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Abstract
In this article, we first introduce two simultaneous projection algorithms for solving
the split equality problem by using a new choice of the stepsize, and then propose
two semi-alternating projection algorithms. The weak convergence of the proposed
algorithms is analyzed under standard conditions. As applications, we extend the
results to solve the split feasibility problem. Finally, a numerical example is presented
to illustrate the efficiency and advantage of the proposed algorithms.
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1 Introduction
Let H1, H2 and H3 be real Hilbert spaces, let C ⊆ H1 and Q ⊆ H2 be two nonempty closed
convex sets, and let A : H1 → H3 and B : H2 → H3 be two bounded linear operators.

In this article, we consider the classical split equality problem (SEP), which was first
introduced by Moudafi [1]. The SEP can mathematically be formulated as follows:

Find x ∈ C, y ∈ Q such that Ax = By. (1)

Throughout this paper, assume that SEP (1) is consistent and denote by

� = {x ∈ C, y ∈ Q : Ax = By}

the solution of SEP (1). Then � is closed, convex and nonempty.
The split equality problem (1) is actually an optimization problem with weak coupling

in the constraint (see [1] for details) and its interest covers many situations, for instance,
in domain decomposition for PDEs, game theory and intensity-modulated radiation ther-
apy (IMRT). In domain decomposition for PDEs, this equals to the variational form of a
PDE in a domain that can be decomposed into two non-overlapping subdomains with a
common interface (see, e.g., [2]). In decision sciences, this allows to consider agents who
interplay only via some components of their decision variables (see, e.g., [3]). In IMRT,
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this amounts to envisaging a weak coupling between the vector of doses absorbed in all
voxels and that of the radiation intensity (see [4] for further details). Attouch [5] pointed
out more applications of the SEP in optimal control theory, surface energy and potential
games, whose variational form can be seen as a SEP.

Next we present an example, in which a separable optimization problem can be rewrit-
ten as a split equality problem.

Example 1.1 Consider the separable optimization problem

minimize f (x) + g(y)

subject to Ax = By,
(2)

with x ∈ RN and y ∈ RM , where A ∈ RJ×N and B ∈ RJ×M . Assume that f and g are convex
and the solution set of problem (2) is nonempty.

Set C = argmin{f (x) | x ∈ RN } and Q = argmin{g(y) | y ∈ RM}. Then the optimization
problem (2) equals to the following split equality problem:

Find x ∈ C, y ∈ Q such that Ax = By. (3)

A great deal of literature on algorithms for solving SEP has been published, most of
which are projection methods [1–3, 6–11]. Based on the classical projection gradient al-
gorithm, Byrne and Moudafi [12] introduced the following algorithm, which is also called
the simultaneous iterative method [13]:

⎧
⎨

⎩

xk+1 = PC(xk – βkA∗(Axk – Byk)),

yk+1 = PQ(yk + βkB∗(Axk – Byk)),
(4)

where βk ∈ (ε, 2/(λA + λB) –ε), λA and λB are the operator (matrix) norms ‖A‖ and ‖B‖ (or
the largest eigenvalues of A∗A and B∗B), respectively. To determine stepsize βk , one needs
first to calculate (or estimate) the operator norms ‖A‖ and ‖B‖. In general, it is difficult or
even impossible. On the other hand, even if we know the norm of A and B, the algorithm
(4) method with fixed stepsize may be slow.

In order to deal with this, the authors [9] introduced a self-adaptive projection algo-
rithm, in which the stepsize is computed by using an Armijo search.

Define the function F : H1 × H2 → H1 by

F(x, y) = A∗(Ax – By),

and the function G : H1 × H2 → H2 by

G(x, y) = B∗(By – Ax).

The self-adaptive projection algorithm in [9] is defined as follows.
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Algorithm 1.1 Given constants σ0 > 0, α ∈ (0, 1), θ ∈ (0, 1) and ρ ∈ (0, 1). Let x0 ∈ H1 and
y0 ∈ H2 be taken arbitrarily. For k = 0, 1, 2, . . . , compute

⎧
⎨

⎩

uk = PC(xk – βkF(xk , yk)),

vk = PQ(yk – βkG(xk , yk)),
(5)

where βk is chosen to be the largest β ∈ {σk ,σkα,σkα
2, . . .} satisfying

β2(∥∥F
(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
xk , yk) – G

(
uk , vk)∥∥2)

≤ θ2(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2). (6)

Compute

⎧
⎨

⎩

xk+1 = PC(xk – βkF(uk , vk)),

yk+1 = PQ(yk – βkG(uk , vk)).
(7)

If

β2
k
(∥
∥F

(
xk , yk) – F

(
xk+1, yk+1)∥∥2 +

∥
∥G

(
xk , yk) – G

(
xk+1, yk+1)∥∥2)

≤ ρ2(∥∥xk – xk+1∥∥2 +
∥
∥yk – yk+1∥∥2), (8)

then set σk = σ0; otherwise, set σk = βk .

In fact, Algorithm 1.1 can be seen as an extension of the classical extragradient method
first proposed by Korpelevich [14]. Notice that, in Algorithm 1.1, the stepsize of the pre-
diction (5) and that of the correction (7) are equal. Thus these two steps seem to be ‘sym-
metric’.

Recently, Chuang and Du [15] proposed the following projection algorithm (which is
called the hybrid projected Landweber algorithm).

Algorithm 1.2 Given constants σ > 0,α ∈ (0, 1) and θ ∈ (0, 1), let x0 ∈ H1 and y0 ∈ H2 be
taken arbitrarily. For k = 0, 1, 2, . . . , compute

⎧
⎨

⎩

uk = PC(xk – βkF(xk , yk)),

vk = PQ(yk – βkG(xk , yk)),

where βk is chosen via (6) and (8). Compute next iterates xk+1 and yk+1 by

⎧
⎨

⎩

xk+1 = PC(xk – ρkck),

yk+1 = PQ(yk – ρkdk),
(9)

where
⎧
⎨

⎩

ck := (xk – uk) – βk(F(xk , yk) – F(uk , vk));

dk := (yk – vk) – βk(G(xk , yk) – G(uk , vk)),
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and

ρk :=
〈xk – uk , ck〉 + 〈yk – vk , dk〉

‖ck‖2 + ‖dk‖2 . (10)

Note that Algorithm 1.2 with ρk ≡ 1 in (9) can be seen as a special case of Tseng’s method
[8, 16]. The projections in the second step of Tseng’s method are made onto two nonempty
closed convex sets X ⊆ H1 and Y ⊆ H2, other than C and Q. X and Y can be any sets such
that the intersections of X and C (and Y and Q) are nonempty, and they may be taken to
have simple structures so that the projections onto them are easy to calculate.

Chuang and Du [15] proved the convergence of Algorithm 1.2 and also presented the
convergence property of Algorithm 1.2 as follows:

∥
∥xk+1 – x∗∥∥2 +

∥
∥yk+1 – y∗∥∥2

≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 – ρ2

k
(‖ck‖2 + ‖dk‖2), (11)

where (x∗, y∗) ∈ �.
The stepsize βk in Algorithms 1.1 and 1.2 is obtained through the Armijo search (6). In

general, the computational cost of a self-adaptive algorithm is large, since one may need
to calculate (5) several times to get the stepsize βk .

To overcome this difficulty, the authors [17] introduced a projection algorithm for which
the stepsize does not depend on the operator norms ‖A‖ and ‖B‖, and one can directly
compute the stepsize instead of using the Armijo search.

Algorithm 1.3 Choose initial guesses x0 ∈ H1, y0 ∈ H2 arbitrarily. Assume that the kth
iterate xk ∈ C, yk ∈ Q has been constructed and Axk – Byk �= 0; then we calculate the (k +
1)th iterate (xk+1, yk+1) via the formula

⎧
⎨

⎩

xk+1 = PC(xk – βkA∗(Axk – Byk)),

yk+1 = PQ(yk + βkB∗(Axk – Byk)),
(12)

where the stepsize βk is chosen in such a way that

βk = σk min

{ ‖Axk – Byk‖2

‖A∗(Axk – Byk)‖2 ,
‖Axk – Byk‖2

‖B∗(Axk – Byk)‖2

}

, (13)

where 0 < σk < 1. If Axk – Byk = 0, then (xk+1, yk+1) = (xk , yk) is a solution of SEP (1) and the
iterative process stops; otherwise, we set k := k + 1 and go onto (12) to evaluate the next
iterate (xk+2, yk+2).

