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Abstract
In this paper, we propose and analyze a hybrid iterative method for finding a
common element of the set of solutions of a generalized equilibrium problem, the set
of solutions of a variational inequality problem, and the set of fixed points of a
relatively nonexpansive mapping in a real Banach space. Further, we prove the strong
convergence of the sequences generated by the iterative scheme. Finally, we derive
some consequences from our main result. Our work is an improvement and
extension of some previously known results recently obtained by many authors.
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1 Introduction
Let X be a real Banach space with its dual space X∗, let 〈·, ·〉 be the duality pairing between
X and X∗, and let ‖ · ‖ denote the norm of X and X∗. Let K be a nonempty closed convex
subset of X, and let X �= ∅ be the set of all subsets of X.

Let G, ξ : K × K → R be bifunctions. The generalized equilibrium problem (GEP) is
finding x ∈ K such that

G(x, y) + ξ (y, x) – ξ (x, x) ≥ , ∀y ∈ K . (.)

We denote the solution set of GEP (.) by Sol(GEP(.)). Problem (.) includes fixed
point problems, optimization problems, variational inequality problems, Nash equilib-
rium problems, etc. as particular cases. In recent past, many iterative methods have been
proposed to solve GEP (.); see, for example, [–].

For ξ = , GEP (.) reduces to the following equilibrium problem (EP): Find x ∈ K such
that

G(x, y) ≥  for all y ∈ K . (.)

Problem (.) was introduced and studied by Blum and Oettli [].
The variational inequality problem (VIP) is to find x ∈ K such that

〈Sx, y – x〉 ≥  for all y ∈ K , (.)
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where S : K → X∗ is a nonlinear mapping. We denote the solution set of VIP (.) by
Sol(VIP(.)).

A mapping S : K → X∗ is said to be
(i) monotone if 〈x – y, Sx – Sy〉 ≥  for all x, y ∈ K ;

(ii) γ -inverse strongly monotone if there exists a positive real number γ such that
〈x – y, Sx – Sy〉 ≥ γ ‖Sx – Sy‖ for all x, y ∈ K ;

(iii) Lipschitz continuous if there exists a constant L >  such that ‖Sx – Sy‖ ≤ L‖x – y‖.
If S is γ -inverse strongly monotone, then it is Lipschitz continuous with constant 

γ
, that

is, ‖Sx – Sy‖ ≤ 
γ
‖x – y‖ for all x, y ∈ K .

The fixed point problem (FPP):

Find x ∈ K such that x ∈ Fix(T), (.)

where T : K → K is a nonlinear mapping, and Fix(T) is the fixed point set.
In , Takahashi and Zembayashi [] studied weak and strong convergence theorems

for finding a common solution of EP (.) and FPP (.) of a relatively nonexpansive map-
ping in a real Banach space. Later on, Petrot et al. [] extended the work [] by using the
hybrid projection method, which plays an important role for establishing strong conver-
gence results.

Nadezhkina et al. [] proposed a convex combination of a nonexpansive mapping and
the extragradient method and considered the iterative scheme by the hybrid method. They
proved the strong convergence theorem in a Hilbert space.

Very recently, in , Nakajo et al. [] proposed a composition and convex combina-
tion of a relatively nonexpansive mapping and the gradient method. Further, they proved
the strong convergence to a common element of solutions of the variational inequality
problem and fixed point problem by using the hybrid method.

Motivated and inspired by the recent work of Takahashi and Zembayashi [], Petrot et al.
[], Nadezhkina et al. [], and Nakajo et al. [], we propose an iterative scheme to find the
common solution of GEP (.), VIP (.), and FPP (.) for a relatively nonexpansive map-
ping in a real Banach space. Further, by using the hybrid projection we prove the strong
convergence of the sequences generated by the iterative algorithm, which improves and
extends the corresponding results of [, , –].

2 Preliminaries
Now, we use the following results and definitions to prove our main result.

The normalized duality mapping is defined as

J(u) =
{

v ∈ X∗ : 〈u, v〉 = ‖u‖ = ‖v‖}

for every u ∈ X, where J : X → X∗ .
The mapping ρX : [,∞) → [,∞) defined by

ρX(s) = sup

{‖u + v‖ + ‖u – v‖


–  : ‖u‖ = ,‖v‖ = s
}

is called the modulus of smoothness of X. The space X is said to be smooth if ρX(s) >  for
all s > , and X is called uniformly smooth if ρX (s)

s →  as s → . A Banach space X is said
to be q-uniformly smooth if there exists a fixed constant c >  such that ρX(s) ≤ csq. It is
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well known that if X is q-uniformly smooth, then q ≤ , and X is uniformly smooth. Note
that if X is uniformly smooth, then J is uniformly continuous on bounded subsets of X.

The modulus of convexity of X is the function δX : (, ] → [, ] defined by

δX(t) = inf

{
 –



‖x + y‖ : ‖x‖ = ‖y‖ = ,‖x – y‖ = t

}

for t ∈ (, ]. A Banach space X is said to be uniformly convex if δX(t) >  for all t ∈ (, ].
Let p > . The space X is said to be p-uniformly convex if there exists a constant c >  such
that δX(t) ≥ ctp for all t ∈ (, ]. Note that every p-uniformly convex space is uniformly
convex (for more details, see []).

