. The distance k-domination number $\gamma_k(G)$ of G is the minimum cardinality among all distance k-dominating sets of G. The first Zagreb index of G is defined as $M_1 = \sum_{u \in V(G)} d^2(u)$ and the second Zagreb index of G is $M_2 = \sum_{uv \in E(G)} d(u)d(v)$. In this paper, we obtain the upper bounds for the Zagreb indices of n-vertex trees with given distance k-domination number and characterize the extremal trees, which generalize the results of Borovićanin and Furtula (Appl. Math. Comput. 276:208–218, 2016). What is worth mentioning, for an n-vertex tree T, is that a sharp upper bound on the distance k-domination number $\gamma_k(T)$ is determined.

MSC: 05C35; 05C69

Keywords: first Zagreb index; second Zagreb index; trees; distance *k*-domination number

1 Introduction

Throughout this paper, all graphs considered are simple, undirected and connected. Let G = (V, E) be a simple and connected graph, where V = V(G) is the vertex set and E = E(G) is the edge set of G. The *eccentricity* of v is defined as $\varepsilon_G(v) = \max\{d_G(u, v) \mid u \in V(G)\}$. The *diameter* of G is diam $(G) = \max\{\varepsilon_G(v) \mid v \in V(G)\}$. A path P is called a *diameter path* of G if the length of P is diam(G). Denote by $N_G^i(v)$ the set of vertices with distance i from v in G, that is, $N_G^i(v) = \{u \in V(G) \mid d(u, v) = i\}$. In particular, $N_G^0(v) = \{v\}$ and $N_G^1(v) = N_G(v)$. A vertex $v \in V(G)$ is called a *private* k-neighbor of u with respect to D if $\bigcup_{i=0}^k N_G^i(v) \cap D = \{u\}$. That is, $d_G(v, u) \le k$ and $d_G(v, x) \ge k + 1$ for any vertex $x \in D \setminus \{u\}$. The *pendent* vertex is the vertex of degree 1.

A chemical molecule can be viewed as a graph. In a molecular graph, the vertices represent the atoms of the molecule and the edges are chemical bonds. A topological index of a molecular graph is a mathematical parameter which is used for studying various properties of this molecule. The distance-based topological indices, such as the Wiener index [2, 3] and the Balaban index [4], have been extensively researched for many decades. Meanwhile the spectrum-based indices developed rapidly, such as the Estrada index [5], the Kirchhoff index [6] and matching energy [7]. The eccentricity-based topological indices, such as the eccentric distance sum [8], the connective eccentricity index [9] and the adjacent eccentric distance sum [10], were proposed and studied recently. The degree-based topological

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

indices, such as the Randić index [11–13], the general sum-connectivity index [14, 15], the Zagreb indices [16], the multiplicative Zagreb indices [17, 18] and the augmented Zagreb index [19], where the Zagreb indices include the *first Zagreb index* $M_1 = \sum_{u \in V(G)} d^2(u)$ and the *second Zagreb index* $M_2 = \sum_{uv \in E(G)} d(u)d(v)$, represent one kind of the most famous topological indices. In this paper, we continue the work on Zagreb indices. Further study about the Zagreb indices can be found in [20–25]. Many researchers are interested in establishing the bounds for the Zagreb indices of graphs and characterizing the extremal graphs [1, 26–40].

A set $D \subseteq V(G)$ is a *dominating set* of G if, for any vertex $u \in V(G) \setminus D$, $N_G(u) \cap D \neq \emptyset$. The *domination number* $\gamma(G)$ of G is the minimum cardinality of dominating sets of G. For $k \in N^+$, a set $D \subseteq V(G)$ is a *distance* k-*dominating set* of G if, for every vertex $u \in V(G) \setminus D$, $d_G(u, v) \leq k$ for some vertex $v \in D$. The *distance* k-*domination number* $\gamma_k(G)$ of G is the minimum cardinality among all distance k-dominating sets of G [41, 42]. Every vertex in a minimum distance k-dominating set has a private k-neighbor. The domination number is the special case of the distance k-domination number for k = 1. Two famous books [43, 44] written by Haynes *et al.* show us a comprehensive study of domination. The topological indices of graphs with given domination number or domination variations have attracted much attention of researchers [1, 45–47].

Borovićanin [1] showed the sharp upper bounds on the Zagreb indices of *n*-vertex trees with domination number γ and characterized the extremal trees. Motivated by [1], we describe the upper bounds for the Zagreb indices of *n*-vertex trees with given distance *k*-domination number and find the extremal trees. Furthermore, a sharp upper bound, in terms of *n*, *k* and Δ , on the distance *k*-domination number $\gamma_k(T)$ for an *n*-vertex tree *T* is obtained in this paper.

2 Lemmas

In this section, we give some lemmas which are helpful to our results.

Lemma 2.1 ([24, 48]) If T is an n-vertex tree, different from the star S_n , then $M_i(T) < M_i(S_n)$ for i = 1, 2.

In what follows, we present two graph transformations that increase the Zagreb indices.

Transformation I ([49]) Let *T* be an *n*-vertex tree (n > 3) and $e = uv \in E(T)$ be a nonpendent edge. Assume that $T - uv = T_1 \cup T_2$ with vertex $u \in V(T_1)$ and $v \in V(T_2)$. Let *T'* be the tree obtained by identifying the vertex *u* of T_1 with vertex *v* of T_2 and attaching a pendent vertex *w* to the u (= v) (see Figure 1). For the sake of convenience, we denote $T' = \tau(T, uv)$.

Lemma 2.2 Let T be a tree of order $n \ge 3$ and $T' = \tau(T, uv)$. Then $M_i(T') > M_i(T)$, i = 1, 2.

$$\begin{split} M_1(T') - M_1(T) &= \left(d_T(u) + d_T(v) - 1 \right)^2 + 1 - d_T^2(u) - d_T^2(v) \\ &= 2 \left(d_T(u) - 1 \right) \left(d_T(v) - 1 \right) \\ &> 0. \end{split}$$

Let $x \in V(T)$ be a vertex different from u and v. Then

$$\begin{split} M_{2}(T') - M_{2}(T) &= \left(d_{T}(u) + d_{T}(v) - 1\right) \left(\sum_{xu \in E(T_{1})} d_{T}(x) + \sum_{xv \in E(T_{2})} d_{T}(x) + 1\right) \\ &- d_{T}(u) \sum_{xu \in E(T_{1})} d_{T}(x) - d_{T}(v) \sum_{xv \in E(T_{2})} d_{T}(x) - d_{T}(u) d_{T}(v) \\ &= \left(d_{T}(v) - 1\right) \sum_{xu \in E(T_{1})} d_{T}(x) + \left(d_{T}(u) - 1\right) \sum_{xv \in E(T_{2})} d_{T}(x) \\ &+ d_{T}(u) + d_{T}(v) - 1 - d_{T}(u) d_{T}(v) \\ &\geq 2 \left(d_{T}(v) - 1\right) \left(d_{T}(u) - 1\right) + d_{T}(u) + d_{T}(v) - 1 - d_{T}(u) d_{T}(v) \\ &= \left(d_{T}(v) - 1\right) \left(d_{T}(u) - 1\right) \\ &> 0. \end{split}$$

This completes the proof.

Lemma 2.3 ([50]) Let u and v be two distinct vertices in G. $u_1, u_2, ..., u_r$ are the pendent vertices adjacent to u and $v_1, v_2, ..., v_t$ are the pendent vertices adjacent to v. Define $G' = G - \{vv_1, vv_2, ..., vv_t\} + \{uv_1, uv_2, ..., uv_t\}$ and $G'' = G - \{uu_1, uu_2, ..., uu_r\} + \{vu_1, vu_2, ..., vu_r\}$, as shown in Figure 2. Then either $M_i(G') > M_i(G)$ or $M_i(G'') > M_i(G)$, i = 1, 2.

