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1 Introduction
Suppose that p > 1, }7 + é =1, and f and g are nonnegative functions such that f € L,(R,)
and g € L,(R,). Then we have the inequalities

* f@e0) ‘
f / = "’y<51n(n/p)(/ fpx)dx) (/ gq(y)dy), M
[e’e] Oof(x) T p ['e]
/o (0 m‘*‘) @ <(sin<n/p>) ./0 1) dx, @

provided that the integrals on the right-hand side in both inequalities are positive. The

7'[
constant factors STE) and (Sln &) )

Moreover, (1) and (2) are equivalent. Inequality (1) was first studied by D. Hilbert at the

are the best possible in (1) and (2), respectively.

end of the 19th century, and hence, in his honor, it is referred to as the Hilbert inequality.
The corresponding discrete forms of inequalities (1) and (2) for two nonnegative se-

quences of real numbers {a,,} and {b,} are given as
(o] [o¢]

<L pen S sin n/p) (Z )1(2”‘])’ (3)
i<i rﬁn) <sm(n/p) Z“ 4

n=1 \m=1 m=1

where {a,,} € £, and {b,} € £,. The constant factors Sin(’; 7 )p are also the best

possible. Inequalities (3) and (4) are equivalent (see [1]).

and (

sin ﬂ/p
During the last twenty years, both inequalities (1) and (3) and their equivalent forms
were generalized and extended in many different ways (see [2—13]).

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13660-017-1594-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1594-6&domain=pdf
mailto:tsbatbold@hotmail.com

Batbold and Azar Journal of Inequalities and Applications (2018) 2018:1 Page 2 of 15

Yang [14] introduced the following half-discrete Hilbert inequality:

/ S&) x+n)* G ™
<B(A1,A2)</ooxp( ) lfp(x ) (an(l A2)= ) , (5)
0

where, 11,12 >0, A1 + A =4, 0 < A1 < 1, and the constant B(A1, 1) is the best possible. In
particular, for A =1 and A, = é, Ay = 1%, the previous inequality reduces to

. V(SN
/ fl 21: < Sin(z/g) (/o s p(x)dx) (21:ﬂq> ‘ ©

For extensions and other half-discrete Hilbert inequalities, we refer the reader to [15-18].

Very recently, a new form of the Hilbert inequality for three variables was obtained in
[19]:
/ / S8 ety
o Jo Jo (x+y+2)
oo oo %
< C(/ / (x + )PPV 2(P (5, y) dxdy)
o Jo
00 @
> </ Zq+qy—x_1gq(z) dz) , (7)
0

where 1. >0, y € (;7*, %),f(x,y) is a nonnegative function on (0, 00) x (0,00), g(z) > 0 on
(0, 00), and the constant C = B(% +v, % —y) is the best possible.

In this paper, we obtain, under some suitable conditions, two new half-discrete inequal-
ities with the same best constant factor as in (7). Moreover, we give two equivalent forms
for established inequalities. All the obtained equivalent forms are also sharp.

2 Preliminaries and lemmas
As it is well known, the gamma function I'(f) and beta function B(u,v) are defined re-
spectively by the improper integrals

r®) =/ O tetdt, 6>0,
0

oo t”'_l
B(u,v) = — dt, ,v>0.
(1) /0 e

Using the definition of the gamma function, we may write

1 1 R —(x+y)t
_— —— e W e, (8)
(x+y)* F(k)/o

To prove our main results, we need some lemmas. As we will see, their proofs are simple

and based on the famous Holder inequality for both integrals and sums and the fact that we
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can estimate the sum of a decreasing function by an integral. The first lemma (Lemma 2.1)
is given in [19] and the second one (Lemma 2.2) is also given in [15]. For completeness,

we give proofs of these two lemmas.

Lemma 2.1 ([19]) Ifp > 1, 1% + ;11 =1,t>0,a< 3, and f(x,y) is a nonnegative function
defined and integrable on (0,00) x (0,00), then

( /0 ) fo T e ef(x,5) dix dy)p

< (1’12 - oeq))g /o ~ /0 Oo(x + )P e P (x, y) dix dy. )

Proof By the Holder inequality we obtain

( / ) / " et (1) d dy)p

1

* = xty tHx+y p
:(/0 /0 {(x+y)°‘e_q)}{(x+y)“e_(ﬂ)f(x,y)}dxdy>

o0 o0 g
< ( / / (x +y) %e~t+) dxdy)
o Jo

X / / (x + )P I P (x, ) dx dy. (10)
0 0

We compute the first integral on the right-hand side of (10) by using the substitutions

y:uxandx:t(u—il):