Let X be a smooth, strictly convex, and reflexive Banach space.
Following Takahashi and Zembayashi [], a point x ∈ K is said to be an asymptotic

fixed point of T if K contains a sequence {xn} that converges weakly to x such that
limn→∞ ‖xn – Txn‖ = . The set of asymptotic fixed points of T is denoted by F̂ix(T).
A mapping T from K into itself is said to be relatively nonexpansive if Fix(T) �= ∅, F̂ix(T) =
Fix(T), and φ(x, Tx) ≤ φ(x, x) for all x ∈ K and x ∈ Fix(T), where φ : X × X → R+ is the
Lyapunov functional defined by

φ(u, v) = ‖u‖ – 〈u, Jv〉 + ‖v‖ for u, v ∈ X. (.)

The generalized projection �K : X → K is defined as

�K (u) = inf
x∈K

φ(u, x) for u ∈ X,

where φ(u, x) is defined by (.) (for more details, see []).

Lemma . ([, ]) Let X be a smooth, strictly convex, and reflexive Banach space, and
let K �= ∅ be a closed convex subset of X. Then, the following hold:

(i) φ(x,�K u) + φ(�K u, u) ≤ φ(x, u) for all x ∈ K , u ∈ X .
(ii) For u ∈ X and x ∈ K , we have

x = �K (u) ⇔ 〈x – y, Ju – Jx〉 ≥  for all y ∈ K .

Remark . ([])
(i) Using (.), we get

(‖u‖ – ‖v‖) ≤ φ(u, v) ≤ (‖u‖ + ‖v‖) for all u, v ∈ X.

(ii) If X = H is a real Hilbert space, then φ(u, v) = (‖u‖ – ‖v‖), and �K = PK , the metric
projection of H onto K .

(iii) If X is a smooth, strictly convex, and reflexive Banach space, then φ(u, v) =  for
u, v ∈ X if and only if u = v.

Lemma . ([]) Let X be a smooth Banach space. Then, the following are equivalent:
(i) X is -uniformly convex.

(ii) There exists a constant c >  such that‖u + v‖ ≥ ‖u‖ + 〈v, Ju〉 + c‖v‖ for all
u, v ∈ X .
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Lemma . ([]) Let X be a -uniformly convex and smooth Banach space. Then φ(u, v) ≥
c‖u – v‖ for all u, v ∈ X, where c is the constant in Lemma ..

Lemma . ([]) Let X be a -uniformly convex Banach space. Then, for all u, v ∈ X, we
have

‖u – v‖ ≤ 
c


‖Ju – Jv‖,

where J is the normalized duality mapping of X, and  < c ≤ .

Lemma . ([]) Let K �= ∅ be a closed convex subset of a smooth, strictly convex, and
reflexive Banach space X, and let T : K → K be a relatively nonexpansive mapping. Then,
Fix(T) is closed and convex.

Lemma . ([]) Let X be a smooth and uniformly convex Banach space, and let {un}
and {vn} be sequences in X such that either {un} or {vn} is bounded. If limn→∞ φ(un, vn) = ,
then limn→∞ ‖un – vn‖ = .

Lemma . ([]) Let K be a nonempty closed convex subset of a Banach space X, and let S
be a monotone and hemicontinuous operator of K into X∗. Define the mapping M ⊂ X ×X∗

as

M(z) =

{
S(z) + NK (z) if z ∈ K ,
∅ if z /∈ K ,

where NK (z) := {u ∈ X∗ : 〈z – x, u〉 ≥ ,∀x ∈ K} is the normal cone to K at z ∈ K . Then, M
is maximal monotone, and M–() = Sol(VIP(.)).

Lemma . ([, ]) Let X be a uniformly convex Banach space, and let r > . Then
there exists a strictly increasing, continuous, and convex function g : [, r] → R such that
g() =  and

∥∥αx + ( – α)y
∥∥ ≤ α‖x‖ + ( – α)‖y‖ – α( – α)g

(‖x – y‖)

for all x, y ∈ Br and α ∈ [, ], where Br = {u ∈ X : ‖u‖ ≤ r}.

Lemma . ([]) Let X be a smooth and uniformly convex Banach space, and let r > .
Then there exists a strictly increasing, continuous, and convex function g : [, r] → R such
that g() =  and

g
(‖x – y‖) ≤ φ(x, y) for all x, y ∈ Br .

The function F : X × X∗ → R defined by

F
(
u, u∗) = ‖u‖ – 

〈
u, u∗〉 +

∥∥u∗∥∥ for u ∈ X and u∗ ∈ X∗

was studied by Alber [], that is, F(u, u∗) = φ(u, J–u∗) for u ∈ X and u∗ ∈ X∗.
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Lemma . ([]) Let X be a reflexive strictly convex and smooth Banach space with its
dual X∗. Then

G
(
u, u∗) + 

〈
J–u∗ – u, v∗〉 ≤ G

(
u, u∗ + v∗) for all u ∈ X and u∗, v∗ ∈ X∗.

Assumption . Let G and ξ satisfy the following conditions:
(i) G(x, x) =  for x ∈ K .