Lemma 2.4 ([51]) For a connected graph G of order n with $n \ge k + 1$, $\gamma_k(G) \le \lfloor \frac{n}{k+1} \rfloor$.

Let *G* be a connected graph of order *n*. If $\gamma_k(G) \ge 2$, then $n \ge k + 1$. Otherwise, $\gamma_k(G) = 1$, a contradiction. Hence, by Lemma 2.4, we have $\gamma_k(G) \le \lfloor \frac{n}{k+1} \rfloor$ and $n \ge (k+1)\gamma_k$ for any connected graph *G* of order *n* if $\gamma_k(G) \ge 2$.

Lemma 2.5 Let *T* be an *n*-vertex tree with distance *k*-domination number $\gamma_k \ge 2$. Then $\triangle \le n - k\gamma_k$.

Proof Suppose that $\Delta \ge n - k\gamma_k + 1$. Let $\nu \in V(T)$ be the vertex such that $d(\nu) = \Delta$ and $N(\nu) = \{\nu_1, \dots, \nu_{\Delta}\}$. Denote by T^i the component of $T - \nu$ containing the vertex ν_i , i = 1

1,..., \triangle . Let *D* be a minimum distance *k*-dominating set of *T*,

$$S_1 = \{i \mid i \in \{1, 2, \dots, \Delta\}, 0 \le \varepsilon_{T^i}(v_i) \le k - 1\}$$

and

$$S_2 = \{i \mid i \in \{1, 2, \dots, \Delta\}, \varepsilon_{T^i}(\nu_i) \ge k\}.$$

Clearly, $|S_2| \ge 1$. If not, $\{v\}$ is a distance *k*-dominating set of *T*, which contradicts $\gamma_k \ge 2$. If $|S_1| = 0$, then $\varepsilon_{T^i}(v_i) \ge k$ for $i = 1, ..., \Delta$, so $|V(T^i) \cap D| \ge 1$. Therefore, $\gamma_k \ge \Delta \ge n - k\gamma_k + 1$, which implies that $\gamma_k \ge \frac{n+1}{k+1}$. Since $\gamma_k \ge 2$, $\gamma_k \le \lfloor \frac{n}{k+1} \rfloor$ by Lemma 2.4, a contradiction. Thus, $|S_1| \ge 1$. Let $i_1 \in S_1$ and

$$\varepsilon_{T^{i_1}}(v_{i_1}) = \max\left\{\varepsilon_{T^{i_1}}(v_i) \mid i \in S_1\right\} = \lambda.$$

Then $0 \le \lambda \le k - 1$, so $|S_2| \le \lfloor \frac{n - \triangle - 1 - \lambda}{k} \rfloor \le \lfloor \frac{k \gamma_k - 2}{k} \rfloor \le \gamma_k - 1$.

If $V(T^i) \cap D = D_1 \neq \emptyset$ for some $i \in S_1$, then $D - D_1 + \{v\}$ is a distance *k*-dominating set according to the definition of S_1 . Thus, we assume that $V(T^i) \cap D = \emptyset$ for each $i \in S_1$. Similarly, suppose that $D' \cap V(T^{i_1}) = \emptyset$ where D' is a minimum distance *k*-dominating set of the tree $T' = T - \bigcup_{i \in S_1 \setminus \{i_1\}} V(T^i)$.

We claim that D' is a distance k-dominating set of T. Let $y \in V(T^{i_1})$ be the vertex such that $d(v_{i_1}, y) = \lambda$ and $y' \in D'_1 = \bigcup_{i=0}^k N^i_{T'}(y) \cap D'$. Then $y' \in V(T') \setminus V(T^{i_1})$ and $d(y, y') = d(y, v) + d(v, y') \le k$, so, for $x \in \bigcup_{i \in S_1 \setminus \{i_1\}} V(T^i)$, we have $d(x, y') = d(x, v) + d(v, y') \le d(y, v) + d(v, y') \le k$. Hence, all the vertices in $\bigcup_{i \in S_1 \setminus \{i_1\}} V(T^i)$ can be dominated by $y' \in D'$. Therefore, D' is a distance k-dominating set of T, so the claim is true.

In view of

$$k + 1 < (k + 1)|S_2| + \lambda + 2 \le |V(T')| \le n - |S_1| + 1 = n - \triangle + |S_2| + 1,$$

one has

$$\begin{aligned} \gamma_k &\leq \left| D' \right| \\ &\leq \left\lfloor \frac{n - \Delta + |S_2| + 1}{k + 1} \right\rfloor \quad \text{(by Lemma 2.4)} \\ &\leq \left\lfloor \frac{(k+1)\gamma_k - 1}{k + 1} \right\rfloor \quad \left(\text{since } \Delta \geq n - k\gamma_k + 1, |S_2| \leq \gamma_k - 1\right) \\ &< \gamma_k, \end{aligned}$$

a contradiction as desired.

Determining the bound on the distance *k*-domination number of a connected graph is an attractive problem. In Lemma 2.5, an upper bound for the distance *k*-domination number of a tree is characterized. Namely, if *T* is an *n*-vertex tree with distance *k*-domination number $\gamma_k \ge 2$, then $\gamma_k(T) \le \frac{n-\Delta(T)}{k}$.

Let $\mathcal{T}_{n,k,\gamma_k}$ be the set of all *n*-vertex trees with distance *k*-domination number γ_k and $S_{n-k\gamma_k+1}$ be the star of order $n - k\gamma_k + 1$ with pendent vertices $v_1, v_2, \ldots, v_{n-k\gamma_k}$. Denote by T_{n,k,γ_k} the tree formed from $S_{n-k\gamma_k}$ by attaching a path P_{k-1} to v_1 and attaching a path

Figure 3
$$T_{n,k,\gamma_k}$$
.

 P_k to v_i for each $i \in \{2, ..., \gamma_k\}$, as shown in Figure 3. Then $T_{n,k,\gamma_k} \in \mathcal{T}_{n,k,\gamma_k}$. Even more noteworthy is the notion that $\gamma_k(T_{n,k,\gamma_k}) = \gamma_k = \frac{n-\Delta(T_{n,k,\gamma_k})}{k}$. It implies that the upper bound on the distance *k*-domination number mentioned in the above paragraph is sharp.

The Zagreb indices of T_{n,k,γ_k} are computed as

$$M_1(T_{n,k,\gamma_k}) = (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$$

and

$$M_2(T_{n,k,\gamma_k}) = \begin{cases} (n-k\gamma_k)[n-(k-1)\gamma_k] + (4k-2)\gamma_k - 4 & \text{if } k \ge 2, \\ 2(n-\gamma+1)(\gamma-1) + (n-\gamma)(n-2\gamma+1) & \text{if } k = 1. \end{cases}$$

For k = 1, the distance k-domination number $\gamma_1(G)$ is the domination number $\gamma(G)$. Furthermore, the upper bounds on the Zagreb indices of an n-vertex tree with domination number were studied in [1], so we only consider $k \ge 2$ in the following.

Lemma 2.6 ([52]) *T* be a tree on (k + 1)n vertices. Then $\gamma_k(T) = n$ if and only if at least one of the following conditions holds:

- (1) *T* is any tree on k + 1 vertices;
- (2) T = R ∘ k for some tree R on n ≥ 1 vertices, where R ∘ k is the graph obtained by taking one copy of R and |V(R)| copies of the path P_{k-1} of length k − 1 and then joining the ith vertex of R to exactly one end vertex in the ith copy of P_{k-1}.

Lemma 2.7 Let T be an n-vertex tree with distance k-domination number $\gamma_k(T) \ge 3$. If $n = (k + 1)\gamma_k$, then

$$M_1(T) \le \gamma_k(\gamma_k + 1) + 4(k\gamma_k - 1)$$

and

$$M_2(T) \leq 2\gamma_k^2 + (4k-2)\gamma_k - 4,$$

with equality if and only if $T \cong T_{n,k,\gamma_k}$.