[o¢] [o¢] [o¢] [o¢]
/ / (x + ) 1™ dy dy = / 1+ u)_"‘q/ a0 gy gy
o Jo 0 0
[ee] oo
= t"‘q’Z/ 1+u)? du/ Ve dy
0 0

= (%20 (2 - ag). (11)
Substituting (11) into (10), we get (9). (I

Lemma 2.2 ([15]) Letp>1, 119 +==1,and a, >0. Then, fort >0and 0 <6 < 1%, we have

1
q

Q=

Ze‘”tan <7rr (1 -0p)r (Z neqe_”taz> .

n=1 n=1

Proof Using the Holder inequality, we get

s © nt nt
e"a, = Z{n’ee ?}{nee_ﬁan}
n=1 n=1

1
q

1
[ p [ ©
< § n—@pe—nt § n@qe—ntaz
n=1 n=1



Batbold and Azar Journal of Inequalities and Applications (2018) 2018:1 Page 4 of 15

The lemma is proved. d
Lemma 2.3 Letp>1, 1% + é =1,and a,;, >0. Then, fort >0and 0 <0 < }7, we have

00 00 p p X >
(Z Z e(n+m)tan'm> < (t<9q—21—w(2 _ 9q 6_1 Z Z(m + n)@pe—(;ﬁm)taﬁym

m=1 n=1 m=1 n=1

Proof The proof follows the lines of the proof of Lemma 2.2. Namely, applying Hélder

inequality, we have

0o oo p
(Z Z e—(n+m)tan,m)

m=1 n=1
oo oo b
(n+m)t P _ (nrm)t
= (ZZ {m+n)Pe 7 Him+nle a an,m})
m=1 n=1
)4
q

0o oo
§ : § (Wl + n)@pe—(rﬁm)taﬁm
m=1 n=1

o0 o0
< (Z Z(m + n)Qqe(m—m)t)
[T x+9) e gy d ) (m + n)Pe= Mt gp
( /O /O y) y) >N -

The lemma is proved. d
Similarly, we obtain the following lemma.

Lemma 2.4 Letp>1, }7 + % =1,andf > 0. Then, for t >0 and o > —%, we have

(/OO e " f(x) dx)q < (T (ap + 1))% /Oox’“qe"qu(x) dx.
0 0

3 Main results
In this section, we give two new half-discrete versions of inequality (7). Both obtained
inequalities are with the best constant factor expressed in terms of the beta func-

tion.

TheoremB.lLetp>1,}9+$=1,A>O,max{%— }<y< ,anda,,>0

Suppose that f(x,y) is a nonnegative function deﬁned on (0, oo) x (0,00). If
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IS S5 e+ )PV 2P (s, y) dxdy < 00 and Yo n¥ 714 al < 00, then

00 OO & a,
J /o T 2 Gy ey

Sy
/ / (x+y+n)K dxdy
- c( /0 N /O e 2P () dxdy)p (Zl n”*ﬂ'laz> } (12)

where the constant C = B(— - y, +y) is the best possible. In particular:
(1) forr=1,y =0, andp q= 2 we have

'y dxd
/O/Of(x HX:+y+n i’

1

571(/ / (x+y)fz(x,y)dxa,b/)2
o Jo

(2) forrx=2,y =0,andp =q =2, we have

P
X
1[]s
Q
XN
S—
i

1

e} [} 0 a, [ed] o] % 00 6131 2
o e Samaa=([ [ reres) (Z;)'

n=1

Proof Using (8) and applying the Holder inequality, we have

00 00 0 a,
I= D —
/ /oﬂxy);(“yw)kdxdy
1 00 oo S 00 w1 " )
=— X, a, eI ) dxd
m)/o /0 st ”; (./0 y
1 /o Y A-1 i
=— t7+V/ / e (x, dxd) ta 7y e™a,|dt
F()\)/0 < o Jo S ) dedy ;
(e ([ [ errenan) a)
— e x,9) dx
“TMW\Jo o Jo ’ 4
o) o g %
x < / Pl (Ze‘”tan> dt) . (13)
0 n=1

By Lemma 2.1 and Lemma 2.2 we obtain respectively

( / ) / T e, y) dxdy)p

< aq—21—~ 2 § * = ap —(x+y)t ep dxd
<[e 2-aq)] ) (x + 9)Pe” P (x, ) dx dy
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and

n=1

[ q . [
<Z e‘”ta,,) < #9I(1 - 0r)p Z nPle g,
n=1

Putting these two inequalities into (13), we get

_TQ-aq)iT(1-6p)