(ii) G is monotone, that is, G(x, y) + G(y, x) ≤  for x, y ∈ K .
(iii) For each y ∈ K , x → G(x, y) is weakly upper semicontinuous.
(iv) For each x ∈ K , y → G(x, y) is convex and lower semicontinuous.
(v) ξ (·, ·) is weakly continuous, and ξ (·, y) is convex.

(vi) ξ is skew-symmetric, that is,

ξ (x, x) – ξ (x, y) + ξ (y, y) – ξ (y, x) ≥  for all x, y ∈ K .

Theorem . Let K be a nonempty closed and convex subset of a smooth, strictly convex,
and reflexive Banach space X. Let G, ξ : K × K → R be nonlinear mappings satisfying As-
sumption .. For t >  and u ∈ X, define the mapping ϒt : X → K as follows:

ϒt(u) =
{

z ∈ K : G(z, y) + ξ (y, z) – ξ (z, z) +

t
〈y – z, Jz – Ju〉 ≥ ,∀y ∈ K

}
.

Then, the following conclusions hold:
(i) ϒt is single-valued;

(ii) ϒt is firmly nonexpansive mapping, that is, for all u, u ∈ X ,

〈ϒtu – ϒtu, Jϒtu – Jϒtu〉 ≤ 〈ϒtu – ϒtu, Ju – Ju〉;

(iii) Fix(ϒt) = Sol(GEP(.));
(iv) Sol(GEP(.)) is closed and convex.

Proof (i) We claim that ϒt is single-valued. Indeed, for x ∈ K and t > , let z, z ∈ ϒt(x).
Then

G(z, y) + ξ (y, z) – ξ (z, z) +

t
〈y – z, Jz – Jx〉 ≥  for all y ∈ K (.)

and

G(z, y) + ξ (y, z) – ξ (z, z) +

t
〈y – z, Jz – Jx〉 ≥  for all y ∈ K . (.)

Letting y = z in (.) and y = z in (.) and then adding, we have

G(z, z) + G(z, z) + ξ (z, z) – ξ (z, z) + ξ (z, z) – ξ (z, z) +

t
〈z – z, Jz – Jz〉 ≥ .

Since G is monotone, ξ is skew symmetric, and since t > , we have

〈z – z, Jz – Jz〉 ≥ .

Using the strict convexity of X, we get z = z. Thus, ϒt is single-valued.
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(ii) For any u, u ∈ X, let x = ϒtu and x = ϒtu. Then

G(x, y) + ξ (y, x) – ξ (x, x) +

t
〈y – x, Jx – Ju〉 ≥  for all y ∈ K , (.)

and

G(x, y) + ξ (y, x) – ξ (x, x) +

t
〈y – x, Jx – Ju〉 ≥  for all y ∈ K . (.)

By putting y = x in (.) and y = x in (.) and taking their sum, we have

G(x, x) + G(x, x) + ξ (x, x) – ξ (x, x) + ξ (x, x) – ξ (x, x)

+

t
〈x – x, Jx – Jx – Ju + Ju〉 ≥ .

Using the monotonicity of G and properties of ξ , we have


t
〈x – x, Jx – Jx – Ju – Ju〉 ≥ .

Hence, we have

〈x – x, Jx – Jx〉 + 〈x – x, Ju – Ju〉 ≥ 

or

〈x – x, Jx – Jx〉 ≤ 〈x – x, Ju – Ju〉,

that is,

〈ϒtu – ϒtu, Jϒtu – Jϒtu〉 ≤ 〈ϒtu – ϒtu, Ju – Ju〉. (.)

Thus, ϒt is a firmly nonexpansive mapping.
(iii) Let x ∈ Fix(ϒt). Then

G(x, y) + ξ (y, x) – ξ (x, x) +

t
〈y – x, Jx – Jx〉 ≥  for all y ∈ K ,

and so

G(x, y) + ξ (y, x) – ξ (x, x) ≥  for all y ∈ K .

Thus, x ∈ Sol(GEP(.)).
Let x ∈ Sol(GEP(.)). Then

G(x, y) + ξ (y, x) – ξ (x, x) ≥  for all y ∈ K ,

and so

G(x, y) + ξ (y, x) – ξ (x, x) +

t
〈y – x, Jx – Jx〉 ≥  for all y ∈ K .

Hence, x ∈ Fix(ϒt). Thus, Fix(ϒt) = Sol(GEP(.)).
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(iv) First, we show that ϒt is a relatively nonexpansive mapping.
Using the definition of ξ , for any u, u ∈ X, we have

φ(ϒtu,ϒtu) + φ(ϒtu,ϒtu)

= ‖ϒtu‖ – 〈ϒtu, Jϒtu〉 – 〈ϒtu, Jϒtu〉 + ‖ϒtu‖

= 〈ϒtu, Jϒtu – Jϒtu〉 + 〈ϒtu, Jϒtu – Jϒtu〉
= 〈ϒtu – ϒtu, Jϒtu – Jϒtu〉

and

φ(ϒtu, u) + φ(ϒtu, u) – φ(ϒtu, u) – φ(ϒtu, u)

= ‖ϒtu‖ – 〈ϒtu, Ju〉 + ‖u‖ + ‖ϒtu‖ + ‖u‖

– 〈ϒtu, Ju〉 – ‖ϒtu‖ + 〈ϒtu, Ju〉 – ‖u‖

– ‖ϒtu‖ + 〈ϒtu, Ju〉 – ‖u‖

= 〈ϒtu, Ju – Ju〉 – 〈ϒtu, Ju – Ju〉
= 〈ϒtu – ϒtu, Ju – Ju〉.