Proof When $n = (k + 1)\gamma_k$, $T = R \circ k$ for some tree R on γ_k vertices by Lemma 2.6. Assume that $V(R) = \{v_1, \ldots, v_{\gamma_k}\}$. Then $d_R(v_i) = d_T(v_i) - 1$. It is well known that $\sum_{i=1}^n d(u_i) = 2(n-1)$ for any n-vertex tree with vertex set $\{u_1, \ldots, u_n\}$. Hence, $\sum_{i=1}^{\gamma_k} d_R(v_i) = 2(\gamma_k - 1)$. By the definition of the first Zagreb index, we have

$$\begin{split} M_1(T) &= \sum_{i=1}^{\gamma_k} d_T^2(\nu_i) + \sum_{x \in V(T) \setminus V(R)} d_T^2(x) \\ &= \sum_{i=1}^{\gamma_k} \left(d_T(\nu_i) - 1 \right)^2 + \sum_{x \in V(T) \setminus V(R)} d_T^2(x) + 2 \sum_{i=1}^{\gamma_k} \left(d_T(\nu_i) - 1 \right) + \gamma_k \end{split}$$

$$= M_1(R) + 4(k-1)\gamma_k + \gamma_k + 2\sum_{i=1}^{\gamma_k} d_R(v_i) + \gamma_k$$

$$\leq M_1(S_{\gamma_k}) + 4(k-1)\gamma_k + 2\gamma_k + 4(\gamma_k - 1)$$

$$= \gamma_k(\gamma_k + 1) + 4(k\gamma_k - 1).$$

The equality holds if and only if $R \cong S_{\gamma_k}$, that is, $T \cong T_{n,k,\gamma_k}$. We have

$$\begin{split} M_{2}(T) &= \sum_{xy \in E(R)} d_{T}(x) d_{T}(y) + \sum_{xy \in E(T) \setminus E(R)} d_{T}(x) d_{T}(y) \\ &= \sum_{xy \in E(R)} \left(d_{T}(x) - 1 \right) \left(d_{T}(y) - 1 \right) + \sum_{xy \in E(R)} \left(d_{T}(x) + d_{T}(y) - 1 \right) \\ &+ \sum_{xy \in E(T) \setminus E(R)} d_{T}(x) d_{T}(y) \\ &= M_{2}(R) + \sum_{x \in V(R)} d_{T}(x) \left(d_{T}(x) - 1 \right) - (\gamma_{k} - 1) \\ &+ \sum_{x \in V(R)} 2 d_{T}(x) + 4(k - 2) \gamma_{k} + 2 \gamma_{k} \\ &= M_{2}(R) + \sum_{x \in V(R)} \left(d_{T}(x) - 1 \right)^{2} + 3 \sum_{x \in V(R)} \left(d_{T}(x) - 1 \right) + 4k \gamma_{k} - 5 \gamma_{k} - 1 \\ &= M_{2}(R) + M_{1}(R) + 6(\gamma_{k} - 1) + 4k \gamma_{k} - 5 \gamma_{k} + 1 \\ &\leq M_{2}(S_{\gamma_{k}}) + M_{1}(S_{\gamma_{k}}) + 4k \gamma_{k} + \gamma_{k} - 5 \\ &= 2\gamma_{k}^{2} + (4k - 2)\gamma_{k} - 4. \end{split}$$

The equality holds if and only if $R \cong S_{\gamma_k}$. As a consequence, $T \cong T_{n,k,\gamma_k}$.

Lemma 2.8 Let G be a graph which has a maximum value of the Zagreb indices among all n-vertex connected graphs with distance k-domination number and $S_G = \{v \in V(G) \mid d_G(v) = 1, \gamma_k(G-v) = \gamma_k(G)\}$. If $S_G \neq \emptyset$, then $|N_G(S_G)| = 1$.

Proof Suppose that $|N_G(S_G)| \ge 2$ and *u* and *v* are two distinct vertices in $N_G(S_G)$. $x_1, x_2, ..., x_r$ are the pendent vertices adjacent to *u* and $y_1, y_2, ..., y_t$ are the pendent vertices adjacent to *v*, where $r \ge 1$ and $t \ge 1$. Let *D* be a minimum distance *k*-dominating set of *G*. If $x_i \in D$ for some $i \in \{1, ..., r\}$, then $D - x_i + u$ is a distance *k*-dominating set of *T*. Hence, we assume that $x_i \notin D$, i = 1, ..., r. Similarly, $y_i \notin D$ for $1 \le i \le t$. Define $G_1 = G - \{vy_1\} + \{uy_1\}$ and $G_2 = G - \{ux_1\} + \{vx_1\}$. Then $\gamma_k(G_1) = \gamma_k(G_2) = \gamma_k(G)$. In addition, we have either $M_i(G_1) > M_i(G)$ or $M_i(G_2) > M_i(G)$, i = 1, 2, by a similar proof of Lemma 2.3 and thus omitted here (for reference, see the Appendix). It follows a contradiction, as desired. \Box

3 Main results

In this section, we give upper bounds on the Zagreb indices of a tree with given order *n* and distance *k*-domination number γ_k . If $P = v_0 v_1 \cdots v_d$ is a diameter path of an *n*-vertex tree *T*, then denote by T_i the component of $T - \{v_{i-1}v_i, v_iv_{i+1}\}$ containing v_i , $i = 1, 2, \ldots, d - 1$. By Lemma 2.1, we obtain Theorem 3.1 directly.

Theorem 3.1 Let T be an n-vertex tree and $\gamma_k(T) = 1$. Then $M_1(T) \le n(n-1)$ and $M_2(T) \le (n-1)^2$. The equality holds if and only if $T \cong S_n$.

Let $T_{n,k,2}^i$ be the tree obtained from the path $P_{2k+2} = v_0 \cdots v_{2k+1}$ by joining n - 2(k+1) pendent vertices to v_i , where $i \in \{1, \dots, 2k\}$.

Theorem 3.2 If T is an n-vertex tree with distance k-domination number $\gamma_k(T) = 2$, then

$$M_1(T) \le (n-2k)(n-2k+1) + 4(2k-1),$$

with equality if and only if $T \cong T_{n,k,2}^i$, where $i \in \{1, ..., k\}$. Also,

$$M_2(T) \le (n-2k)(n-2k+2) + 8k - 8k$$

with equality if and only if $T \cong T_{n,k,2}^i$, where $i \in \{2, ..., k\}$.

Proof Assume that $T \in \mathcal{T}_{n,k,2}$ is the tree that maximizes the Zagreb indices and $P = v_0v_1 \cdots v_d$ is a diameter path of T. If $d \le 2k$, then $\{v_{\lfloor \frac{d}{2} \rfloor}\}$ is a distance k-dominating set of T, a contradiction to $\gamma_k(T) = 2$. If $d \ge 2k + 2$, define $T' = \tau(T, v_iv_{i+1})$, where $i \in \{1, \ldots, d-2\}$. Then $T' \in \mathcal{T}_{n,k,2}$. By Lemma 2.2, we have $M_i(T') > M_i(T)$, i = 1, 2, a contradiction. Hence, d = 2k + 1.

If T_i is not a star for some $i \in \{1, 2, ..., d-1\}$, then there exists an *n*-vertex tree T' in $\mathcal{T}_{n,k,2}$ such that $M_i(T') > M_i(T)$ for i = 1, 2 by Lemma 2.2, a contradiction. Besides, $T \cong T^i_{n,k,2}$ for some $i \in \{1, ..., d-1\}$ by Lemma 2.3.