Note that the choice in (13) of the stepsize βk is independent of the norms ‖A‖ and ‖B‖.
Polyak [18, 19] first introduced the inertial extrapolation algorithms, which were widely

studied as an acceleration process. The authors [20] made an inertial modification for
Algorithm 1.3 and introduced the following inertial projection methods for SEP.
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Algorithm 1.4 Choose initial guesses x0, x1 ∈ H1, y0, y1 ∈ H2 arbitrarily. Compute

⎧
⎪⎪⎨

⎪⎪⎩

(x̄k , ȳk) = (xk , yk) + αk(xk – xk–1, yk – yk–1),

xk+1 = PC(x̄k – βkA∗(Ax̄k – Bȳk)),

yk+1 = PQ(ȳk + βkB∗(Ax̄k – Bȳk)),

(14)

where αk ∈ (0, 1) and the stepsize γk is chosen in the same way as (13).

They showed the weak convergence of Algorithm 1.4 under some conditions on the
inertial parameter αk .

In fact, Algorithm 1.4 can be seen as a FISTA (fast iterative shrinkage-thresholding al-
gorithm) introduced by Beck and Teboulle [21] to solve the linear inverse problems, if we

take the inertial parameter αk = tk –1
tk+1

, where t1 = 1 and tk+1 =
1+

√

1+4t2
k

2 , k ≥ 1, and choose a
constant stepsize βk or choose βk via a backtracking stepsize rule. A shortcoming of the
method of Beck and Teboulle is that they could not prove the convergence of the iterative
sequence (xk , yk). Chambolle and Dossal [22] improved the choice of the inertial param-
eter, took αk = k–1

k+a , where a > 2, and presented the convergence of the iterative sequence
(xk , yk).

In this paper, inspired by the work in [17, 23, 24], we introduce two simultaneous pro-
jection algorithms by improving the stepsizes βk and ρk of the second step (7) and (9)
in Algorithms 1.1 and 1.2, respectively. We also present two alternating projection algo-
rithms, in which we take an alternating technique in the first step.

The structure of the paper is as follows. In the next section, we present some concepts
and lemmas which will be used in the main results. In Section 3, two classes of projection
algorithms are provided and their weak convergence is analyzed. In Section 4, we extend
the results to the split feasibility problem. In the final section, some numerical results are
provided, which show the advantages of the proposed algorithms.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖,
and let D be a nonempty, closed and convex subset of H . We write xk ⇀ x to indicate
that the sequence {xk}∞k=0 converges weakly to x and xk → x to indicate that the sequence
{xk}∞k=0 converges strongly to x. Given a sequence {xk}∞k=0, denote by ωw(xk) its weak ω-
limit set, that is, any x ∈ ωw(xk) such that there exists a subsequence {xkj}∞j=0 of {xk}∞k=0
which converges weakly to x.

In this paper, an important tool of our work is the projection. Let H be a real Hilbert
space and C be a closed convex subset of H . Recall that the projection from H onto
C, denoted by PC , is defined in such a way that, for each x ∈ H , PC(x) is the unique point
in C such that

∥
∥x – PC(x)

∥
∥ = min

{‖x – z‖ : z ∈ C
}

.

The following two lemmas are useful characterizations of projections.

Lemma 2.1 ([25]) Given x ∈ H and z ∈ C. Then z = PC(x) if and only if

〈x – z, y – z〉 ≤ 0, ∀y ∈ C.
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Lemma 2.2 ([25, 26]) For any x, y ∈ H and z ∈ C, it holds
(i) ‖PC(x) – PC(y)‖ ≤ ‖x – y‖;

(ii) ‖PC(x) – z‖2 ≤ ‖x – z‖2 – ‖PC(x) – x‖2.

Definition 2.1 The normal cone of C at v ∈ C, denoted by NC(v), is defined as

NC(v) :=
{

d ∈ H | 〈d, y – v〉 ≤ 0 for all y ∈ C
}

.

Definition 2.2 Let A : H ⇒ 2H be a point-to-set operator defined on a real Hilbert space
H . The operator A is called a maximal monotone operator if A is monotone, i.e.,

〈u – v, x – y〉 ≥ 0 for all u ∈ A(x) and v ∈ A(y),

and the graph G(A) of A,

G(A) :=
{

(x, u) ∈ H × H | u ∈ A(x)
}

,

is not properly contained in the graph of any other monotone operator.

It is clear [27, Theorem 3] that a monotone mapping A is maximal if and only if, for any
(x, u) ∈ H × H , if 〈u – v, x – y〉 ≥ 0 for all (v, y) ∈ G(A), then it follows that u ∈ A(x).

Lemma 2.3 ([26]) Let D be a nonempty, closed and convex subset of a Hilbert space H . Let
(xk) be a bounded sequence which satisfies the following properties:

(i) every limit point of {xk}∞k=0 lies in D;
(ii) limn→∞ ‖xk – x‖ exists for every x ∈ D.

Then {xk} converges weakly to a point in D.

3 Main results
In this section, we present two classes of projection algorithms and establish their weak
convergence under standard conditions.

3.1 Simultaneous projection algorithms
Let S = C × Q ∈ H := H1 × H2. Define K = [A, –B] : H1 × H2 → H1 × H2, and let K∗ be the
adjoint operator of K , then the original problem (1) can be modified as

Find z = (x, y) ∈ S such that Kw = 0. (15)

Note that if the solution set of (15) is nonempty, it equals the following minimization
problem:

min
z∈S

1
2
‖Kz‖2, (16)

which is a standard (and a simple) problem from the convex optimization point of view.
There are many methods for solving the minimization problem (16) such as the classical
projection gradient method. Algorithm (4) (also Algorithm 1.3) is the exact projection
gradient method when applied to (16).
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Inspired by Cai [24] and Dong et al. [17], we propose two new simultaneous projection
algorithms by improving the stepsizes in the second step of Algorithms 1.1 and 1.2.

Algorithm 3.1 Given constants σ > 0, α ∈ (0, 1), θ ∈ (0, 1) and ρ ∈ (0, 1), let z0 = (x0, y0) ∈
H = H1 × H2 be taken arbitrarily.

For k = 0, 1, 2, . . . , compute

wk = PS
(
zk – βkK∗K

(
zk)), (17)

where βk is chosen to be the largest β ∈ {σk ,σkα,σkα
2, . . .} satisfying

β
∥
∥K∗K

(
zk) – K∗K

(
wk)∥∥ ≤ θ

∥
∥zk – wk∥∥. (18)

Compute next iterates zk+1 by

zk+1
I = zk – γρkd

(
zk , wk), (19)

or

zk+1
II = PS

(
zk – γβkρkK∗K

(
wk)), (20)

where γ ∈ [0, 2),

d
(
zk , wk) :=

(
zk – wk) – βk

(
K∗K

(
zk) – K∗K

(
wk)), (21)

and

ρk :=
〈zk – wk , d(zk , wk)〉 + βk‖K(wk)‖2

‖d(zk , wk)‖2 . (22)

If

βk
∥
∥K∗K

(
zk) – K∗K

(
zk+1)∥∥ ≤ ρ

∥
∥zk – zk+1∥∥, (23)

then set σk = σ0; otherwise, set σk = βk .

Remark 3.1 Let z = (x, y). Then we have (see Section 4.4.1 in [28])

PS(z) = (PCx, PQy).

It is easy to see

K∗Kz =

(
A∗A –A∗B

–B∗A B∗B

)(
x
y

)

=

(
A∗(Ax – By)
B∗(By – Ax)

)

.