Since ϒt is firmly nonexpansive, from the above two equalities we have

φ(ϒtu,ϒtu) + φ(ϒtu,ϒtu) ≤ φ(ϒtu, u) + φ(ϒtu, u) – φ(ϒtu, u) – φ(ϒtu, u).

Thus,

φ(ϒtu,ϒtu) + φ(ϒtu,ϒtu) ≤ φ(ϒtu, u) + φ(ϒtu, u).

Taking u = u ∈ Fix(ϒt), we have

φ(u,ϒtu) ≤ φ(u, u).

Further, we prove that F̂ix(ϒt) = Sol(GEP(.)).
Let x ∈ F̂ix(ϒt). Then there exists a sequence {un} ⊂ X such that un ⇀ x and

limn→∞ ‖un – ϒtun‖ = . Thus, ϒtun ⇀ x. Hence, we get x ∈ K .
Since J is uniformly continuous on bounded sets, we have

lim
n→∞

‖Jun – Jϒtun‖
t

= , t > .

From the definition of ϒt , for any y ∈ K , we have

G(ϒtun, y) + ξ (y,ϒtun) – ξ (ϒtun,ϒtun) +

t
〈y – ϒtun, Jϒtun – Jun〉 ≥ .

Let yp = ( – p)x + py for p ∈ (, ]. Since y ∈ K and x ∈ K , we have yp ∈ K , and thus

G(ϒtun, yp) + ξ (yp,ϒtun) – ξ (ϒtun,ϒtun) +

t
〈yp – ϒtun, Jϒtun – Jun〉 ≥ .
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Since ξ is weakly continuous and G is weakly lower semicontinuous in the second argu-
ment, letting n → ∞, we get

G(x, yp) + ξ (yp, x) – ξ (x, x) ≥ ,

ξ (yp, x) – ξ (x, x) ≥ G(yp, x).

For p > , we have

 = G(yp, yp)

≤ pG(yp, y) + ( – p)G(yp, x)

≤ pG(yp, y) + ( – p)
[
ξ (yp, x) – ξ (x, x)

]

≤ pG(yp, y) + ( – p)p
[
ξ (y, x) – ξ (x, x)

]

≤ p
[
G(yp, y) + ( – p)

(
ξ (y, x) – ξ (x, x)

)]
.

Dividing by p >  and letting p → +, we have

G(x, y) + ξ (y, x) – ξ (x, x) ≥ .

This implies that x ∈ Sol(GEP(.)), and hence Fix(ϒt) = Sol(GEP(.)) = F̂ix(ϒt). Thus,
ϒt be a relatively nonexpansive mapping. By Lemma ., Sol(GEP(.)) = Fix(ϒt) is closed
and convex. �

Next, we have the following lemma whose proof is on the similar lines of the proof of
Lemma . [] and hence omitted.

Lemma . Let X, K , G, ξ , ϒt be same as in Theorem ., and let t > . Then, for x ∈ X
and u ∈ Fix(ϒt), we have

φ(u,ϒtx) + φ(ϒtx, x) ≤ φ(u, x).

3 Main result
Now, we prove the following convergence theorem.

Theorem . Let X be a -uniformly convex and uniformly smooth Banach space, and let
K be a nonempty closed and convex subset of X. Let S : K → X∗ be a γ -inverse strongly
monotone mapping with constant γ ∈ (, ), let G, ξ : K × K → R be nonlinear mappings
satisfying Assumption ., and let T : K → K be a relatively nonexpansive mapping such
that � := Sol(GEP(.)) ∩ Sol(VIP(.)) ∩ Fix(T) �= ∅. Let the iterative sequence {xn} be gen-
erated as follows:

x = x ∈ K ,

zn =
∏

K

J–(Jxn – λnSxn),

yn = J–(θnJxn + ( – θn)JTzn
)
,

un ∈ K
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such that

G(un, y) + ξ (y, un) – ξ (un, un) +

tn

〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ K ,

Pn =
{

z ∈ K : φ(z, un) ≤ φ(z, xn) – ( – θn)φ(zn, xn) – ( – θn)λn〈zn – z, Sxn – Szn〉
}

,

Qn =
{

z ∈ K : 〈xn – z, Jx – Jxn〉 ≥ 
}

,

xn+ =
∏

Pn∩Qn

x, ∀n ∈ N ∪ {},

where J is the normalized duality mapping on X, tn ∈ (,∞), and {λn} and {θn} are the
sequences in (,∞) and (,) satisfying the following:

(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < c
 γ

 , where c is the constant in Lemma .;
(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < .

Then, {xn} converges strongly to
∏

� x, where
∏

� x is the generalized projection of X onto �.