Since $M_1(T_{n,k,2}^i) = M_1(T_{n,k,2}^j)$ for $1 \le i \ne j \le d-1$ and $T_{n,k,2}^i \cong T_{n,k,2}^{d-i}$ for $k+1 \le i \le d-1$, we get $T \cong T_{n,k,2}^i$, $i \in \{1, ..., k\}$. By direct computation, one has $M_1(T) = M_1(T_{n,k,2}^i) = (n-2k)(n-2k+1) + 4(2k-1), i \in \{1, ..., k\}$. In addition, $M_2(T_{n,k,2}^1) = M_2(T_{n,k,2}^{d-1}) < M_2(T_{n,k,2}^2) = \cdots = M_2(T_{n,k,2}^{d-2})$ and $T_{n,k,2}^i \cong T_{n,k,2}^{d-i}$ for $i \in \{k+1, ..., d-2\}$. Hence, $T \cong T_{n,k,2}^i$, where $i \in \{2, ..., k\}$. Moreover, $M_2(T) = M_2(T_{n,k,2}^i) = (n-2k)(n-2k+2) + 8k - 8$. This completes the proof.

Lemma 3.3 Let tree $T \in \mathcal{T}_{n,k,3}$. Then

$$M_1(T) \le (n - 3k)(n - 3k + 1) + 4(3k - 1)$$

and

$$M_2(T) \le (n - 3k)(n - 3k + 3) + 12k - 10,$$

with equality if and only if $T \cong T_{n,k,3}$.

Proof Assume that $T \in \mathcal{T}_{n,k,3}$. We complete the proof by induction on *n*. By Lemma 2.4, we have $n \ge (k + 1)\gamma_k$. This lemma is true for $n = (k + 1)\gamma_k$ by Lemma 2.7. Suppose that n > 3(k + 1) and the statement holds for n - 1 in the following.

Let *D* be a minimum distance *k*-dominating set of *T* and $P = v_0v_1 \cdots v_d$ be a diameter path of *T*. Then $d \ge 2k + 2$. Otherwise, $\{v_k, v_{k+1}\}$ is a distance *k*-dominating set, a contradiction. Note that $\bigcup_{i=0}^k N_T^i(v_0) \cap D \neq \emptyset$ and $\bigcup_{i=0}^k N_T^i(v_0) \subseteq (\bigcup_{i=0}^{k-1} V(T_i) \cup \{v_k\})$. Hence, $(\bigcup_{i=0}^{k-1} V(T_i) \cup \{v_k\}) \cap D \neq \emptyset$. However, $\bigcup_{i=0}^k N_T^i(x) \subseteq \bigcup_{i=0}^k N_T^i(v_k)$ for $x \in \bigcup_{i=0}^k V(T_i) \setminus \{v_k\}$, so we assume that $v_k \in D$ and $(\bigcup_{i=0}^k V(T_i) \setminus \{v_k\}) \cap D = \emptyset$. Similarly, $v_{d-k} \in D$ and $(\bigcup_{i=d-k}^d V(T_i) \setminus \{v_{d-k}\}) \cap D = \emptyset$. Suppose that $v_0 = u_1, v_d = u_2, \dots, u_m$ are the pendent vertices of *T* and $S_T = \{u_i \mid 1 \le i \le m, \gamma_k(T - u_i) = \gamma_k(T)\}$. We have the following claim.

Claim 1 $S_T \neq \emptyset$.

Proof Assume that $S_T = \emptyset$. Namely, $\gamma_k(T - u_i) = \gamma_k(T) - 1$ for each $i \in \{1, ..., m\}$. If $D \setminus \{w_i\}$ is a minimum distance k-dominating set of the tree $T - u_i$, where $w_i \in D$, then $w_i \neq w_j$ for $1 \le i \ne j \le m$. Otherwise, $\gamma_k(T - u_i) = \gamma_k(T)$ or $\gamma_k(T - u_j) = \gamma_k(T)$, a contradiction. It follows that $m \le \gamma_k$.

If $d_T(v_i) \ge 3$ for some $i \in \{2, \dots, k, d-k, \dots, d-1\}$, then $V(T_i) \cap \{u_3, \dots, u_m\} \ne \emptyset$. In view of $\{v_k, v_{d-k}\} \subseteq D$, we have $\gamma_k(T - x) = \gamma_k(T)$ for $x \in V(T_i) \cap \{u_3, \dots, u_m\}$, a contradiction. Hence, $d_T(v_i) = 2$ for $i \in \{2, \dots, k, d-k, \dots, d-1\}$.

Since $\gamma_k(T - v_0) = \gamma_k(T) - 1$, v_1 must be dominated by the vertices in $D \setminus \{v_k\}$. Bearing in mind that $(\bigcup_{i=0}^k V(T_i) \setminus \{v_k\}) \cap D = \emptyset$, one has $v_{k+1} \in D$. The same applies to v_{d-k-1} . Hence, $\{v_k, v_{k+1}, v_{d-k-1}, v_{d-k}\} \subseteq D$. If d > 2k + 2, then the vertices v_k , v_{k+1} , v_{d-k-1} and v_{d-k} are different from each other, a contradiction to $\gamma_k(T) = 3$. As a consequence, d = 2k + 2and thus $D = \{v_k, v_{k+1}, v_{d-k}\}$.

If $d_T(v_{k+1}) = 2$, then $T \cong P_{2k+3}$ and $\{v_k, v_{d-k}\}$ is a distance *k*-dominating set, a contradiction. It follows that $d_T(v_{k+1}) \ge 3$. Hence, $m \ge 3 = \gamma_k$. Recalling that $m \le \gamma_k = 3$, we have m = 3, which implies that T_{k+1} is a path with end vertices v_{k+1} and u_3 . If $d(v_{k+1}, u_3) > k$, then u_3 cannot be dominated by the vertices in *D*. If $d(v_{k+1}, u_3) < k$, then $D \setminus \{v_{k+1}\}$ is a distance *k*-dominating set, a contradiction. Therefore, $d(v_{k+1}, u_3) = k$. We conclude that |V(T)| = 3(k + 1), which contradicts n > 3(k + 1), so Claim 1 is true.

Considering $S_T \neq \emptyset$ for $T \in \mathcal{T}_{n,k,3}$, the tree among $\mathcal{T}_{n,k,3}$ that maximizes the Zagreb indices must be in the set $\{T^* \in \mathcal{T}_{n,k,3} \mid |N_{T^*}(S_{T^*})| = 1\}$ by Lemma 2.8. To determine the extremal trees among $\mathcal{T}_{n,k,3}$, we assume that $T \in \{T^* \in \mathcal{T}_{n,k,3} \mid |N_{T^*}(S_{T^*})| = 1\}$ in what follows.

Let u_i be a pendent vertex such that $\gamma_k(T-u_i) = \gamma_k(T)$ and s be the unique vertex adjacent to u_i . By Lemma 2.5, $d_T(s) \le \triangle \le n - k\gamma_k$. Define $A = \{x \in V(T) \mid d_T(x) = 1, xs \notin E(T)\}$ and $B = \{x \in V(T) \mid d_T(x) \ge 2, xs \notin E(T)\}$. Then $\gamma_k(T-x) = \gamma_k(T) - 1$ for all $x \in A$. As a consequence, $|A| \le \gamma_k$ from the proof of Claim 1. By the induction hypothesis,

$$M_1(T) = M_1(T - u_i) + 2d(s)$$

$$\leq (n - 1 - k\gamma_k)(n - 1 - k\gamma_k + 1) + 4(k\gamma_k - 1) + 2(n - k\gamma_k)$$

$$= (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1).$$

The equality holds if and only if $T - u_i \cong T_{n-1,k,\gamma_k}$ and $d_T(s) = \Delta = n - k\gamma_k$, *i.e.*, $T \cong T_{n,k,\gamma_k}$.