1
N r'(x)
o0 o0 o0 ) 1_7
x (/ / fp(x,y)</ (o0 + y) PPy Hirop=2pl gyt dt) dxdy)
o Jo 0
1
o] 00 7
X <Z n(’qa‘,’, / PH0a-a-va gt dt) .
n=1 0
Since

00
/ tk+py+pa—2p+le—(x+y)t dt = (x +y)—)\—py—poz+2p—21—~()\ +py +pa — 2]7 + 2)
0
and

00
/ tk—qwq@—qe—nt dt = n—l—)»+qy—q9+ql—ﬂ()\ —qy + qe —q+ 1)’
0

it follows that

1
q

-
I1<Cyp (/ / (x + y)2P PV 2P (5, 3) dxdy)p (Z nyq+q—x—1az> )
0 0 n=1

where

T(2-ag)iT(-0p)PT(.+py +pa—2p+ QP T(h—qy — g0 — g + 1)1
B ) ‘

a,0

Now, setting «a = % and 0 = q”;—;”, we get inequality (12) with the constant
Coppy-1 it = C. It remains to show that the constant factor C in (12) is the best pos-
siblep. For :gfﬁciently small positive ¢, define the function f.(x,y) = 0 on (0,1) x (0,1) and
) = (x +y)%+y72 71 (1> 1). Suppose
that the constant C is not the best possible. Then there exist 0 < K < C such that

on [1,00) x [1,00) and the sequence a, = na

o poo 1/ 00 %
v ‘x+y>2‘”‘”'2ﬁ<x,y>dxdy)p(an-*-laz)
0 0 —~

0o oo 1% 0 %
K (/ / (x+y) " 2dx dy) Z ne!
1 1 oy
1 1
[ee] [e¢] 2 o0 q
< K([ xe ﬁ (1+u)2du dx) (1 + / ui du)
1 1 1
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K ) 1 1 . s
i (8+1)ll’ (/1‘ (o + 1)1+e dx) <1+g>

LK (1+8)7

- - (14)
€2r(1+e)r

On the other hand, estimating the left-hand side, we find (set u = z(x + y))

/ / fsx’y)ﬂn
(x+y+n)k
A—¢
o0 oo Azt X pa vl
= AR Y —
/1 /1 (x+7) ;(“ywy wdy

—+y -2 * u q i
x+y —— du | dxdy
1 @+y+uw?
00 0O oo JAEoy-1
—e-2 z 1 !
= du ) dxd
fl / o) (/_ iy )i
[Seye] o AE_yo1 e |
62 z 4 4 /x+yzq
= ——du— ———dz|dxd
] e [/o G ™)y Gep Z] xa
B(u—% 8) x+y ZT_VI
= -2 ——dzdxd
£2£1+8) / / (+3) /0 (z+1) s

B(——y, +y+ )
e Ldzdxd
= £2¢( 1+s) / f ey / “aray

B(u—% ty+ )
825(1+8)

- 0(1). (15)

Obviously, as ¢ — 0%, from (14) and (15) we obtain a contradiction. Therefore, the proof

of the theorem is completed. a
Theorem 3.2 Letp > 1, }7 + %1 =1,A>0, —% <y <min(2 - %, 3)’ and a,, > 0. Suppose that

f(x) is a nonnegative function defined on (0,00) and a double sequence a,,, > 0.
IFY o Yoot (m+ m)>» P =2al, < 00 and [° 171741 f9(x) dix < 0o, then

mz Z / (x +m + n)* dx
o0 [o¢] (,ln .
/ f(@(ZZ x+m+n)*>dx
=< C(Z Z(m + n)ZP—)\—pV—Zaim> ’ (/m x”q*q"\—lfq(x) dx) 5, (16)
0

m=1 n=1

where the constant C is the best possible. In particular:
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(1) forr=1,y =0,andp = q =2, we have

[Fro(Er s ) e

<;;(m+n)anm> (/ V& x)dx) .