Proof Since T is a relatively nonexpansive mapping from K into itself, it follows from
Lemma . and Theorem .(iv) that � is closed and convex. First, we show that Pn ∩ Qn

is closed and convex for all n ∈ N ∪ {}. By the definition of Qn it is closed and convex.
Further, by the definition of φ we observe that Pn is closed and

φ(z, un) ≤ φ(z, xn) – ( – θn)φ(yn, xn) – ( – θn)λn〈yn – z, Sxn – Syn〉,
‖z‖ – 〈z, Jxn〉 + ‖xn‖ – ( – θn)φ(yn, xn) – ( – θn)λn〈yn – z, Sxn – Syn〉

– ‖z‖ + 〈z, Jun〉 – ‖un‖ ≥ ,

〈z, Jun – Jxn〉 – ( – θn)λn〈yn – z, Sxn – Syn〉 + ‖xn‖ – ‖un‖ – ( – θn)φ(yn, xn) ≥ ,

and hence Pn is closed and convex for all n ∈ N ∪ {}. Thus, Pn ∩ Qn is closed and convex
for all n ∈ N ∪ {}.

Next, we show that � ⊂ Pn ∩ Qn and {xn} is well defined.
Let x∗ ∈ �. Then x∗ ∈ Sol(VIP(.)), that is, 〈zn – x∗, Szn〉 ≥ 〈zn – x∗, Sx∗〉 ≥ .
Since x∗ ∈ �, using Lemma ., we have

〈
zn – x∗, Jxn – Jzn – λnSxn

〉 ≥ .

Thus,

〈
zn – x∗, Jxn – Jzn

〉 ≥ λn
〈
zn – x∗, Sxn

〉

= λn
〈
zn – x∗, Sxn – Szn

〉
+ λn

〈
zn – x∗, Szn

〉

≥ λn
〈
zn – x∗, Sxn – Szn

〉

for each n ∈ N ∪ {}, which implies

–
〈
zn – x∗, Jxn – Jzn

〉 ≤ –λn
〈
zn – x∗, Sxn – Szn

〉
,


〈
x∗, Jxn – Jzn

〉
– 〈zn, Jxn – Jzn〉 ≤ –λn

〈
zn – x∗, Sxn – Szn

〉
,


〈
x∗, Jxn – Jzn

〉
+ 〈zn, Jzn〉 – 〈zn, Jxn〉 ≤ –λn

〈
zn – x∗, Sxn – Szn

〉
,



Farid et al. Journal of Inequalities and Applications  (2017) 2017:297 Page 10 of 19


〈
x∗, Jxn – Jzn

〉
+ ‖zn‖ – 〈zn, Jxn〉 ≤ –λn

〈
zn – x∗, Sxn – Szn

〉
,

∥∥x∗∥∥ – 
〈
x∗, Jzn

〉
+ ‖zn‖ ≤ ∥∥x∗∥∥ – 

〈
x∗, Jxn

〉
+ ‖xn‖ – ‖zn‖ + 〈zn, Jxn〉

– ‖xn‖ – λn
〈
zn – x∗, Sxn – Szn

〉
,

φ
(
x∗, zn

) ≤ φ
(
x∗, xn

)
– φ(zn, xn) – λn

〈
zn – x∗, Sxn – Szn

〉
. (.)

Since un = ϒtn yn for all n ∈ N ∪ {} and ϒtn is relatively nonexpansive, we have

φ
(
x∗, un

)
= φ

(
x∗,ϒtn yn

)

≤ φ
(
x∗, yn

)
. (.)

Now, we estimate

φ
(
x∗, yn

)
= φ

(
x∗, J–(θnJxn + ( – θn)JTzn

))

=
∥∥x∗∥∥ – 

〈
x∗, θnJxn + ( – θn)JTzn

〉
+

∥∥θnJxn + ( – θn)JTzn
∥∥

≤ ∥∥x∗∥∥ – θn
〈
x∗, Jxn

〉
– ( – θn)

〈
x∗, JTzn

〉
+ θn‖xn‖ + ( – θn)‖Tzn‖

≤ θnφ
(
x∗, xn

)
+ ( – θn)φ

(
x∗, Tzn

)

≤ θnφ
(
x∗, xn

)
+ ( – θn)φ

(
x∗, Tzn

)

≤ θnφ
(
x∗, xn

)
+ ( – θn)φ

(
x∗, zn

)
. (.)

By (.), (.), and (.) we observe that

φ
(
x∗, un

) ≤ φ
(
x∗, xn

)
– ( – θn)φ(zn, xn) – ( – θn)λn

〈
zn – x∗, Sxn – Szn

〉
.

This implies that x∗ ∈ Pn. Therefore, � ⊂ Pn for all n ∈ N ∪ {}.
Next, we show by induction that � ⊂ Pn ∩ Qn for all n ∈ N ∪ {}. Since Q = K , we

have � ⊂ P ∩ Q. Suppose that � ⊂ Pk ∩ Qk for some k ∈ N ∪ {}. Then there exists
xk+ ∈ Pk ∩ Qk such that xk+ =

∏
Pk∩Qk

x. From the definition of xk+ we have, for all z ∈
Pk ∩ Qk ,

〈xk+ – z, Jx – Jxk+〉 ≥ .