Note that $|A| + |B| = n - 1 - d_T(s)$ and $|A| \le \gamma_k$. Therefore, $|B| = n - 1 - d_T(s) - |A| \ge n - 1 - d_T(s) - \gamma_k$ and

$$\sum_{xs \notin E(T)} d(x) \ge |A| + 2|B| = (|A| + |B|) + |B| \ge 2(n - 1 - d_T(s)) - \gamma_k.$$

By the above inequality and the definition of M_2 , we have

$$M_{2}(T) = M_{2}(T - u_{i}) + \sum_{\nu \in V(T)} d_{T}(\nu) - \sum_{xs \notin E(T)} d_{T}(x) - 1$$

$$\leq M_{2}(T - u_{i}) + 2(n - 1) - 2(n - 1 - d_{T}(s)) + \gamma_{k} - 1 \qquad (1)$$

$$\leq (n - 1 - k\gamma_{k}) [n - 1 - (k - 1)\gamma_{k}] + (4k - 2)\gamma_{k} - 4$$

$$+ 2(n - k\gamma_{k}) + \gamma_{k} - 1 \quad (\text{since } d_{T}(s) \leq \Delta \leq n - k\gamma_{k}) \qquad (2)$$

$$= (n - k\gamma_{k}) [n - (k - 1)\gamma_{k}] + (4k - 2)\gamma_{k} - 4.$$

The equality (1) holds if and only if $|A| = \gamma_k$, $|B| = n - 1 - d_T(s) - \gamma_k$ and $d_T(x) = 2$ for $x \in B$. The equality (2) holds if and only if $T - u_i \cong T_{n-1,k,\gamma_k}$ and $d_T(s) = \Delta = n - k\gamma_k$. Hence, $M_2(T) \le (n - k\gamma_k)[n - (k - 1)\gamma_k] + (4k - 2)\gamma_k - 4$ with equality if and only if $T \cong T_{n,k,\gamma_k}$.

Theorem 3.4 Let T be a tree of order n with distance k-domination number $\gamma_k (\geq 3)$. Then

$$M_1(T) \le (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$$

and

$$M_2(T) \le (n-k\gamma_k) \left[n-(k-1)\gamma_k \right] + (4k-2)\gamma_k - 4,$$

with equality if and only if $T \cong T_{n,k,\gamma_k}$.

Proof Let $T \in \mathcal{T}_{n,k,\gamma_k}$ and $P = v_0v_1 \cdots v_d$ be a diameter path of T. Define $S_T = \{u \in V(T) \mid d_T(u) = 1, \gamma_k(T-u) = \gamma_k(T)\}$. If $S_T = \emptyset$, then $\gamma_k(T-v_i) = \gamma_k(T) - 1$ for i = 0, d. If $S_T \neq \emptyset$, then we suppose that $T \in \{T^* \in \mathcal{T}_{n,k,\gamma_k} \mid |N_{T^*}(S_{T^*})| = 1\}$ by Lemma 2.8 for establishing the maximum Zagreb indices of trees among $\mathcal{T}_{n,k,\gamma_k}$. If $v_d \in S_T \neq \emptyset$, then $\gamma_k(T-v_0) = \gamma_k(T) - 1$, which implies that $\gamma_k(T-v_0) = \gamma_k(T) - 1$ or $\gamma_k(T-v_d) = \gamma_k(T) - 1$. Assume that $\gamma_k(T-v_0) = \gamma_k(T) - 1$. Then there is a minimum distance *k*-dominating set *D* of *T* such that $\{v_k, v_{k+1}, v_{d-k}\} \subseteq D$ from the proof of Lemma 3.3.

Let T' be the tree obtained from T by applying Transformation I on T_i repeatedly for i = 1, ..., k such that $T'_i \cong S_{|V(T'_i)|}$, where T'_i is the component of $T' - \{v_{i-1}v_i, v_iv_{i+1}\}$ containing $v_i, i = 1, ..., k$ (see Figure 4). Then $T' \in \mathcal{T}_{n,k,\gamma_k}$. By Lemma 2.2, we have $M_i(T) \leq M_i(T')$, i = 1, 2, with equality if and only if $T \cong T'$.

By Lemma 2.3, for some $i_0, i_1 \in \{1, \dots, k\}$, define

$$T'' = T' - \bigcup_{i \in \{1, \dots, k\} \setminus \{i_0\}} \{ v_i x \mid x \in N_{T'}(v_i) \setminus \{v_{i-1}, v_{i+1}\} \}$$
$$+ \bigcup_{i \in \{1, \dots, k\} \setminus \{i_0\}} \{ v_{i_0} x \mid x \in N_{T'}(v_i) \setminus \{v_{i-1}, v_{i+1}\} \}$$

and

$$\begin{split} \widetilde{T}'' &= T' - \bigcup_{i \in \{1, \dots, k\} \setminus \{i_1\}} \left\{ v_i x \mid x \in N_{T'}(v_i) \setminus \{v_{i-1}, v_{i+1}\} \right\} \\ &+ \bigcup_{i \in \{1, \dots, k\} \setminus \{i_1\}} \left\{ v_{i_1} x \mid x \in N_{T'}(v_i) \setminus \{v_{i-1}, v_{i+1}\} \right\}. \end{split}$$

Then one has $M_1(T') \leq M_1(T'')$ with equality if and only if $T' \cong T''$ and $M_2(T') \leq M_2(\widetilde{T}'')$ with equality if and only if $T' \cong \widetilde{T}''$.

Suppose that $|N_{T''}(v_{i_0}) \setminus \{v_{i_0-1}, v_{i_0+1}\}| = |N_{\widetilde{T}''} \setminus \{v_{i_1-1}, v_{i_1+1}\}| = m, m \ge 0$. Let

$$T''' = T'' - \left\{ \nu_{i_0} x \mid x \in N_{T''}(\nu_{i_0}) \setminus \{\nu_{i_0-1}, \nu_{i_0+1}\} \right\}$$

+ $\left\{ \nu_{k+1} x \mid x \in N_{T''}(\nu_{i_0}) \setminus \{\nu_{i_0-1}, \nu_{i_0+1}\} \right\}$
= $\widetilde{T}'' - \left\{ \nu_{i_1} x \mid x \in N_{\widetilde{T}''}(\nu_{i_1}) \setminus \{\nu_{i_1-1}, \nu_{i_1+1}\} \right\}$
+ $\left\{ \nu_{k+1} x \mid x \in N_{\widetilde{T}''}(\nu_{i_1}) \setminus \{\nu_{i_1-1}, \nu_{i_1+1}\} \right\}.$

Then *D* is a minimum distance *k*-dominating set of T''' and $d_{T'''}(v_i) = 2$ for i = 1, ..., k. Assume that $PN_{k,D}(x)$ is the set of all private *k*-neighbors of *x* with respect to *D* in T'''. It is clear that the vertices in $\bigcup_{i=0}^{k} N_{T'''}^{i}(v_k) \setminus \{v_0, ..., v_k\}$ can be dominated by $v_{k+1} \in D$. Thus, $D \setminus \{v_k\}$ is a distance *k*-dominating set of tree $T''' - \{v_0, ..., v_k\}$. In addition, $PN_{k,D}(v_{k+1}) \subseteq V(T''') \setminus \{v_0, ..., v_k\}$, which means that $D \setminus \{v_k\}$ is a minimum distance *k*-dominating set of $T''' - \{v_0, ..., v_k\}$. So $\gamma_k(T''' - \{v_0, ..., v_k\}) = \gamma_k - 1$. Analogously, $\gamma_k(T''' - \{v_0, ..., v_{k-1}\}) = \gamma_k - 1$.