Define the function F : H1 × H2 → H1 by

F(x, y) = A∗(Ax – By), (24)
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and the function G : H1 × H2 → H2 by

G(x, y) = B∗(By – Ax). (25)

By setting zk = (xk , yk) and wk = (uk , vk), Algorithm 3.1 can be rewritten as follows:
For k = 0, 1, 2, . . . , compute

⎧
⎨

⎩

uk = PC(xk – βkF(xk , yk)),

vk = PQ(yk – βkG(xk , yk)),
(26)

where βk is chosen to be the largest β ∈ {σk ,σkα,σkα
2, . . .} satisfying

β2(∥∥F
(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
xk , yk) – G

(
uk , vk)∥∥2)

≤ θ2(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2). (27)

Compute next iterates xk+1 and yk+1 by

⎧
⎨

⎩

xk+1
I = xk – γρkck ,

yk+1
I = yk – γρkdk ,

(28)

or
⎧
⎨

⎩

xk+1
II = PC(xk – γβkρkF(uk , vk)),

yk+1
II = PQ(yk – γβkρkG(uk , vk)),

(29)

where γ ∈ [0, 2),

⎧
⎨

⎩

ck := (xk – uk) – βk(F(xk , yk) – F(uk , vk));

dk := (yk – vk) – βk(G(xk , yk) – G(uk , vk)),
(30)

and

ρk :=
〈xk – uk , ck〉 + 〈yk – vk , dk〉 + βk‖Auk – Bvk‖2

‖ck‖2 + ‖dk‖2 . (31)

If

β2
k
(∥
∥F

(
xk , yk) – F

(
xk+1, yk+1)∥∥2 +

∥
∥G

(
xk , yk) – G

(
xk+1, yk+1)∥∥2)

≤ ρ2(∥∥xk – xk+1∥∥2 +
∥
∥yk – yk+1∥∥2), (32)

then set σk = σ0; otherwise, set σk = βk .

For convenience, we call the projection algorithms which use update forms (19) (or (28))
and (20) (or (29)) Algorithm 3.1(I) and Algorithm 3.1(II), respectively.

Remark 3.2 For Algorithm 3.1, we can get the following conclusions:
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(i) The only difference between Algorithm 3.1(II) and Algorithm 1.1 is that they use
different stepsizes in the definitions of xk+1 and yk+1.

(ii) There are two differences between Algorithm 3.1(I) and Algorithm 1.2. Firstly, the
stepsize ρk in (10) of Algorithm 3.1(I) is larger than that in (36) of Algorithm 1.2.
Secondly, there are no projections on the second step (19).

Remark 3.3 By the definitions of dk in (21), the projection equation (17) can be written
as

wk = PS
(
wk –

(
βkK∗K

(
wk) – d

(
zk , wk))).

So, from Lemma 2.1 we have

〈
z – wk ,βkK∗K

(
wk) – d

(
zk , wk)〉 ≥ 0, ∀z ∈ S. (33)

Lemma 3.1 The search rule (18) is well defined. Besides β ≤ βk ≤ σ , where

β = min

{

σ ,
αθ

‖K‖2

}

. (34)

Proof Obviously, βk ≤ σk ≤ σ0. In the latter case, we know that βk/α must violate inequal-
ity (18), that is,

∥
∥K∗K

(
zk) – K∗K

(
wk)∥∥ ≥ θ

‖zk – wk‖
βk/α

. (35)

On the other hand, we have

∥
∥K∗K

(
zk) – K∗K

(
wk)∥∥ ≤ ‖K‖2∥∥zk – wk∥∥. (36)

Consequently, we get (34). �

Lemma 3.2 Let (zk) and (wk) be generated by Algorithm 3.1, and let dk and ρk be given by
(21) and (36), respectively. Then we have

ρk ≥ 1 – θ

1 + θ2 . (37)

Proof By the Cauchy-Schwarz inequality, we have

〈
zk – wk , d

(
zk , wk)〉

=
∥
∥zk – wk∥∥2 – βk

〈
zk – wk , K∗K

(
zk) – K∗K

(
wk)〉

≥ ∥
∥zk – wk∥∥2 – βk

∥
∥zk – wk∥∥

∥
∥K∗K

(
zk) – K∗K

(
wk)∥∥

≥ ∥
∥zk – wk∥∥2 – θ

∥
∥zk – wk∥∥2

= (1 – θ )
∥
∥zk – wk∥∥2. (38)
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By using 〈zk – wk , K∗K(zk) – K∗K(wk)〉 = 〈K(zk) – K(wk), K(zk) – K(wk)〉 = ‖K(zk) –
K(wk)‖2, we have

∥
∥d

(
zk , wk)∥∥2 =

∥
∥zk – wk∥∥2 + β2

k
∥
∥K∗K

(
zk) – K∗K

(
wk)∥∥2

– 2βk
〈
zk – wk , K∗K

(
zk) – K∗K

(
wk)〉

≤ ∥
∥zk – wk∥∥2 + θ2∥∥zk – wk∥∥2 – 2βk

∥
∥K

(
zk) – K

(
wk)∥∥2

≤ (
1 + θ2)∥∥zk – wk∥∥2.

So, we get (37). �

Lemma 3.3 Let (zk) and (wk) be generated by Algorithm 3.1, and let dk be given by (21).
Then, for all (z∗) ∈ �, we have

〈
zk – z∗, d

(
zk , wk)〉 ≥ ρk

∥
∥d

(
zk , wk)∥∥2. (39)

Proof Take arbitrarily z∗ ∈ �, that is, z∗ ∈ S, and K(z∗) = 0. By setting z = z∗ in (33), we get

〈
z∗ – wk ,βkK∗K

(
wk) – d

(
zk , wk)〉 ≥ 0,

which implies that

〈
wk – z∗, d

(
zk , wk)〉 ≥ βk

〈
wk – z∗, K∗K

(
wk)〉.

It is easy to show that

〈
wk – z∗, K∗K

(
wk)〉 =

〈
K

(
wk – z∗), K

(
wk)〉 =

∥
∥K

(
wk)∥∥2. (40)

So we have

〈
zk – z∗, d

(
zk , wk)〉 =

〈
zk – wk , d

(
zk , wk)〉 +

〈
wk – z∗, d

(
zk , wk)〉

≥ 〈
zk – wk , d

(
zk , wk)〉 + βk

∥
∥K

(
wk)∥∥2

= ρk
∥
∥d

(
zk , wk)∥∥2,

which implies (39). �

Theorem 3.1 Let (zk) be generated by Algorithm 3.1(I). If � is nonempty, then we have

∥
∥zk+1

I – z∗∥∥2 ≤ ∥
∥zk – z∗∥∥2 – γ (2 – γ )ρ2

k
∥
∥d

(
zk , wk)∥∥2, ∀z∗ ∈ � (41)

and (zk) converges weakly to a solution of SEP (1).

Proof Let z∗ ∈ �, that is, z∗ ∈ S, and K(z∗) = 0. Then, from (39), we have

∥
∥zk+1

I – z∗∥∥2 =
∥
∥zk – z∗∥∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2 – 2γρk

〈
zk – z∗, d

(
zk , wk)〉

≤ ∥
∥zk – z∗∥∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2 – 2γρ2

k
∥
∥d

(
zk , wk)∥∥2

=
∥
∥zk – z∗∥∥2 – γ (2 – γ )ρ2

k
∥
∥d

(
zk , wk)∥∥2, (42)
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which yields (41). Since γ ∈ (0, 2), (42) implies that the sequence (‖zk – z∗‖2) is decreasing
and thus converges. Moreover, (zk) is bounded. This implies that

lim
k→∞

ρ2
k
∥
∥d

(
zk , wk)∥∥2 = 0. (43)

From the definition of ρk , Lemmas 3.1 and 3.2, we have

ρ2
k
∥
∥d

(
zk , wk)∥∥2 = ρk

(〈
zk – wk , d

(
zk , wk)〉 + βk

∥
∥K

(
wk)∥∥2)

≥ ρk
[
(1 – θ )

∥
∥zk – wk∥∥2 + βk

∥
∥K

(
wk)∥∥2]

≥ (1 – θ )2

1 + θ2

∥
∥zk – wk∥∥2 +

1 – θ

1 + θ2 β
∥
∥K

(
wk)∥∥2,

which implies

∥
∥zk – wk∥∥2 ≤ 1 + θ2

(1 – θ )2 ρ2
k
∥
∥d

(
zk , wk)∥∥2

and

∥
∥K

(
wk)∥∥2 ≤ 1 + θ2

(1 – θ )β
ρ2

k
∥
∥d

(
zk , wk)∥∥2.