Since � ⊂ Pk ∩ Qk , we have

〈xk+ – z, Jx – Jxk+〉 ≥  for all z ∈ �,

and hence z ∈ Qk+. So, we have � ⊂ Qk+. Therefore, we have � ⊂ Pk+ ∩ Qk+.
Thus, we have that � ⊂ Pn ∩ Qn for all n ∈ N ∪ {}. This means that {xn} is well-defined.
Further, we show that the sequence {xn} converges strongly to x∗ =

∏
� x ∈ �.
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By the definition of Qn we get xn =
∏

Qn x. Using xn =
∏

Qn x and Lemma ., we have,
for all x∗ ∈ � ⊂ Qn,

φ(xn, x) = φ

(∏

Qn

x, x
)

≤ φ
(
x∗, x

)
– φ

(
x∗,

∏

Qn

x
)

≤ φ
(
x∗, x

)
.

Thus {φ(xn, x)} is bounded. Therefore {xn} is bounded.
Letting x∗ ∈ �, we have

‖Sxn‖ ≤ ∥∥Sxn – Sx∗∥∥ +
∥∥Sx∗∥∥

≤ 
γ

∥∥xn – x∗∥∥ +
∥∥Sx∗∥∥.

So, {Sxn} is bounded.
From φ(zn, J–(Jxn – λnSxn)) ≤ φ(x∗, J–(Jxn – λnSxn)) we have

 ≥ ‖zn‖ – 〈zn, Jxn – λnSxn〉 –
∥∥x∗∥∥ + 

〈
x∗, Jxn – λnSxn

〉

≥ ‖zn‖ – ‖zn‖
(‖xn + λn‖‖Sxn‖

)
–

∥∥x∗∥∥ – 
∥∥x∗∥∥(‖xn‖ + λn‖Sxn‖

)
.

Denote M = sup{‖xn‖,‖Sxn‖}. Now, we have

‖zn‖ – M‖zn‖ –
∥∥x∗∥∥ – M

∥∥x∗∥∥ ≤  for all n ∈ N ∪ {}.

Thus {zn} is bounded.
Since xn+ =

∏
Pn∩Qn x ∈ Pn ∩ Qn ⊂ Qn and xn =

∏
Qn x, from the definition of

∏
Qn we

have

φ(xn, x) ≤ φ(xn+, x) for all n ∈ N ∪ {}.

Thus {φ(xn, x)} is nondecreasing. So, the limit of {φ(xn, x)} exists. By the construction of
Qn we have Qm ⊂ Qn and xm =

∏
Qm x ∈ Qn for m ≥ n. It follows that

φ(xm, xn) = φ

(
xm,

∏

Qn

x
)

≤ φ(xm, x) – φ

(∏

Qn

x, x
)

= φ(xm, x) – φ(xn, x). (.)

Letting m, n → ∞, we have φ(xm, xn) → , and hence, applying Lemma ., we have
‖xm – xn‖ →  as m, n → ∞. Thus {xn} is a Cauchy sequence. Since X is a Banach space
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and K is closed and convex, we can assume that xn → x∗ ∈ K as n → ∞. From (.) we
get

φ(xn+, xn) ≤ φ(xn+, x) – φ(xn, x) for all n ∈ N ∪ {},

which implies

lim
n→∞φ(xn+, xn) = . (.)

Using Lemma ., we get

lim
n→∞‖xn+ – xn‖ = . (.)

By Lemma . and xn+ ∈ Pn we estimate

φ(xn+, un) ≤ φ(xn+, xn) – φ(zn, xn) – λn〈zn – xn+, Sxn – Szn〉
= φ(xn+, xn) – φ(zn, xn) – λn〈zn – xn, Sxn – Szn〉

– λn〈xn – xn+, Sxn – Szn〉
≤ φ(xn+, xn) – φ(zn, xn) + λn‖zn – xn‖‖Sxn – Szn‖

+ λn‖xn – xn+‖‖Sxn – Szn‖

≤ φ(xn+, xn) +
(

λn

γ
– c

)
‖xn – zn‖ +

λn

γ
‖xn – xn+‖‖xn – zn‖.

Using (.), (.), and the inequality supn∈N λn < c
 γ

 , we have

lim
n→∞

(
c –

λn

γ

)
‖xn – zn‖ = lim

n→∞φ(xn+, un) = ,

which implies

lim
n→∞‖xn – zn‖ = lim

n→∞‖xn+ – un‖ = . (.)

Using (.) and (.), we have

lim
n→∞‖xn – un‖ = . (.)

The uniform continuity of J implies that

lim
n→∞‖Jxn – Jun‖ = . (.)
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Using the property of φ and Lemma ., we have, for all x∗ ∈ �,

φ
(
x∗, yn

)
= φ

(
x∗, J–(θnJxn + ( – θn)JTzn

))

=
∥∥x∗∥∥ – 

〈
x∗, θnJxn + ( – θn)JTzn

〉
+

∥∥θnJxn + ( – θn)JTzn
∥∥

≤ ∥∥x∗∥∥ – θn
〈
x∗, Jxn

〉
– ( – θn)

〈
x∗, JTzn

〉
+ θn‖Jxn‖

+ ( – θn)‖JTzn‖ – θn( – θn)g
(‖Jxn – JTzn‖

)

= θnφ
(
x∗, xn

)
+ ( – θn)φ

(
x∗, zn

)
– θn( – θn)g

(‖Jxn – JTzn‖
)
. (.)