2) fora=2,y =0,and p=q =2, we have

(;; m) ([ ")

Proof Using (8) and applying the Holder inequality, we have

- [ (S ) o

m=1 n=1
1 0o oo 00 00 o )
= A (x) (/ Pt tdt) dxd
() ; 21: /o T@\J, g
-~ (S e (#-y [ T e )dx) it
=— e nm e "“flx
ra) Jo — = 0
1 (/oo,\l (ii t-nt )P )p
=== LY e " ay, | dt
r()\') 0 m=1 n=1
0 00 q %
X (/ -y </ e f(x) dx) dt) . (17)
0 0
By Lemmas 2.3 and 2.4 we get

- re- Gq)% ra+ ap)il’
- ()

00 o X 117
Apy+pf-2p+1 po —mt-nt p
X t E E (m+n)’e a dt
(\/0 ( n”’”)

m=1 n=1

x ( / " pear-ga-q / " gt dxdt)
0 0
1

5 oo o0 p% o0 7
= Cup Z Z(m +n)PPY 2l (/ KTV HLE () dx) )
m=1 n=1 0

where

& T2-0g)1T(1 +ap)PT(h+py +pb —2p+2)PT(h —qy — qa — q+1)q
a0 =
’ ()




Batbold and Azar Journal of Inequalities and Applications (2018) 2018:1 Page 9 of 15

A-qy—q

and a = , we obtain inequality (16) with the constant

; ; _ 2p-py-i
Finally, setting 6 = o1

Croqy-q 2 oot = = C. To prove that the constant C in (16) is the best p0551ble, we define, for
Z

sufﬁmently small ¢, the function f;(x) = 0, on (0,1) and f:(x) = 71onll, 00) and the
A-t

sequence d,,, = (m + n) 7 "2 If we assume that the constant C is not the best possible,

then we may find 0 < K < C such that

1 1
oo o0 p o] q
0

m=1 n=1
1 1

S Py opoo 1
=<(sz+n ) (/ —sldx)

m=1 n=1 1

0 [ oo 00 P 1\ 7
- K —&— -
&S g D ) ()

m=1 n=2 m=2 n=2

0
o oo Loing
» q
+ / / (x+y)°72 dxdy) (—)
1 N &

_/ 1 1 1 P 1\
=K + + _
e+1 2¢*1(e+1) e2¢(1+¢) 3

XL, (18)
£

Here L(¢) — 1 as ¢ — 0. On the other hand, using similar computation as in (15), we have

aVlWl
/= f fg(x)(zz (x+m+n))\>d

m=1 n=1
® e o () P
AR P> |
1 e~ (x+m+n)

00 00 A [ee) x%—y—l
= / (w+v) 7 77 / ————dx | dudv
1 1 1 (14 +V+ x)’\

B —y, v +5)
= Tare - 0(1). (19)

Clearly, as ¢ — 0%, from (18) and (19) we obtain a contradiction. The proof of the theorem

is completed. 0

4 Equivalent forms
In this section, we give some equivalent forms of the inequalities obtained in Theorems

3.1 and 3.2. All the inequalities are with the same best constant factor.
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Theorem 4.1 Under the assumptions of Theorem 3.1, we have the following two inequal-

ities:

Dir-yp- 1(/ f x{(y’j})n dx dy>p

<c / / (s + 9P PY 2P (s, 3) dx dly (20)
0 0

and

q
f / (x + y) @ Ve 2(2 (x+y+n))‘> dxdy

o0
<C1? Z nr gl (21)

n=1

Both inequalities (20) and (21) are equivalent to (12), and the constants CP and C? are the

best possible.

Proof To prove (20), we set

p-1
_ ,(p-Dr-yp-1
a,=n </ / (x+y+n))‘ xdy) .

Applying inequality (12), we find

w’“(/ | et o)
“‘“(/ / Gt )
(/ [ ety )
LR

oo o0 1 o g
: C(/ / (@ + )PP (x, y) dx dy) ! <Z nyq+q—x-1az>
o ’ n=1

= C(/‘OO /Oo(x +y)2P—A—PV—2fP(x’y) dxdy>p
0 0
P\
(Zn(p DA-yp- 1</ / (x+y+n)}‘ xdy) ) . (22)

n=

1
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1
n(P Dr-yp- L f foo xjiyxjn dxdy)?), we

Dividing both sides of inequality (22) by (>~
obtain inequality (20). On the other hand, by the Holder inequality and (20), we find

/000/0 Z(x+y+n)k
( }7// x+y+n)”dxdy>( wé“ﬂ)

f(i ([ [ ) )

X < E n}"“q_’\_laZ)
n=1

- (cp | N | "y 2 () dxdy)p
0 0

&|>

1

S q

X < E n}"“q_’\_laZ)
n=1

Therefore, using (20), we obtain (12).
Now, to prove the equivalence relation between (12) and (21), we set

00 q-1
f@y) = (ot y)a iy (Z Gy +Zn+ ,,)A> :

n=1
By inequality (12) we get

00 00 o) q
(g-1)A+yq-2 n dxd
[ e (;mwnv) b
00 00 [e9) q-1
— (g-Dr+yq-2 Gn
[AACES: (;mwm»)