Using (43), we get

lim
k→∞

∥
∥zk – wk∥∥ = 0 (44)

and

lim
k→∞

∥
∥K

(
wk)∥∥ = 0.

By the boundedness of K , we get

lim
k→∞

∥
∥K

(
zk)∥∥ = 0. (45)

Let ẑ ∈ ωw(zk), then there exists a subsequence (zki ) of (zk) which converges weakly to
ẑ. From (44), it follows that the subsequence (wki ) also converges weakly to ẑ. We will
show that ẑ is a solution of SEP (1). The weak convergence of (K(zki )) to K(ẑ) and lower
semicontinuity of the squared norm imply that

∥
∥K(ẑ)

∥
∥ ≤ lim inf

i→∞
∥
∥K

(
zki

)∥
∥ = 0,

that is, K(ẑ) = 0. By noting that the equality in (17) can be rewritten as

zki – wki

βki

– K∗K
(
zki

) ∈ NS
(
wki

)
,
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and that the graph of the maximal monotone operator NS is weakly-strongly closed, and
by passing to the limit in the last inclusions, we obtain, from (44) and (45), that

ẑ ∈ S.

Hence ẑ ∈ �. Now we can apply Lemma 2.3 to D := � to get that the full sequence (zk)
converges weakly to a point in �. This completes the proof. �

Remark 3.4 By using Remark 3.1, the contraction inequality (41) can be rewritten as fol-
lows:

∥
∥xk+1

I – x∗∥∥2 +
∥
∥yk+1

I – y∗∥∥2 ≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 –γ (2 –γ )ρ2

k
(‖ck‖2 +‖dk‖2). (46)

It is obvious that the ρk in (31) is larger than that in (10). Let γ = 1. Comparing (46) and
(11), we claim that Algorithm 3.1(I) has a better contraction property than Algorithm 1.2.

Theorem 3.2 Let (zk) be generated by Algorithm 3.1(II). Assume that � is nonempty. Then
we have

∥
∥zk+1

II – z∗∥∥2 ≤ ∥
∥zk – z∗∥∥2 – γ (2 – γ )ρ2

k
∥
∥d

(
zk , wk)∥∥2 –

∥
∥zk+1

I – zk+1
II

∥
∥2, ∀z∗ ∈ �. (47)

Furthermore, (zk) converges weakly to a solution of SEP (1).

Proof Let z∗ ∈ �, that is, z∗ ∈ S, and K(z∗) = 0. Using Lemma 2.2(ii), we have

∥
∥zk+1

II – z∗∥∥2 ≤ ∥
∥zk – γβkρkK∗K

(
wk) – z∗∥∥2 –

∥
∥zk – γβkρkK∗K

(
wk) – zk+1

II
∥
∥2

=
∥
∥zk – z∗∥∥2 –

∥
∥zk – zk+1

II
∥
∥2 – 2γβkρk

〈
zk+1

II – z∗, K∗K
(
wk)〉. (48)

By setting z = zk+1
II in (33), we get

–2γβkρk
〈
zk+1

II – wk , K∗K
(
wk)〉

≤ –2γρk
〈
zk+1

II – wk , d
(
zk , wk)〉

= –2γρk
〈
zk – wk , d

(
zk , wk)〉 – 2γρk

〈
zk+1

II – zk , d
(
zk , wk)〉. (49)

It holds

–2γρk
〈
zk+1

II – zk , d
(
zk , wk)〉 = –

∥
∥zk – zk+1

II – γρkd
(
zk , wk)∥∥2

+
∥
∥zk – zk+1

II
∥
∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2. (50)

Substituting (50) in the right-hand side of (49) and using zk –γρkd(zk , wk) = zk+1
I , we obtain

–2γβkρk
〈
zk+1

II – wk , K∗K
(
wk)〉

≤ –2γρk
〈
zk – wk , d

(
zk , wk)〉 –

∥
∥zk+1

I – zk+1
II

∥
∥2

+
∥
∥zk – zk+1

II
∥
∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2. (51)



Dong and Jiang Journal of Inequalities and Applications  (2018) 2018:4 Page 13 of 28

From (40), we get

–2γβkρk
〈
wk – w∗, K∗K

(
wk)〉 = –2γβkρk

∥
∥K

(
wk)∥∥2. (52)

So, adding (51) and (52) and using the definition of ρk , we obtain

–2γβkρk
〈
zk+1

II – z∗, K∗K
(
wk)〉

≤ –2γρk
(〈

zk – wk , d
(
zk , wk)〉 + βk

∥
∥K

(
wk)∥∥2)

–
∥
∥zk+1

I – zk+1
II

∥
∥2 +

∥
∥zk – zk+1

II
∥
∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2

≤ –2γρ2
k
∥
∥d

(
zk , wk)∥∥2 + γ 2ρ2

k
∥
∥d

(
zk , wk)∥∥2 –

∥
∥zk+1

I – zk+1
II

∥
∥2 +

∥
∥zk – zk+1

II
∥
∥2

≤ –γ (2 – γ )ρ2
k
∥
∥d

(
zk , wk)∥∥2 –

∥
∥zk+1

I – zk+1
II

∥
∥2 +

∥
∥zk – zk+1

II
∥
∥2. (53)

Adding (48) and (53), we obtain (47). Employing arguments which are similar to those used
in the proof of Theorem 3.1, we obtain that the whole sequence (zk) weakly converges to
a solution of SEP (1), which completes proof. �

Remark 3.5 Comparing inequalities (41) and (47), we conclude that Algorithm 3.1(II)
seems to have a better contraction property than Algorithm 3.1(I) since zk+1

II is closer to z∗

than zk+1
I when zk is the same.

3.2 Semi-alternating projection algorithms
Inspired by Algorithm 2.2 in [15] and based on Algorithm 3.1, we present two semi-
alternating projection algorithms, whose name comes from an alternating technique taken
in the first step.

Algorithm 3.2 Given constants σ0 > 0, α ∈ (0, 1), θ ∈ (0, 1) and ρ ∈ (0, 1), let x0 ∈ H1 and
y0 ∈ H2 be taken arbitrarily.

For k = 0, 1, 2, . . . , compute

⎧
⎨

⎩

uk = PC(xk – βkF(xk , yk)),

vk = PQ(yk – βkG(uk , yk)),
(54)

where βk is chosen to be the largest β ∈ {σk ,σkα,σkα
2, . . .} satisfying

β2(∥∥F
(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥2)

≤ θ2(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2). (55)

Compute next iterates xk+1 and yk+1 by

⎧
⎨

⎩

xk+1
I = xk – γρkck ,

yk+1
I = yk – γρkdk ,

(56)
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or
⎧
⎨

⎩

xk+1
II = PC(xk – γβkρkF(uk , vk)),

yk+1
II = PQ(yk – γβkρkG(uk , vk)),

(57)

where γ ∈ [0, 2),

⎧
⎨

⎩

ck := (xk – uk) – βk(F(xk , yk) – F(uk , vk));

dk := (yk – vk) – βk(G(uk , yk) – G(uk , vk)),
(58)

and

ρk :=
〈xk – uk , ck〉 + 〈yk – vk , dk〉 + βk‖Auk – Bvk‖2

‖ck‖2 + ‖dk‖2 . (59)

If

β2
k
(∥
∥F

(
xk , yk) – F

(
xk+1, yk+1)∥∥2 +

∥
∥G

(
xk , yk) – G

(
xk+1, yk+1)∥∥2)

≤ ρ2(∥∥xk – xk+1∥∥2 +
∥
∥yk – yk+1∥∥2), (60)

then set σk = σ0; otherwise, set σk = βk .