Next, we estimate

φ
(
x∗, zn

)
= φ

(
x∗,

∏
J–(Jxn – λnSxn)

)

≤ φ
(
x∗, J–(Jxn – λnSxn)

)

= F
(
x∗, Jxn – λnSxn

)

≤ F
(
x∗, (Jxn – λnSxn) + λnSxn

)
– 

〈
J–(Jxn – λnSxn) – p,λnSxn

〉

= F
(
x∗, Jxn

)
– λn

〈
J–(Jxn – λnSxn) – x∗, Sxn

〉

= φ
(
x∗, xn

)
– λn

〈
xn – x∗, Sxn

〉
– λn

〈
J–(Jxn – λnSxn) – xn, Sxn

〉

≤ φ
(
x∗, xn

)
– λn

〈
xn – x∗, Sxn – Sx∗〉 – λn

〈
xn – x∗, Sx∗〉

+ 
〈
J–(Jxn – λnSxn) – xn, Sxn

〉

≤ φ
(
x∗, xn

)
– λnγ

∥∥Sxn – Sx∗∥∥ + 
〈
J–(Jxn – λnSxn) – xn, Sxn

〉
.

From this, using Lemma . and the inequality ‖Sx‖ ≤ ‖Sx – Sx∗‖ for x ∈ K and x∗ ∈ �,
we have

φ
(
x∗, zn

) ≤ φ
(
x∗, xn

)
– λnγ

∥∥Sxn – Sx∗∥∥ +

c


λ

n
∥∥Sxn – Sx∗∥∥

= φ
(
x∗, xn

)
+ λn

(

c


λn – γ

)∥∥Sxn – Sx∗∥∥. (.)

From (.) and (.) we have

φ
(
x∗, yn

) ≤ φ
(
x∗, xn

)
+ ( – θn)λn

(

c


λn – γ

)∥∥Sxn – Sx∗∥∥

– θn( – θn)g
(‖Jxn – JTzn‖

)
. (.)

Using (.) in (.), we have

φ
(
x∗, un

) ≤ φ
(
x∗, xn

)
+ ( – θn)λn

(

c


λn – γ

)∥∥Sxn – Sx∗∥∥

– θn( – θn)g
(‖Jxn – JTzn‖

)
. (.)
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Since λn ≤ c
 γ

 , we get

θn( – θn)g
(‖Jxn – JTzn‖

) ≤ φ
(
x∗, xn

)
– φ

(
x∗, un

)
. (.)

Now,

φ
(
x∗, xn

)
– φ

(
x∗, un

)
= ‖xn‖ – ‖un‖ – 

〈
x∗, Jxn – Jun

〉

≤ ‖xn – un‖
(‖xn‖ + ‖un‖

)
+ 

∥∥x∗∥∥(‖Jxn – Jun‖
)
.

It follows from (.) and (.) that

φ
(
x∗, xn

)
– φ

(
x∗, un

) →  as n → ∞. (.)

Thus, from (.) and (.) we have

g
(‖Jxn – JTzn‖

) →  as n → ∞.

Using Lemma ., we obtain

‖Jxn – JTzn‖ →  as n → ∞.

Since J– is uniformly norm-to-norm continuous, we have

‖xn – Tzn‖ →  as n → ∞. (.)

From (.) we have

( – θn)λn

(
γ –


c


λn

)∥∥Sxn – Sx∗∥∥ ≤ φ
(
x∗, xn

)
– φ

(
x∗, un

)
,

which implies that

lim
n→∞

∥∥Sxn – Sx∗∥∥ = . (.)

Using Lemmas . and . and (.), we estimate

φ(xn, zn) = φ

(
xn,

∏

K

J–(Jxn – λnSxn)
)

≤ φ
(
xn, J–(Jxn – λnSxn)

)

= F(xn, Jxn – λnSxn)

≤ F
(
xn, (Jxn – λnSxn) + λnSxn

)
– 

〈
J–(Jxn – λnSxn) – xn,λnSxn

〉

= φ(xn, xn) + 
〈
J–(Jxn – λnSxn) – xn, –λnSxn

〉

= 
〈
J–(Jxn – λnSxn) – xn, –λnSxn

〉

≤ 
∥∥J–(Jxn – λnSxn) – J–Jxn

∥∥‖λnSxn‖. (.)
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By Lemma ., using the inequality ‖Sx‖ ≤ ‖Sx – Sx∗‖ for x ∈ K , x∗ ∈ �, we have

φ(xn, zn) ≤ 
c

γ

∥∥Sxn – Sx∗∥∥.

It follows from (.) and Lemma . that

lim
n→∞‖xn – zn‖ = . (.)