By the definition of the first Zagreb index, we get

$$M_1(T''') - M_1(T'') = 4 + (d_{T''}(v_{k+1}) + m)^2 - (2 + m)^2 - d_{T''}^2(v_{k+1})$$
$$= 2m(d_{T''}(v_{k+1}) - 2)$$
$$\ge 0,$$

so $M_1(T'') - M_1(T'') = 0$ if and only if at least one of the following conditions holds:

- (1) m = 0, which implies that $T'' \cong T'''$;
- (2) $d_{T''}(v_{k+1}) = 2.$

If $i_1 = 1$, then

$$\begin{split} M_{2}(T''') - M_{2}(\widetilde{T}'') &= 6 + \left(d_{\widetilde{T}''}(v_{k+1}) + m\right) \left(m + \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x)\right) \\ &- (m+2)(m+3) - d_{\widetilde{T}''}(v_{k+1}) \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x) \\ &= m \left[d_{\widetilde{T}''}(v_{k+1}) + \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x) - 5\right] \\ &\geq 0, \end{split}$$

with equality if and only if m = 0, that is, $\widetilde{T}'' \cong T'''$. If $i_1 \neq 1$ and $i_1 \neq k$, then

$$\begin{split} M_{2}(T''') - M_{2}(\widetilde{T}'') &= 8 + \left(d_{\widetilde{T}''}(v_{k+1}) + m\right) \left(m + \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x)\right) \\ &- (m+2)(m+4) - d_{\widetilde{T}''}(v_{k+1}) \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x) \\ &= m \left[d_{\widetilde{T}''}(v_{k+1}) + \sum_{x \in N_{\widetilde{T}''}(v_{k+1})} d_{\widetilde{T}''}(x) - 6\right] \\ &\geq 0. \end{split}$$

Also, $M_2(T'') - M_2(\widetilde{T}'') = 0$ if and only if at least one of the following conditions holds: (1) m = 0, namely, $\widetilde{T}'' \cong T'''$;

(2) $d_{\widetilde{T}''}(v_k) = d_{\widetilde{T}''}(v_{k+1}) = d_{\widetilde{T}''}(v_{k+2}) = 2.$

If $i_1 \neq 1$ and $i_1 = k$, then

$$\begin{split} M_{2}(T''') - M_{2}(\widetilde{T}'') &= 4 + \left(d_{\widetilde{T}''}(v_{k+1}) + m\right) \left(m + 2 + \sum_{x \in N_{\widetilde{T}''}(v_{k+1}) \setminus \{v_{k}\}} d_{\widetilde{T}''}(x)\right) \\ &- (m + 2)(m + 2) - d_{\widetilde{T}''}(v_{k+1}) \left(\sum_{x \in N_{\widetilde{T}''}(v_{k+1}) \setminus \{v_{k}\}} d_{\widetilde{T}''}(x) + m + 2\right) \\ &= m \left(\sum_{x \in N_{\widetilde{T}''}(v_{k+1}) \setminus \{v_{k}\}} d_{\widetilde{T}''}(x) - 2\right) \\ &\geq 0. \end{split}$$

As a result, $M_2(T'') - M_2(\widetilde{T}'') = 0$ if and only if at least one of the following conditions holds:

(1) m = 0, which implies that $\widetilde{T}'' \cong T'''$;

(2) $d_{\widetilde{T}''}(v_{k+1}) = d_{\widetilde{T}''}(v_{k+2}) = 2.$

In what follows, we prove $M_1(T''') \le (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$ and $M_2(T''') \le (n - k\gamma_k)[n - (k - 1)\gamma_k] + (4k - 2)\gamma_k - 4$ with equality if and only if $T''' \cong T_{n,k,\gamma_k}$ by induction on γ_k . The statement is true for $\gamma_k = 3$ and $n \ge (k + 1)\gamma_k$ by Lemma 3.3. Assume that $\gamma_k \ge 4$, the statement holds for $\gamma_k - 1$ and all the $n \ge (k + 1)(\gamma_k - 1)$.

In view of $\gamma_k(T''' - \{\nu_0, \nu_1, ..., \nu_k\}) = \gamma_k - 1$ and $|V(T''' - \{\nu_0, \nu_1, ..., \nu_k\})| = n - k - 1 \ge (k + 1)(\gamma_k - 1)$, by the induction hypothesis, we get

$$M_1(T''') = M_1(T''' - \{\nu_0, \nu_1, \dots, \nu_k\}) + 2d_{T'''}(\nu_{k+1}) - 1 + \sum_{i=0}^k d_{T'''}^2(\nu_i)$$

$$\leq M_1(T_{n-k-1,k,\gamma_k-1}) + 2(n-k\gamma_k) + 4k$$

$$= (n-k\gamma_k)(n-k\gamma_k+1) + 4(k\gamma_k-1).$$

The equality holds if and only if $T''' - \{v_0, v_1, \dots, v_k\} \cong T_{n-k-1,k,\gamma_k-1}$ and $d_{T'''}(v_{k+1}) = \Delta = n - k\gamma_k$. Recalling that $d_{T'''}(v_i) = 2$ for $i = 1, \dots, k$, we have $M_1(T''') = (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$ if and only if $T''' \cong T_{n,k,\gamma_k}$.

Thus, $M_1(T) \leq M_1(T') \leq M_1(T'') \leq M_1(T''') \leq (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$ and $M_1(T) = (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$ if and only if at least one of the following conditions holds:

- (1) $T \cong T' \cong T'' \cong T''' \cong T_{n,k,\nu_k}$;
- (2) $T \cong T' \cong T''$, where $d_{T''}(v_{k+1}) = 2$. Besides, $T''' \cong T_{n,k,\gamma_k}$.

However, the second condition is impossible. If $T''' \cong T_{n,k,\gamma_k}$, then $d_{T''}(v_{k+1}) = n - k\gamma_k$ and the number of the pendent vertices in $N_{T'''}(v_{k+1})$ is $n - (k+1)\gamma_k$. By the definition of T''', we have

$$n - (k+1)\gamma_k \ge |N_{T''}(\nu_{i_0}) \setminus \{\nu_{i_0-1}, \nu_{i_0+1}\}|.$$

Hence,

$$d_{T''}(v_{k+1}) = d_{T'''}(v_{k+1}) - |N_{T''}(v_{i_0}) \setminus \{v_{i_0-1}, v_{i_0+1}\}|$$

$$\geq d_{T'''}(v_{k+1}) - [n - (k+1)\gamma_k]$$

$$= \gamma_k \geq 3,$$

a contradiction to $d_{T''}(v_{k+1}) = 2$. Therefore,

$$M_1(T) \le (n - k\gamma_k)(n - k\gamma_k + 1) + 4(k\gamma_k - 1)$$

with equality if and only if $T \cong T_{n,k,\gamma_k}$.

Note that $\gamma_k(T''' - \{\nu_0, \dots, \nu_{k-1}\}) = \gamma_k - 1$ and $|V(T''' - \{\nu_0, \dots, \nu_{k-1}\})| > (k+1)(\gamma_k - 1)$. Then

$$M_2(T''') = M_2(T''' - \{v_0, v_1, \dots, v_{k-1}\}) + d_{T'''}(v_{k+1}) + 4(k-1) + 2$$

$$\leq M_2(T_{n-k,k,\gamma_k-1}) + n - k\gamma_k + 4(k-1) + 2$$

$$= (n-k\gamma_k)[n - (k-1)\gamma_k] + (4k-2)\gamma_k - 4.$$

The equality holds if and only if $T''' - \{v_0, \dots, v_{k-1}\} \cong T_{n-k,k,\gamma_k-1}$ and $d_{T''}(v_{k+1}) = \Delta = n - k\gamma_k$. In consideration of $d_{T'''}(v_i) = 2$ for $i = 1, \dots, k$, the equality holds if and only if $T''' \cong T_{n,k,\gamma_k}$.