For convenience, we call the projection algorithms which use update forms (56) and (57)
Algorithm 3.2(I) and Algorithm 3.2(II), respectively.

Remark 3.6 By the definitions of ck and dk in (58), the projection equation (54) can be
written as

⎧
⎨

⎩

uk = PC(uk – (βkF(uk , vk) – ck)),

vk = PQ(vk – (βkG(uk , vk) – dk)).

So, from Lemma 2.1 we have
⎧
⎨

⎩

〈x – uk ,βkF(uk , vk) – ck〉 ≥ 0, ∀x ∈ C,

〈y – vk ,βkG(uk , vk) – dk〉 ≥ 0, ∀y ∈ Q.
(61)

Lemma 3.4 The search rule (55) is well defined. Besides β∗ ≤ βk ≤ σ0, where

β∗ = min

{

σ0,
αθ√

2‖A‖2
,

αθ

‖B‖√2(‖A‖2 + ‖B‖2)

}

. (62)

Proof Obviously, βk ≤ σk ≤ σ0. In the latter case, we know that βk/α must violate inequal-
ity (55), that is,

β2/α2(∥∥F
(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥2)

≥ θ2(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2).
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On the other hand, we have

∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥2

=
∥
∥A∗(Axk – Byk) – A∗(Auk – Bvk)∥∥2 +

∥
∥B∗(Byk – Auk) – B∗(Bvk – Auk)∥∥2

≤ ‖A‖2(∥∥Axk – Auk∥∥ +
∥
∥Byk – Bvk∥∥

)2 + ‖B‖4∥∥yk – vk∥∥2

≤ 2‖A‖2(‖A‖2∥∥xk – uk∥∥2 + ‖B‖2∥∥yk – vk∥∥2) + ‖B‖4∥∥yk – vk∥∥2

≤ 2‖A‖4∥∥xk – uk∥∥2 + ‖B‖2(2‖A‖2 + ‖B‖2)∥∥yk – vk∥∥2

≤ max
{

2‖A‖4 + ‖B‖2(2‖A‖2 + ‖B‖2)}(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2).

So, we get (62). �

Lemma 3.5 Let (xk , yk) and (uk , vk) be generated by Algorithm 3.2 , and let ck , dk and ρk

be given by (58) and (59), respectively. Then we have

ρk ≥ 1 – θ

1 + θ2 .

Proof By the Cauchy-Schwarz inequality, we have

〈
xk – uk , ck

〉
+

〈
yk – vk , dk

〉

=
∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2 – βk

〈
xk – uk , F

(
xk , yk) – F

(
uk , vk)〉

– βk
〈
yk – vk , G

(
uk , yk) – G

(
uk , vk)〉

≥ ∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2

– βk
(∥
∥xk – uk∥∥

∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥ +

∥
∥yk – vk∥∥

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥

)
. (63)

It holds

β2
k
(∥
∥xk – uk∥∥

∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥ +

∥
∥yk – vk∥∥

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥

)2

= β2
k
(∥
∥xk – uk∥∥2∥∥F

(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥yk – vk∥∥2∥∥G

(
uk , yk) – G

(
uk , vk)∥∥2

+ 2
∥
∥xk – uk∥∥

∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥

∥
∥yk – vk∥∥

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥

)

≤ β2
k
(∥
∥xk – uk∥∥2∥∥F

(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥yk – vk∥∥2∥∥G

(
uk , yk) – G

(
uk , vk)∥∥2

+
∥
∥xk – uk∥∥2∥∥G

(
uk , yk) – G

(
uk , vk)∥∥2 +

∥
∥yk – vk∥∥2∥∥F

(
xk , yk) – F

(
uk , vk)∥∥2)

= β2
k
(∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥2)(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2)

≤ θ2(∥∥xk – uk∥∥2 +
∥
∥yk – vk∥∥2)2. (64)

So, we obtain

〈
xk – uk , ck

〉
+

〈
yk – vk , dk

〉

≥ ∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2 – θ

(∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2)

= (1 – θ )
(∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2). (65)
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From the definition of F and G, we have

‖ck‖2 + ‖dk‖2

=
∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2

+ β2
k
(∥
∥F

(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥G

(
uk , yk) – G

(
uk , vk)∥∥2)

– 2βk
(〈

xk – uk , F
(
xk , yk) – F

(
uk , vk)〉 +

〈
yk – vk , G

(
uk , yk) – G

(
uk , vk)〉)

≤ ∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2 + θ2(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2)

– 2βk
(〈

A
(
xk – uk), A

(
xk – uk) – B

(
yk – vk)〉

–
〈
B
(
yk – vk), A

(
uk – uk) – B

(
yk – vk)〉)

≤ ∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2 + θ2(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2)

– 2βk
(∥
∥A

(
xk – uk)∥∥2 –

〈
A

(
xk – uk), B

(
yk – vk)〉 +

∥
∥B

(
yk – vk)∥∥2). (66)

Since

–2βk
(∥
∥A

(
xk – uk)∥∥2 –

〈
A

(
xk – uk), B

(
yk – vk)〉 +

∥
∥B

(
yk – vk)∥∥2)

≤ –2βk
(∥
∥A

(
xk – uk)∥∥2 –

∥
∥A

(
xk – uk)∥∥

∥
∥B

(
yk – vk)∥∥ +

∥
∥B

(
yk – vk)∥∥2)

≤ –2βk

(
∥
∥A

(
xk – uk)∥∥2 –

1
2
(∥
∥A

(
xk – uk)∥∥2 +

∥
∥B

(
yk – vk)∥∥2) +

∥
∥B

(
yk – vk)∥∥2

)

≤ –βk
(∥
∥A

(
xk – uk)∥∥2 +

∥
∥B

(
yk – vk)∥∥2),

by (66), we get

‖ck‖2 + ‖dk‖2

≤ (
1 + θ2)(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2) – βk

(∥
∥A

(
xk – uk)∥∥2 +

∥
∥B

(
yk – vk)∥∥2)

≤ (
1 + θ2)(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2). (67)

Combining (65) and (67), we complete the proof. �

Lemma 3.6 Let (xk , yk) and (uk , vk) be generated by Algorithm 3.2, and let ck and dk be
given by (58). Then, for all (x∗, y∗) ∈ �, we have

〈
xk – x∗, ck

〉
+

〈
yk – y∗, dk

〉 ≥ ρk
(‖ck‖2 + ‖dk‖2).

Proof Take arbitrarily (x∗, y∗) ∈ �, that is, x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗. By setting (x, y) =
(x∗, y∗) in (61), we get

⎧
⎨

⎩

〈x∗ – uk ,βkF(uk , vk) – ck〉 ≥ 0,

〈y∗ – vk ,βkG(uk , vk) – dk〉 ≥ 0,
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which implies that

⎧
⎨

⎩

〈uk – x∗, ck〉 ≥ βk〈uk – x∗, F(uk , vk)〉,
〈vk – y∗, dk〉 ≥ βk〈vk – y∗, G(uk , vk)〉.

By the definition of F and G, we have

〈
uk – x∗, F

(
uk , vk)〉 +

〈
vk – y∗, G

(
uk , vk)〉

=
〈
uk – x∗, A∗(Auk – Bvk)〉 +

〈
vk – y∗, B∗(Bvk – Auk)〉

=
〈
Auk – Ax∗, Auk – Bvk 〉 +

〈
Bvk – By∗, Bvk – Auk 〉

=
〈
Auk – Bvk –

(
Ax∗ – By∗), Auk – Bvk 〉

=
∥
∥Auk – Bvk∥∥2, (68)

and

〈
xk – x∗, ck

〉
+

〈
yk – y∗, dk

〉

=
〈
xk – uk , ck

〉
+

〈
yk – vk , dk

〉
+

〈
uk – x∗, ck

〉
+

〈
vk – y∗, dk

〉

≥ 〈
xk – uk , ck

〉
+

〈
yk – vk , dk

〉
+ βk

∥
∥Auk – Bvk∥∥2

= ρk
(‖ck‖2 + ‖dk‖2).