S ay did

/ / Z (x+y+n)
= C(/OO ‘/(;Oo(x+y)2pf)rp)/*2fp(x,y) dJCdy)p <§l: rari-hel Z) 1

n=1

00 00 e8] q 7
(g-1)r+yq-2 an
(/O /0 (x +y) 7 (Zi(x+y+n))‘) dxdy)

1
q

[e9]
X E nr a4

n=1
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Obviously, from the last inequality we get (21). On the other hand, using the Holder
inequality and (21) respectively, we find

/ / Z (a{ ix}yzj)k *dy
= /0 /0 [(x+y)'w+ﬁf(x,y)]

ql)A+yq2 e a,
— |dxd
[(x+y) z(ﬂw)x] eds

Y 2p—h—py-2,p }7
([ [ e asa)
o0 oo o 9 %
x (/0 /0 (x+y)(q—1)x+rq—2 (Z Giye n)’\) dxdy)

n=1

</ / (x + )PPV 2y, y)dxdy)_ (qunqu A-1 q)q'

n=1

Thus, the equivalence relation between (21) and (12) is proved. Moreover, since the con-
stant in (12) is the best possible, we deduce that the constants in both inequalities (20) and
(21) are also the best possible. The theorem is proved. d

Theorem 4.2 Under the assumptions of the Theorem 3.2, we have the following inequali-
ties:

p
(p-Dr-yp-1 Gim,n
/0 x (ZZ m+n+x))\> da

m=1 n=1
o0 oo
<CPY N (man) (23)
m=1 n=1
and
oo 00 00 q
ZZ(ern)(q—l)Myq—Z / de dx dy
e o (m+n+x)
o0
<(C? / KL (x) dx. (24)
0

Both inequalities (23) and (24) are equivalent to (16), and the constants CP and C? are the
best possible.

Proof To prove (23), we set

p-1
Flx) = A0V 1(22 o :’:M)x) :

m=1 n=1
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Applying inequality (16), we find

p
(- Am,n
/0 A p-Di-yp- 1(22 m+n+x)k> dx
Am,n ; Am,n
:/0 Aypl<X:X: m+n+x)’\> Zz(m+n+x)’\

m=1 n=1 m=1 n=1

m=1 n=1

1 1

[celNee] » [e’e] q

sc( Z(m+n)2p-k-w-2a1;,m> ( / xM*q-*-lfq(x)dx)q
0

1
=C<ii(m+n )P Aopy= Zap )p

m=1 n=1

b\
(p ) Am,n
X(/o Di-yp- 1(22 m+n+x))‘) dx) .

m=1 n=1

Hence, we obtain inequality (23). On the other hand, by the Hélder inequality and (23) we
find

m=1 n=1

1

Therefore, using (23), we obtain (16). To prove the equivalence relation between (16) and
(24), we set

A = (M + n)(q—l)kﬂ/q—2 (/oo —(m {qul PR dx)q_l.
0

By inequality (16) we get

oo oo o 00 f(x) q
X;Z(mﬂqqlkwﬂ(/o 7(m+n+x)*dx>

n=1

0o 00 00 -1
ZZ(VH + 1)@ DA+ra-2 (/0 P _{Sci " dx)q

< flx)
% (/0 (m+n+x)* dx)
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1

1
SR r 00
Z Y me ¥R ( / al AT f () dx) !
0

1
(m + )@ Dr+ra-2 /mﬂdx By
o (m+n+x?

X (/‘Oooxyq"q_*_lfq(x) dx) 5.

From the last inequality we obtain (24). On the other hand, using the Holder inequality
and (24), we have

/°° - i G ®)

)
e L (m+n+x)

A
M2
Mg

o0 [e¢] N
(g-1)r+yq-2

= [(m +n) 1 am,,,]

(g=Dryg2 [ f(x)
X |:(m + I’l) 1 A m dx:|

ST

IA
Nk
gk
8
+
s
¥
>
<
<
S
§&“
3

00 0 e 00 f(x) q é
X ;;(Mﬂq)(q D yqz(/o 7(m+n+x)’\dx)

A

0 0 117 [ %
SN mmy o 2ab, (cq / K THAALEa () dx) :
0

m=1 n=1

Thus, the equivalence relation between (24) and (16) is proved. Moreover, since the con-
stant in (16) is the best possible, the constants in both inequalities (23) and (24) are also
the best possible. The theorem is proved. g

5 Conclusion
In the present study, we introduced two new half-discrete Hilbert inequalities for three
variables. The equivalent forms are also considered. Moreover, we proved that the con-

stants appearing on the right-hand sides of these inequalities are the best possible.
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