Hence, if $i_1 \neq 1$, then $M_2(T) \leq M_2(T') \leq M_2(\widetilde{T}'') \leq M_2(T''') \leq (n - k\gamma_k)[n - (k - 1)\gamma_k] + (4k - 2)\gamma_k - 4$, with equality if and only if at least one of the following conditions holds:

(1)
$$T \cong T' \cong \widetilde{T}'' \cong T''' \cong T_{n,k,\gamma_k};$$

(2) $T \cong T' \cong \widetilde{T}''$, where $d_{\widetilde{T}''}(v_k) = d_{\widetilde{T}''}(v_{k+1}) = d_{\widetilde{T}''}(v_{k+2}) = 2$ and $\widetilde{T}''' \cong T_{n,k,\gamma_k}.$

Analogous to the analysis of the first Zagreb index, the second condition above is impossible. Thus,

$$M_2(T) \le (n - k\gamma_k) \left[n - (k - 1)\gamma_k \right] + (4k - 2)\gamma_k - 4$$

and the equality holds if and only if $T \cong T_{n,k,\gamma_k}$.

Besides, if i = 1, then $M_2(T) \le (n - k\gamma_k)[n - (k - 1)\gamma_k] + (4k - 2)\gamma_k - 4$ with equality if and only if $T \cong T_{n,k,\gamma_k}$ immediately. This completes the proof.

Remark 3.5 Borovićanin and Furtula [1] proved

$$M_1(T) \le (n-\gamma)(n-\gamma+1) + 4(\gamma-1)$$

and

$$M_2(T) \le 2(n - \gamma + 1)(\gamma - 1) + (n - \gamma)(n - 2\gamma + 1),$$

with equality if and only if $T \cong T_{n,\gamma}$, where $T_{n,\gamma}$ is the tree obtained from the star $K_{1,n-\gamma}$ by attaching a pendent edge to its $\gamma - 1$ pendent vertices. In this paper, we determine the extremal values on the Zagreb indices of trees with distance *k*-domination number for $k \ge 2$. Note that the domination number is the special case of the distance *k*-domination number for k = 1 and $T_{n,k,\gamma_k} \cong T_{n,\gamma}$, $T_{n,k,2}^i \cong T_{n,\gamma}$, $i \in \{1, \ldots, k\}$, when k = 1. Let *T* be an *n*-vertex tree with distance *k*-domination number γ_k . Then, by using Theorems 3.1, 3.2 and 3.4 and the results in [1], we have

$$M_1(T) \leq \begin{cases} n(n-1) & \text{if } \gamma_k = 1, \\ (n-k\gamma_k)(n-k\gamma_k+1) + 4(k\gamma_k-1) & \text{if } \gamma_k \ge 2, \end{cases}$$

with equality if and only if $T \cong S_n$ when $\gamma_k = 1$, $T \cong T^i_{n,k,2}$, $i \in \{1, ..., k\}$, when $\gamma_k = 2$, or $T \cong T_{n,k,\gamma_k}$ when $\gamma_k \ge 3$. Moreover,

$$M_{2}(T) \leq \begin{cases} 2(n - \gamma_{k} + 1)(\gamma_{k} - 1) + (n - \gamma_{k})(n - 2\gamma_{k} + 1) & \text{if } k = 1, \\ (n - 1)^{2} & \text{if } k \ge 2, \gamma_{k} = 1, \\ (n - k\gamma_{k})[n - (k - 1)\gamma_{k}] + (4k - 2)\gamma_{k} - 4 & \text{if } k \ge 2, \gamma_{k} \ge 2, \end{cases}$$

with equality if and only if $T \cong S_n$ when $k \ge 2$ and $\gamma_k = 1$, $T \cong T^i_{n,k,2}$, $i \in \{2, ..., k\}$, when $k \ge 2$ and $\gamma_k = 2$, or $T \cong T_{n,k,\gamma_k}$ otherwise.

Appendix

Proof Either $M_i(G_1) > M_i(G)$ or $M_i(G_2) > M_i(G)$, i = 1, 2, in Lemma 2.8, where $G_1 = G - \{vy_1\} + \{uy_1\}$ and $G_2 = G - \{ux_1\} + \{vx_1\}$, as shown in the following figure.

Let $G^* = G - \{x_1, ..., x_r, y_1, ..., y_t\}$, $d_{G^*}(u) = a$ and $d_{G^*}(v) = b$. Then

$$M_1(G_1) - M_1(G) = (a + r + 1)^2 + (b + t - 1)^2 - (a + r)^2 - (b + t)^2$$
$$= 2(a + r - b - t + 1)$$

and

$$M_1(G_2) - M_1(G) = (a + r - 1)^2 + (b + t + 1)^2 - (a + r)^2 - (b + t)^2$$
$$= 2(b + t - a - r + 1)$$

by the definition of the first Zagreb index. Suppose that $M_1(G_1) - M_1(G) \le 0$. Then $a + r \le b + t - 1$. It follows that $M_1(G_2) - M_1(G) > 0$.

If $u \notin N_G(v)$, then

$$\begin{split} M_2(G_1) - M_2(G) &= (a+r+1) \left(\sum_{x \in N_{G^*}(u)} d_G(x) + r + 1 \right) \\ &+ (b+t-1) \left(\sum_{x \in N_{G^*}(v)} d_G(x) + t - 1 \right) \\ &- (a+r) \left(\sum_{x \in N_{G^*}(u)} d_G(x) + r \right) - (b+t) \left(\sum_{x \in N_{G^*}(v)} d_G(x) + t \right) \\ &= \sum_{x \in N_{G^*}(u)} d_G(x) - \sum_{x \in N_{G^*}(v)} d_G(x) + 2r - 2t + a - b + 2 \end{split}$$

and

$$\begin{split} M_2(G_2) - M_2(G) &= (a+r-1) \left(\sum_{x \in N_{G^*}(u)} d_G(x) + r - 1 \right) \\ &+ (b+t+1) \left(\sum_{x \in N_{G^*}(v)} d_G(x) + t + 1 \right) \\ &- (a+r) \left(\sum_{x \in N_{G^*}(u)} d_G(x) + r \right) - (b+t) \left(\sum_{x \in N_{G^*}(v)} d_G(x) + t \right) \\ &= \sum_{x \in N_{G^*}(v)} d_G(x) - \sum_{x \in N_{G^*}(u)} d_G(x) + 2t - 2r + b - a + 2. \end{split}$$

If $M_2(G_1) - M_2(G) \le 0$, then $M_2(G_2) - M_2(G) > 0$.

If $u \in N_G(v)$, then

$$\begin{split} M_{2}(G_{1}) &- M_{2}(G) \\ &= (a+r+1) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + r + 1 \bigg) + (b+t-1) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + t - 1 \bigg) \\ &+ (a+r+1)(b+t-1) - (a+r) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + r \bigg) \\ &- (b+t) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + t \bigg) - (a+r)(b+t) \\ &= \sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) - \sum_{x \in N_{G^{*}}(v) \setminus \{u\}} d_{G}(x) + r - t + 1 \end{split}$$

and

$$\begin{split} M_{2}(G_{2}) &- M_{2}(G) \\ &= (a+r-1) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + r - 1 \bigg) + (b+t+1) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + t + 1 \bigg) \\ &+ (a+r-1)(b+t+1) - (a+r) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + r \bigg) \\ &- (b+t) \bigg(\sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + t \bigg) - (a+r)(b+t) \\ &= \sum_{x \in N_{G^{*}}(v) \setminus \{u\}} d_{G}(x) - \sum_{x \in N_{G^{*}}(u) \setminus \{v\}} d_{G}(x) + t - r + 1. \end{split}$$