So, we complete the proof. �

Theorem 3.3 Let (xk , yk) be generated by Algorithm 3.2(I). If � is nonempty, then we have

∥
∥xk+1

I – x∗∥∥2 +
∥
∥yk+1

I – y∗∥∥2

≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 – (2 – γ )γρ2

k
(‖ck‖2 + ‖dk‖2), ∀(

x∗, y∗) ∈ �, (69)

and (xk , yk) converges weakly to a solution of SEP (1).

Proof Let (x∗, y∗) ∈ �, that is, x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗. Then we have

∥
∥xk+1

I – x∗∥∥2 =
∥
∥xk – γρkck – x∗∥∥2

=
∥
∥xk – x∗∥∥2 + γ 2ρ2

k ‖ck‖2 – 2γρk
〈
xk – x∗, ck

〉
.

Similarly, we get

∥
∥yk+1

I – y∗∥∥2 =
∥
∥yk – y∗∥∥2 + γ 2ρ2

k ‖dk‖2 – 2γρk
〈
yk – y∗, dk

〉
.

Adding the above inequalities and using Lemma 3.6, we have

∥
∥xk+1

I – x∗∥∥2 +
∥
∥yk+1

I – y∗∥∥2

=
∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 + γ 2ρ2

k
(‖ck‖2 + ‖dk‖2)
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– 2γρk
〈
xk – x∗, ck

〉
– 2γρk

〈
yk – y∗, dk

〉

≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 – (2 – γ )γρ2

k
(‖ck‖2 + ‖dk‖2), (70)

which yields (69). Since γ ∈ (0, 2), (70) implies that the sequence ‖xk – x∗‖2 + ‖yk – y∗‖2 is
decreasing and thus converges. Moreover, (xk) and (yk) are bounded. This implies that

lim
k→∞

ρ2
k
(‖ck‖2 + ‖dk‖2) = 0. (71)

From the definition of ρk , Lemmas 3.4 and 3.5, we have

ρ2
k
(‖ck‖2 + ‖dk‖2)

= ρk
(〈

xk – uk , ck
〉
+

〈
yk – vk , dk

〉
+ βk

∥
∥Auk – Bvk∥∥2)

≥ ρk
[
(1 – θ )

(∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2) + βk

∥
∥Auk – Bvk∥∥2]

≥ (1 – θ )2

1 + θ2

(∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2) +

1 – θ

1 + θ2 β
∥
∥Auk – Bvk∥∥2,

which implies

∥
∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2 ≤ 1 + θ2

(1 – θ )2 ρ2
k
(‖ck‖2 + ‖dk‖2)

and

∥
∥Auk – Bvk∥∥2 ≤ 1 + θ2

(1 – θ )β
ρ2

k
(‖ck‖2 + ‖dk‖2).

Using (71), we get

lim
k→∞

∥
∥xk – uk∥∥ +

∥
∥yk – vk∥∥ = 0, (72)

and

lim
k→∞

∥
∥Auk – Bvk∥∥ = 0. (73)

Hence, we get

lim
k→∞

∥
∥Axk – Byk∥∥ = 0.

Let (x̂, ŷ) ∈ ωw(xk , yk), then there exist two subsequences (xki ) and (yki ) of (xk) and (yk)
which converge weakly to x̂ and ŷ, respectively. From (72), it follows that (uki ) and (vki )
also converge weakly to x̂ and ŷ, respectively. We will show that (x̂, ŷ) is a solution of SEP
(1). The weak convergence of (Axki – Byki ) to Ax̂ – Bŷ and the lower semicontinuity of the
squared norm imply that

‖Ax̂ – Bŷ‖ ≤ lim inf
i→∞

∥
∥Axki – Byki

∥
∥ = 0,
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that is, Ax̂ = Bŷ. By noting that the two equalities in (54) can be rewritten as

⎧
⎨

⎩

xki –uki
βki

– A∗(Auki – Bvki ) ∈ NC(uki ),
yki –vki

βki
– B∗(Bvki – Auki ) ∈ NQ(vki ),

and that the graphs of the maximal monotone operators NC and NQ are weakly-strongly
closed, and by passing to the limit in the last inclusions, we obtain, from (72) and (73), that

x̂ ∈ C, ŷ ∈ Q.

Hence (x̂, ŷ) ∈ �.
Now we can apply Lemma 2.3 to D := � to get that the full sequence (xk , yk) converges

weakly to a point in �. This completes the proof. �

Remark 3.7 Employing arguments which are similar to those used in Remark 3.4, com-
paring (69) and (2.48) in [15], we conclude that Algorithm 3.2(I) has a better contraction
property than the hybrid alternating CQ-algorithm in [15].

Theorem 3.4 Let (xk , yk) be generated by Algorithm 3.2(II). If � is nonempty, then we have

∥
∥xk+1

II – x∗∥∥2 +
∥
∥yk+1

II – y∗∥∥2 ≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 – γ (2 – γ )ρ2

k
(‖ck‖2 + ‖dk‖2)

–
∥
∥xk+1

I – xk+1
II

∥
∥2 –

∥
∥yk+1

I – yk+1
II

∥
∥2, (74)

and (xk , yk) converges weakly to a solution of SEP (1).

Proof Let (x∗, y∗) ∈ �, that is, x∗ ∈ C, y∗ ∈ Q, and Ax∗ = By∗. Using Lemma 2.2(ii), we have

∥
∥xk+1

II – x∗∥∥2 ≤ ∥
∥xk – γβkρkF

(
uk , vk) – x∗∥∥2 –

∥
∥xk – γβkρkF

(
uk , vk) – xk+1

II
∥
∥2

=
∥
∥xk – x∗∥∥2 –

∥
∥xk – xk+1

II
∥
∥2 – 2γβkρk

〈
xk+1

II – x∗, F
(
uk , vk)〉.

Similarly, we get

∥
∥yk+1

II – y∗∥∥2 ≤ ∥
∥yk – y∗∥∥2 –

∥
∥yk – yk+1

II
∥
∥2 – 2γβkρk

〈
yk+1

II – y∗, G
(
uk , vk)〉.

Adding the above inequalities, we obtain

∥
∥xk+1

II – x∗∥∥2 +
∥
∥yk+1

II – y∗∥∥2

≤ ∥
∥xk – x∗∥∥2 +

∥
∥yk – y∗∥∥2 –

∥
∥xk – xk+1

II
∥
∥2 –

∥
∥yk – yk+1

II
∥
∥2

– 2γβkρk
〈
xk+1

II – x∗, F
(
uk , vk)〉 – 2γβkρk

〈
yk+1

II – y∗, G
(
uk , vk)〉. (75)

By setting (x, y) = (xk+1
II , yk+1

II ) in (61), we get

–2γβkρk
〈
xk+1

II – uk , F
(
uk , vk)〉 – 2γβkρk

〈
yk+1

II – vk , G
(
uk , vk)〉

≤ –2γρk
〈
xk+1

II – uk , ck
〉
– 2γρk

〈
yk+1

II – vk , dk
〉

= –2γρk
(〈

xk – uk , ck
〉
+

〈
yk – vk , dk

〉)
– 2γρk

(〈
xk+1

II – xk , ck
〉
+

〈
yk+1

II – yk , dk
〉)

. (76)
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It holds

–2γρk
〈
xk+1

II – xk , ck
〉

= –
∥
∥xk – xk+1

II – γρkck
∥
∥2 +

∥
∥xk – xk+1

II
∥
∥2 + γ 2ρ2

k ‖ck‖2. (77)

