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Abstract
Let f be an analytic function in the unit disc |z| < 1 on the complex plane C. This
paper is devoted to obtaining the correspondence between f (z) and zf ′(z) at the
point w, 0 < |w| = R < 1, such that |f (w)| =min{|f (z)| : f (z) ∈ ∂ f (|z| ≤ R)}. We present
several applications of the main result. A part of them improve the previous results of
this type.
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1 Introduction
Let H denote the class of analytic functions in the unit disc |z| <  on the complex plane C.
The following lemma is a particular case of the Julia-Wolf theorem. It is known as Jack’s
lemma.

Lemma . ([]) Let ω(z) ∈ H with ω() = . If for a certain z, |z| < , we have |ω(z)| ≤
|ω(z)| for |z| ≤ |z|, then zω

′(z) = mω(z), m ≥ .

In this paper, we consider a related problem. We establish a relation between w(z) and
zw′(z) at the point z such that |w(z)| = min{|w(z)| : |z| = |z|} or at the point z satisfying
(.). We consider the p-valent functions.

Lemma . Let w(z) = zp +
∑∞

n=p+ anzn be analytic in |z| < . Assume that there exists a
point z, |z| = R < , such that

min
{∣
∣w(z)

∣
∣ : w(z) ∈ ∂w

(|z| ≤ R
)}

=
∣
∣w(z)

∣
∣ > . (.)

If w(z)/zp �=  in |z| < R, then

zw′(z)
w(z)

= k ≤ p. (.)
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If the function w(z)/zp has a zero in |z| < R and ∂w(|z| ≤ R) is a smooth curve at w(z), then

zw′(z)
w(z)

= k ≥ p, (.)

where k, k are real.

Proof If

min
{∣
∣w(z)

∣
∣ : w(z) ∈ ∂w

(|z| ≤ R
)}

=
∣
∣w(z)

∣
∣ > ,

then

∣
∣w(z)

∣
∣ ≥ ∣

∣w(z)
∣
∣ for w(z) ∈ ∂w

(|z| ≤ R
)
. (.)

Then, we also have

∣
∣
∣
∣
w(z)
zp

∣
∣
∣
∣ ≥

∣
∣
∣
∣
w(z)

zp


∣
∣
∣
∣ for w(z) ∈ ∂w

(|z| ≤ R
)
. (.)

Let

�(z) = w(z)/zp, |z| < . (.)

Then, from (.) and from hypothesis (.) we have

min
{∣
∣�(z)

∣
∣ : �(z) ∈ ∂�

(|z| ≤ R
)}

=
∣
∣�(z)

∣
∣. (.)

There are two cases: �(|z| < R) contains the origin (see Figure ); and �(|z| < R) does not
(see Figure ).
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A = {�(z) : |z| ≤ R}

e = �(z)

Figure 1 �(z) in the case �(z) �= 0.
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Figure 2 �(z) in the case 0 ∈ �(|z| ≤ R).

First, suppose that �(z) does not become  in |z| < R. If there exists a point z =
R exp(iϕ),  ≤ ϕ < π ,  < R < , such that

min
{∣
∣�(z)

∣
∣ : �(z) ∈ ∂�

(|z| ≤ R
)}

=
∣
∣�(z)

∣
∣, (.)

then the function

F(z) =
z

�(z)
=

zp+

w(z)
, |z| ≤ R,

satisfies the assumptions of Jack’s lemma (Lemma .),

F(z) = max
θ∈[,π )

{∣
∣F(z)

∣
∣ : z = Reiθ},

and hence

zF ′(z)
F(z)

= p +  –
zw′(z)

w(z)
≥ m ≥ .

This gives (.).
For the case  ∈ �(|z| < R) (see Figure ), for �(z) given in (.), we have that |�(z)| has

an extremum at z, and so

d|�(z)|
dϕ

∣
∣
∣
∣
z=z

= . (.)

Furthermore, arg{�(z)} is increasing at z, and so

d arg{�(z)}
dϕ

∣
∣
∣
∣
z=z

≥ . (.)
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Then we have

z�
′(z)

�(z)
=

d log�(z)
d log z

∣
∣
∣
∣
z=z

=
d log |�(z)| + id arg{�(z)}

idϕ

∣
∣
∣
∣
z=z

=
d arg{�(z)}

dϕ
–

i
|�(z)|

d|�(z)|
dϕ

∣
∣
∣
∣
z=z

=
d arg{�(z)}

dϕ

∣
∣
∣
∣
z=z

≥ , (.)

because of (.). On the other hand, by (.) we have w′(z) = zp�′(z)+pzp–�(z), and hence

zw′(z)
w(z)

=
z�

′(z)
�(z)

+ p. (.)

Relations (.) and (.) imply that

zw′(z)
w(z)

≥ p.

Therefore, by (.) we obtain (.). �

If we additionally assume that w(z)/zp is univalent in the unit disc, then we have the
following result.