Assume that $M_2(G_1) - M_2(G) \le 0$. Then $M_2(G_2) - M_2(G) > 0$. Therefore, either $M_i(G_1) > M_i(G)$ or $M_i(G_2) > M_i(G)$, i = 1, 2.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 11401004) and the Natural Science Foundation of Anhui Province of China (No. 1408085QA03).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 September 2017 Accepted: 15 December 2017 Published online: 10 January 2018

References

- 1. Borovićanin, B, Furtula, B: On extremal Zagreb indices of trees with given domination number. Appl. Math. Comput. 279, 208-218 (2016)
- 2. Dobrynin, A, Kochetova, AA: Degree distance of a graph: a degree analogue of the Wiener index. J. Chem. Inf. Comput. Sci. **34**, 1082-1086 (1994)
- 3. Dobrynin, A, Entringer, R, Gutman, I: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211-249 (2011)

- 4. Balaban, AT, Chiriac, A, Motoc, I, Simon, Z: Steric Fit in Quantitative Structure-Activity Relations. Lecture Notes in Chemistry, vol. 15, pp. 22-27. Springer, Berlin (1980)
- 5. Estrada, E: Characterization of 3D molecular structure. Chem. Phys. Lett. 319, 713-718 (2000)
- Zhang, HP, Yang, YJ: Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quant. Chem. 107, 330-339 (2007)
- Bordes, A, Glorot, X, Weston, J, Bengio, Y: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94, 233-259 (2014)
- Gupta, S, Singh, M, Madan, AK: Eccentric distance sum: a novel graph invariant for predicting biological and physical properties. J. Math. Anal. Appl. 275, 386-401 (2002)
- Gupta, S, Singh, M, Madan, AK: Connective eccentricity index: a novel topological descriptor for predicting biological activity. J. Mol. Graph. Model. 18, 18-25 (2000)
- Sardana, S, Madan, AK: Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor. J. Mol. Model. 8, 258-265 (2002)
- 11. Randić, M: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615 (1975)
- 12. Shi, YT: Note on two generalizations of the Randic index. Appl. Math. Comput. 265, 1019-1025 (2015)
- Lokesha, V, Shetty, BS, Ranjini, PS, Cangul, IN, Cevilk, AS: New bounds for Randic and GA indices. J. Inequal. Appl. 2013, Article ID 180 (2013)
- 14. Zhou, B, Trinajstić, N: On general sum-connectivity index. J. Math. Chem. 47, 210-218 (2013)
- Akhter, S, Imran, M, Raza, Z: Bounds for the general sum-connectivity index of composite graphs. J. Inequal. Appl. 2017, Article ID 76 (2017)
- Gutman, I, Trinajstić, N: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535-538 (1972)
- 17. Gutman, I: Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka 18, 17-23 (2011)
- Das, KC, Yurttas, A, Togan, M, Cevik, AS, Cangul, IN: The multiplicative Zagreb indices of graph operations. J. Inequal. Appl. 2013, Article ID 90 (2013)
- Zhan, FQ, Qiao, YF, Cai, JL: Unicyclic and bicyclic graphs with minimal augmented Zagreb index. J. Inequal. Appl. 2015, Article ID 126 (2015)
- Balaban, AT, Motoc, I, Bonchev, D, Mekenyan, O: Topological indices for structure-activity correlations. Top. Curr. Chem. 114, 21-55 (1983)
- 21. Todeschini, R, Consonni, V: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)
- Gutman, I, Ruščić, B, Trinajstić, N, Wilcox, CF: Graph theory and molecular orbitals, XII. Acyclic polyencs. J. Chem. Phys. 62, 3399-3405 (1975)
- 23. Nikolić, S, Kovaćević, G, Miličević, A, Trinajstić, N: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113-124 (2003)
- 24. Gutman, I, Das, KC: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004)
- 25. Furtula, B, Gutman, I: A forgotten topological index. J. Math. Chem. 53, 1184-1190 (2015)
- 26. Hosamani, SM, Basavanagoud, B: New upper bounds for the first Zagreb index. MATCH Commun. Math. Comput. Chem. **74**, 97-101 (2015)
- Milovanović, El, Milovanović, IŽ, Dolićanin, EĆ, Glogić, E: A note on the first reformulated Zagreb index. Appl. Math. Comput. 273, 16-20 (2016)
- 28. Furtula, B, Gutmana, I, Ediz, S: On difference of Zagreb indices. Discrete Appl. Math. 178, 83-88 (2014)
- 29. Liu, BL, Gutman, I: Upper bounds for Zagreb indices of connected graphs. MATCH Commun. Math. Comput. Chem. 55, 439-446 (2006)
- Zhang, SG, Zhang, HL: Unicyclic graphs with the first three smallest and largest first general Zagreb index. MATCH Commun. Math. Comput. Chem. 55, 427-438 (2006)
- 31. Zhou, B, Gutman, I: Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233-239 (2005)
- 32. Gutman, I, Goubko, M: Trees with fixed number of pendent vertices with minimal first Zagreb index. Bull. Int. Math. Virtual Inst. **3**, 161-164 (2013)
- 33. Yan, Z, Liu, HQ, Liu, HG: Sharp bounds for the second Zagreb index of unicyclic graphs. J. Math. Chem. 42, 565-574 (2007)
- Lang, RL, Deng, XL, Lu, H: Bipartite graphs with the maximal value of the second Zagreb index. Bull. Malays. Math. Sci. Soc. 36, 1-6 (2013)
- Vasilyeva, A, Dardab, R, Stevanović, D: Trees of given order and independence number with minimal first Zagreb index. MATCH Commun. Math. Comput. Chem. 72, 775-782 (2014)
- 36. Feng, YQ, Hu, X, Li, SC: On the extremal Zagreb indices of graphs with cut edges. Acta Appl. Math. 10, 667-684 (2010)
- 37. Liu, MH, Liu, BL: Second Zagreb indices of unicyclic graphs with given degree sequences. Discrete Appl. Math. 167, 217-221 (2014)
- 38. Xu, KX: The Zagreb indices of graphs with a given clique number. Appl. Math. Lett. 24, 1026-1030 (2011)
- 39. Li, SC, Yang, HX, Zhao, Q: Sharp bounds on Zagreb indices of cacti with *k* pendent vertices. Filomat **26**, 1189-1200 (2012)
- Li, SC, Zhang, MJ: Sharp bounds for the Zagreb indices of bipartite graphs with a given diameter. Appl. Math. Lett. 24, 131-137 (2011)
- Chang, GJ: k-domination and graph covering problems. Ph.D. thesis, School of OR and IE, Cornell University, Ithaca, NY (1982)
- Chang, GJ, Nemhauser, GL: The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods 5, 332-345 (1984)
- 43. Haynes, TW, Hedetniemi, ST, Slater, PJ: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
- 44. Haynes, TW, Hedetniemi, ST, Slater, PJ: Domination in Graphs. Marcel Dekker, New York (1998)
- 45. Dankelmann, P: Average distance and domination number. Discrete Appl. Math. 80, 21-35 (1997)
- 46. Tian, F, Xu, JM: Average distance and distance domination numbers. Discrete Appl. Math. 157, 1113-1127 (2009)
- He, CX, Wu, BF, Yu, ZS: On the energy of trees with given domination number. MATCH Commun. Math. Comput. Chem. 64, 169-180 (2010)

- Das, KC, Gutman, I: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103-112 (2004)
- 49. Hua, HB, Zhang, SG, Xu, KX: Further results on the eccentric distance sum. Discrete Appl. Math. 160, 170-180 (2012)
- Deng, HY: A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 57, 597-616 (2007)
- 51. Meir, A, Moon, JW: Relations between packing and covering numbers of a tree. Pac. J. Math. 61, 225-233 (1975)
- 52. Topp, J, Volkmann, L: On packing and covering numbers of graphs. Discrete Math. 96, 229-238 (1991)

Submit your manuscript to a SpringerOpen[●] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com