Similarly, we get

–2γρk
〈
yk+1

II – yk , dk
〉

= –
∥
∥yk – yk+1

II – γρkdk
∥
∥2 +

∥
∥yk – yk+1

II
∥
∥2 + γ 2ρ2

k ‖dk‖2. (78)

Substituting (77) and (78) in the right-hand side of (76) and using xk – γρkck = xk+1
I and

yk – γρkdk = yk+1
I , we obtain

–2γβkρk
〈
xk+1

II – uk , F
(
uk , vk)〉 – 2γβkρk

〈
yk+1

II – vk , G
(
uk , vk)〉

≤ –2γρk
(〈

xk – uk , ck
〉
+

〈
yk – vk , dk

〉)

–
∥
∥xk+1

I – xk+1
II

∥
∥2 +

∥
∥xk – xk+1

II
∥
∥2 + γ 2ρ2

k ‖ck‖2

–
∥
∥yk+1

I – yk+1
II

∥
∥2 +

∥
∥yk – yk+1

II
∥
∥2 + γ 2ρ2

k ‖dk‖2. (79)

From (68), we have

–2γβkρk
〈
uk – x∗, F

(
uk , vk)〉 – 2γβkρk

〈
vk – y∗, G

(
uk , vk)〉

= –2γβkρk
∥
∥Auk – Bvk∥∥2. (80)

So, adding (79) and (80) and using the definition of ρk , we obtain

–2γβkρk
〈
xk+1

II – x∗, F
(
uk , vk)〉 – 2γβkρk

〈
yk+1

II – y∗, G
(
uk , vk)〉

≤ –2γρk
(〈

xk – uk , ck
〉
+

〈
yk – vk , dk

〉
+ βk

∥
∥Auk – Bvk∥∥2)

–
∥
∥xk+1

I – xk+1
II

∥
∥2 +

∥
∥xk – xk+1

II
∥
∥2 + γ 2ρ2

k ‖ck‖2

–
∥
∥yk+1

I – yk+1
II

∥
∥2 +

∥
∥yk – yk+1

II
∥
∥2 + γ 2ρ2

k ‖dk‖2

≤ –2γρ2
k
(‖ck‖2 + ‖dk‖2) + γ 2ρ2

k
(‖ck‖2 + ‖dk‖2)

–
∥
∥xk+1

I – xk+1
II

∥
∥2 –

∥
∥yk+1

I – yk+1
II

∥
∥2 +

∥
∥xk – xk+1

II
∥
∥2 +

∥
∥yk – yk+1

II
∥
∥2

≤ –γ (2 – γ )ρ2
k
(‖ck‖2 + ‖dk‖2)

–
∥
∥xk+1

I – xk+1
II

∥
∥2 –

∥
∥yk+1

I – yk+1
II

∥
∥2 +

∥
∥xk – xk+1

II
∥
∥2 +

∥
∥yk – yk+1

II
∥
∥2. (81)

Adding (75) and (81), we obtain (74). Employing arguments which are similar to those used
in the proof of Theorem 3.3, we obtain that the whole sequence (xk , yk) weakly converges
to a solution of SEP (1), which completes proof. �

4 Applications
The split feasibility problem (SFP) formulated as follows:

Find x ∈ C such that Ax ∈ Q, (82)
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was originally introduced in Censor and Elfving [29]. The SFP can be a model for many
inverse problems where constraints are imposed on the solutions in the domain of a linear
operator as well as in the operator’s range. It has a variety of specific applications in real
world, such as medical care, image reconstruction and signal processing (see [30–33] for
details).

In fact, the SEP is equivalent to the SFP. Firstly, observe that the equality Ax = By in (1)
equals to

(
B∗B

)–1B∗BAx =
(
B∗B

)–1(B∗B
)
y = y.

So, if we define the linear and bounded operator L = (B∗B)–1B∗BA : H1 → H2, then the
SEP becomes a special case of the SFP with the operator L (e.g., see [34, 35]).

On the other hand, if H2 = H3 and B = I , then the split equality problem (1) reduces to
the split feasibility problem.

Based on this equivalence, we can construct iterative algorithms for the SEP by using
the algorithms for the SFP if the operator (B∗B)–1 is easily computed. We also can extend
the algorithms for the SEP to the SFP.

Next, we present an algorithm for the SFP based on Algorithm 3.2.
Define the function F : H1 × H2 → H1 by

F(x, y) = A∗(Ax – y),

and the function G : H1 × H2 → H2 by

G(x, y) = y – Ax.

Algorithm 4.1 Given constants σ0 > 0, α ∈ (0, 1), θ ∈ (0, 1) and ρ ∈ (0, 1), let x0 ∈ H1 and
y0 ∈ H2 be taken arbitrarily.

For k = 0, 1, 2, . . . , compute

⎧
⎨

⎩

uk = PC(xk – βkF(xk , yk)),

vk = PQ(yk – βkG(uk , yk)),

where βk is chosen to be the largest β ∈ {σk ,σkα,σkα
2, . . .} satisfying

β2(∥∥F
(
xk , yk) – F

(
uk , vk)∥∥2 +

∥
∥yk – vk∥∥2) ≤ θ2(∥∥xk – uk∥∥2 +

∥
∥yk – vk∥∥2).

Compute next iterates xk+1 and yk+1 by

⎧
⎨

⎩

xk+1
I = xk – γρkck ,

yk+1
I = yk – γρkdk ,

or
⎧
⎨

⎩

xk+1
II = PC(xk – γβkρkF(uk , vk)),

yk+1
II = PQ(yk – γβkρkG(uk , vk)),
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where γ ∈ [0, 2),

⎧
⎨

⎩

ck := (xk – uk) – βk(F(xk , yk) – F(uk , vk));

dk := (yk – vk) – βk(yk – vk),

and

ρk :=
〈xk – uk , ck〉 + 〈yk – vk , dk〉 + βk‖Auk – vk‖2

‖ck‖2 + ‖dk‖2 .

If

β2
k
(∥
∥F

(
xk , yk) – F

(
xk+1, yk+1)∥∥2 +

∥
∥G

(
xk , yk) – G

(
xk+1, yk+1)∥∥2)

≤ ρ2(∥∥xk – xk+1∥∥2 +
∥
∥yk – yk+1∥∥2), (83)

then set σk = σ0; otherwise, set σk = βk .

Using Theorem 3.3, we get the convergence of Algorithm 4.1.

Theorem 4.1 Let (xk , yk) be generated by Algorithm 4.1. If the set of solutions of the SFP is
nonempty, then (xk , yk) converges weakly to a solution of SFP (82).

Remark 4.1 Similarly, it is easy to extend Algorithm 3.1 and Theorems 3.1 and 3.2 to the
SFP. Here we omit it.

5 Numerical examples
In this section, we use the numerical example in [8] to demonstrate the efficiency and
advantage of Algorithms 3.1 and 3.2 by comparing them with Algorithms 1.1, 1.2 and 1.3.

We denote the vector with all elements 0 by e0, and the vector with all elements 1 by e1 in
what follows. In the numerical results listed in the following table, ‘Iter.’ and ‘Sec.’ denote
the number of iterations and the cpu time in seconds, respectively. For Algorithms 1.1,
1.2, 3.1 and 3.2, ‘InIt.’ denotes the number of total iterations of finding suitable βk .

Example 5.1 The SEP with A = (aij)J×N , B = (bij)J×M , C = {x ∈ RN | ‖x‖ ≤ 0.25}, Q = {y ∈
RM | e0 ≤ y ≤ u}, where aij ∈ [0, 1], bij ∈ [0, 1] and u ∈ [e1, 2e1] are all generated uniformly
randomly.

In the implementations, we take ‖Ax – By‖ < ε = 10–4 as the stopping criterion. Take the
initial value x0 = 10e1, y0 = –10e1.