Remark . Let w(z) = zp +
∑∞

n=p+ anzn be analytic in |z| < . Assume that there exists a
point z, |z| = R < , such that

min
θ∈[,π )

{∣
∣w(z)

∣
∣ : z = Reiθ} =

∣
∣w(z)

∣
∣ > . (.)

If w(z)/zp is univalent and w(z)/zp �=  in |z| ≤ R, then

zw′(z)
w(z)

= k ≤ p, (.)

where k is real. If w(z)/zp is univalent and w(z)/zp vanishes in |z| ≤ R, then

zw′(z)
w(z)

= k ≥ p, (.)

where k is real.

2 Applications
For p = , then Lemma . becomes the following corollary.
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Corollary . Let w(z) =  +
∑∞

n= anzn be analytic in |z| < . Assume that there exists a
point z, |z| = R < , such that

min
{∣
∣w(z)

∣
∣ : w(z) ∈ ∂w

(|z| ≤ R
)}

=
∣
∣w(z)

∣
∣ > . (.)

If w(z) �=  in |z| < R, then

zw′(z)
w(z)

= k ≤ . (.)

If the function w(z) has a zero in |z| < R and ∂w(|z| ≤ R) is a smooth curve at w(z), then

zw′(z)
w(z)

= k ≥ . (.)

A simple contraposition of Lemma . provides the following two corollaries.

Corollary . Let w(z) = zp +
∑∞

n=p+ anzn be analytic in |z| <  and suppose that there
exists a point z, |z| = R < , such that

min
{∣
∣w(z)

∣
∣ : w(z) ∈ ∂w

(|z| ≤ R
)}

=
∣
∣w(z)

∣
∣ > . (.)

If

zw′(z)
w(z)

= k < p (.)

and ∂w(|z| ≤ R) is a smooth curve at w(z), then w(z)/zp has no zero in |z| ≤ R. If

zw′(z)
w(z)

= k > p, (.)

then the function w(z)/zp has a zero in |z| ≤ R.

Corollary . Let q(z) = zp +
∑∞

n=p+ anzn be analytic in |z| ≤ . Assume that q(z)/zp has a
zero in |z| < . If for given c ∈ [, ),

∣
∣zq′(z)

∣
∣ <

p
c
∣
∣q(z)

∣
∣, |z| < , (.)

then the image domain q(|z| < ) covers the disc |w| < c.

Proof If

min
{∣
∣q(z)

∣
∣ : q(z) ∈ ∂q

(|z| ≤ 
)}

=
∣
∣q(z)

∣
∣ < c, (.)

then by (.) in Lemma . we have

zq′(z)
q(z)

= k ≥ p ⇒ ∣
∣zq′(z)

∣
∣ ≥ p

∣
∣q(z)

∣
∣. (.)
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Therefore, by (.) and (.) we have

∣
∣zq′(z)

∣
∣ ≥ p

c
∣
∣q(z)

∣
∣,

which contradicts hypothesis (.) and therefore completes the proof. �

Theorem . Let p(z) be analytic in |z| <  with p(z) �= , |p()| > c, in |z| <  and suppose
that

∣
∣p(z) + zp′(z)

∣
∣ > c, |z| < , (.)

where c > , and that

Re

{
zp′(z)
p(z)

}

> –, |z| < . (.)

Then we have

∣
∣p(z)

∣
∣ > c, |z| < . (.)

Proof If there exists a point z, |z| < , such that

∣
∣p(z)

∣
∣ > c for |z| < |z| (.)

and |p(z)| = c, then p(|z| ≤ |z|) has the shape as in Figure  and d|p(z)|/dϕ, z = reiϕ , van-
ishes at the point z = z. Therefore, we have

zp′(z)
p(z)

=
d log p(z)

d log z

∣
∣
∣
∣
z=z

=
d log |p(z)| + id arg{p(z)}

idϕ

∣
∣
∣
∣
z=z

=
d arg{p(z)}

dϕ
–

i
|p(z)|

d|p(z)|
dϕ

∣
∣
∣
∣
z=z

=
d arg{p(z)}

dϕ

∣
∣
∣
∣
z=z

≤ . (.)

From (.) and (.) we have

– <
zp′(z)

p(z)
≤ ,

and hence

 ≤
∣
∣
∣
∣ +

zp′(z)
p(z)

∣
∣
∣
∣ ≤ .
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Then it follows that

∣
∣p(z) + zp′(z)

∣
∣ =

∣
∣p(z)

∣
∣
∣
∣
∣
∣ +

zp′(z)
p(z)

∣
∣
∣
∣ ≤ ∣

∣p(z)
∣
∣ = c, (.)

which contradicts hypothesis (.) and therefore completes the proof. �

For some other geometrical properties of analytic functions, we refer to the papers
[–].

3 Conclusion
In this paper, we have presented a correspondence between an analytic function f (z) and
zf ′(z) at the point w,  < |w| = R < , in the unit disc |z| <  on the complex plane such that
|f (w)| = min{|f (z)| : f (z) ∈ ∂f (|z| ≤ R)}.
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