We make comparison of Algorithms 1.1, 1.2, 1.3, 3.1, 3.2 and FISTA with different J ,
N , M, and report the results in Tables 1, 2, 3 and Figure 1. We take the stepsize βk via a
backtracking stepsize rule. For comparison, we tried to choose best parameters through
numerical experiments. We take γ = 0.8, θ = 0.99, σ = 50, ρ = 0.1 and α = 0.1 in Algo-
rithms 1.1, 1.2, 3.1 and 3.2. And we take σk = 0.65 in Algorithm 1.3. So the stepsize βk is
chosen in such a way that

βk = 0.65 × min

{ ‖Axk – Byk‖2

‖A∗(Axk – Byk)‖2 ,
‖Axk – Byk‖2

‖B∗(Axk – Byk)‖2

}

.
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Table 1 Computational results for Example 5.1 with (N, M) = (100, 50)

J 50 100 150 200 250

Algorithm 1.1 Iter. 3263 90,378 297,135 65,795 31,655
Inlt. 13,748 377,483 864,321 172,925 82,979
Sec. 2.188 36.672 110.563 25.500 13.781

Algorithm 1.2 Iter. 8732 194,940 434,539 82,993 43,689
Inlt. 46,182 1,069,758 1,327,537 225,913 141,813
Sec. 6.797 106.234 189.078 38.094 23.422

Algorithm 1.3 Iter. 336 2012 4302 1327 676
Sec. 0.063 0.406 1.125 0.406 0.219

FISTA Iter. 1389 2580 3787 3260 2491
Inlt. 1397 2589 3796 3270 2501
Sec. 0.391 0.453 0.734 0.656 0.563

Algorithm 3.1(I) Iter. 199 793 4342 482 718
Inlt. 254 913 5206 1145 1148
Sec. 0.094 0.156 0.953 0.156 0.188

Algorithm 3.1(II) Iter. 152 764 2176 580 697
Inlt. 184 860 2232 604 769
Sec. 0.078 0.219 0.406 0.125 0.125

Algorithm 3.2(I) Iter. 81 2208 5704 1022 362
Inlt. 178 4680 7562 2261 846
Sec. 0.063 0.469 1.891 0.250 0.094

Algorithm 3.2(II) Iter. 65 952 2311 629 263
Inlt. 80 976 2375 653 288
Sec. 0.031 0.188 0.516 0.156 0.063

Table 2 Computational results for Example 5.1 with (N, M) = (150, 150)

J 50 100 150 200 250

Algorithm 1.1 Iter. 5639 14,609 36,702 895,632 364,304
Inlt. 29,524 43,313 107,748 2,740,752 1,179,620
Sec. 2.813 6.297 19.125 551.250 259.656

Algorithm 1.2 Iter. 9175 33,306 109,165 2,481,066 566,203
Inlt. 28,810 139,247 389,839 10,985,694 3,467,821
Sec. 3.906 19.922 69.797 2079.344 649.234

Algorithm 1.3 Iter. 2559 9995 40,713 1,535,172 353,573
Sec. 0.531 3.063 16.563 793.875 219.938

FISTA Iter. 2158 3078 3092 17,010 9264
Inlt. 2167 3088 3102 17,021 9275
Sec. 0.375 0.656 0.797 4.922 2.984

Algorithm 3.1(I) Iter. 123 186 1069 26,742 8307
Inlt. 131 690 1779 32,790 15,519
Sec. 0.031 0.063 0.359 7.750 5.141

Algorithm 3.1(II) Iter. 136 171 726 17,575 3765
Inlt. 160 187 807 18,007 3813
Sec. 0.063 0.125 0.188 5.047 1.922

Algorithm 3.2(I) Iter. 83 808 477 27,199 10,584
Inlt. 182 1713 1140 31,301 12,084
Sec. 0.063 0.125 0.147 13.078 5.563

Algorithm 3.2(II) Iter. 43 235 297 15,515 7331
Inlt. 66 251 322 15,839 7520
Sec. 0.006 0.063 0.094 7.094 3.750
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Table 3 Computational results for Example 5.1 with (N, M) = (200, 250)

J 50 100 150 200 250

Algorithm 1.1 Iter. 3477 6828 15,749 48,555 255,440
Inlt. 11,943 21,084 60,677 336,456 1,326,061
Sec. 1.688 3.844 12.672 67.453 334.891

Algorithm 1.2 Iter. 10,464 21,319 32,055 122,743 483,468
Inlt. 30,876 86,575 162,387 420,341 2,185,371
Sec. 5.281 16.063 32.156 111.891 600.625

Algorithm 1.3 Iter. 648 6647 16,810 44,817 132,873
Sec. 0.188 2.781 9.500 32.734 118.203

FISTA Iter. 2346 2931 4040 3804 6977
Inlt. 2355 2941 4051 3815 6989
Sec. 0.500 0.750 1.250 1.344 3.141

Algorithm 3.1(I) Iter. 109 236 343 814 2077
Inlt. 151 278 415 975 2518
Sec. 0.031 0.094 0.188 0.344 7.078

Algorithm 3.1(II) Iter. 168 188 262 756 1106
Inlt. 180 200 268 792 1142
Sec. 0.063 0.109 0.125 0.218 0.438

Algorithm 3.2(I) Iter. 117 168 818 1718 1725
Inlt. 128 222 986 2000 2408
Sec. 0.063 0.063 0.438 1.063 1.281

Algorithm 3.2(II) Iter. 82 83 373 582 1240
Inlt. 98 108 400 644 1285
Sec. 0.031 0.078 0.199 0.406 0.563

Figure 1 Numbers of projections with (N, M) = (100, 50).

We take L0 = 13, η = 2 and a = 7 for FISTA with backtracking (see [21]). For compari-
son, the same random values are taken in each test for different algorithms.

The numerical results are listed in Tables 1, 2, 3 and Figures 1-6, from which we can get
some conclusions:

(1) Algorithm 1.2 behaves worst, and Algorithm 1.1 is superior to it, while inferior to
Algorithms 1.3, 3.1 and 3.2.
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Figure 2 Numbers of matrix-vector evaluations with (N, M) = (100, 50).

Figure 3 Numbers of projections with (N, M) = (150, 150).

(2) The numbers of projections and matrix-vector evaluations that Algorithms 1.3, 3.1
and 3.2 need are close when M, N are small. However, the numbers of projections
and matrix-vector evaluations that Algorithms 3.1 and 3.2 need are less than those
of Algorithm 1.3 as M, N become bigger.

(3) In Figures 1, 3 and 5, the number of projections of Algorithm 3.1(I) and (II) (or
Algorithm 3.2) is close although the iteration number of Algorithm 3.1(II) is less
than that of Algorithm 3.1(I). The reason is that two projections are needed in
Algorithm 3.1(II) while one projection is needed in Algorithm 3.1(I) per each
iteration.

(4) In Tables 1, 2 and 3, Algorithm 3.1(II) (or Algorithm 3.2(II)) has better performance
than Algorithm 3.1(I) (or Algorithm 3.2(I)), maybe because the projections onto C
and Q are very simple.
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Figure 4 Numbers of matrix-vector evaluations with (N, M) = (150, 150).

Figure 5 Numbers of projections with (N, M) = (200, 250).

(5) From Figures 1-5, it is observed that there exist peak values for Algorithms 1.3, 3.1
and 3.2, while FISTA has no peak values and is better than Algorithms 1.3, 3.1 and
3.2 near the peak values for some cases. However, for the other values of M, N , J ,
Algorithms 3.1 and 3.2 behave better than FISTA.

6 Conclusion
In this article we introduce two simultaneous projection algorithms and two semi-
alternating projection algorithms to solve the SEP. We present larger stepsizes in (31)
and (59) than those in Algorithms 2.1 and 2.2 in [15], which leads to a better contraction
property and faster convergence speed of Algorithms 3.1 and 3.2. The weak convergence
for the proposed methods is proved under standard conditions.
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Figure 6 Numbers of matrix-vector evaluations with (N, M) = (200, 250).

A numerical experiment is provided to illustrate that, except for FISTA, Algorithms 1.3,
3.1 and 3.2 have peak values. It is thus natural to combine our methods with inertial effects.
This is one of our future research topics.
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