Thus zn → x∗ as n → ∞.
Since un = ϒtn yn, using Lemma . and (.), we get

φ(un, yn) = φ(ϒtn yn, yn)

= φ
(
x∗, yn

)
– φ

(
x∗, un

)

≤ θnφ
(
x∗, xn

)
+ ( – θn)φ

(
x∗, zn

)
– φ

(
x∗, un

)

≤ θnφ
(
x∗, xn

)

+ ( – θn)
[
φ
(
x∗, xn

)
+ λn

(

c


λn – γ

)∥∥Sxn – Sx∗∥∥
]

– φ
(
x∗, un

)

≤ φ
(
x∗, xn

)
+ ( – θn)λn

(

c


λn – γ

)∥∥Sxn – Sx∗∥∥ – φ
(
x∗, un

)
.

From this, using (.) and the restrictions on the sequences {θn} and {λn}, we get

lim
n→∞φ(un, yn) = .

By Lemma .,

lim
n→∞‖un – yn‖ = .

Using the uniform continuity of J , we have

lim
n→∞‖Jun – Jyn‖ = . (.)

From (.) and (.) we get

‖Tzn – zn‖ ≤ ‖Tzn – xn‖ + ‖zn – xn‖ →  as n → ∞,

which implies that x∗ ∈ Fix(T).
Further, we show that x∗ ∈ Sol(VIP(.)). Since {xn} is bounded, there exists a subse-

quence {xnk } of {xn} that converges weakly to x∗. Define the mapping M ⊂ X × X∗ as
follows:

M(z) =

{
S(z) + NK (z) if z ∈ K ,
∅ if z /∈ K ,
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where NK (z) := {w ∈ X : 〈z – x, w〉 ≥ ,∀x ∈ K} is the normal cone to K at z ∈ K . By
Lemma ., M is a maximal monotone operator, and M–() = VI(K , S). Let (z, w) ∈
graph(M). Since w ∈ M(z) = S(z) + NK (z), we get w – Sz ∈ NK (z). Since zn ∈ K , we obtain

〈z – znk , w – Sz〉 ≥ . (.)

On the other hand, znk =
∏

K J–(Jxnk – λnk Sxnk ), and using Lemma ., we obtain

〈
z – znk , Jznk – (Jxnk – λnk Sxnk )

〉 ≤ ,

and thus
〈
z – znk ,

Jxnk – Jznk

λnk

– Sxnk

〉
≤ . (.)

Therefore, it follows from the monotonicity of S, (.), and (.) that

〈z – znk , w〉 ≥ 〈z – znk , Sz〉

≥ 〈z – znk , Sz〉 +
〈
z – znk ,

Jxnk – Jznk

λnk

– Sxnk

〉

=
〈
z – znk , Sz – Sxnk +

Jxnk – Jznk

λnk

〉

= 〈z – znk , Sz – Sznk 〉 + 〈z – znk , Sznk – Sxnk 〉 +
〈
z – znk ,

Jxnk – Jznk

λnk

〉

≥ –‖z – znk ‖‖Sznk – Sxnk ‖ – ‖z – znk ‖
∥∥∥∥

Jxnk – Jznk

a

∥∥∥∥

≥ –

γ

‖z – znk ‖‖znk – xnk ‖ – ‖z – znk ‖
‖Jxnk – Jznk ‖

a

≥ –ρ

(

γ

‖znk – xnk ‖ +
‖Jxnk – Jznk ‖

a

)
,

where ρ = supk∈N {‖z – znk ‖} and a < lim supλn. Taking the limit as k → ∞ and using the
fact that {‖z – znk ‖}k∈N is bounded, we see that 〈z – x∗, w〉 ≥ . Thus x∗ ∈ Sol(VIP(.)).

Next, we prove that x∗ ∈ Sol(GEP(.)).
The relation un = ϒtn yn implies that

G(un, y) + ξ (y, un) – ξ (un, un) +

tn

〈y – un, Jun – Jyn〉 ≥  for all y ∈ K .

Let yp = ( – p)x∗ + py for p ∈ (, ]. Since y ∈ K and x∗ ∈ K , we get yp ∈ K , and hence

G(un, yp) + ξ (yp, un) – ξ (un, un) +

tn

〈yp – un, Jun – Jyn〉 ≥ .

Using (.) and lim infn→∞ tn > , we have

lim
n→∞

‖Jyn – Jϒtn yn‖
tn

= .
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Further, since ξ is weakly continuous and G is weakly lower semicontinuous in the second
argument, letting n → ∞, we get

G
(
x∗, yp

)
+ ξ

(
yp, x∗) – ξ

(
x∗, x∗) ≥ ,

ξ
(
yp, x∗) – ξ

(
x∗, x∗) ≥ G

(
yp, x∗).

Now, for p > ,

 = G(yp, yp)

≤ pG(yp, y) + ( – p)G
(
yp, x∗)

≤ pG(yp, y) + ( – p)
[
ξ
(
yp, x∗) – ξ

(
x∗, x∗)]

≤ pG(yp, y) + ( – p)p
[
ξ
(
y, x∗) – ξ

(
x∗, x∗)]

≤ p
[
G(yp, y) + ( – p)

(
ξ
(
y, x∗) – ξ

(
x∗, x∗))].

Dividing by p >  and letting p → +, we have

G
(
x∗, y

)
+ ξ

(
y, x∗) – ξ

(
x∗, x∗) ≥ .

Thus, x∗ ∈ Sol(GEP(.)), and hence x∗ ∈ �. �

Finally, we have the following consequences of Theorem ..

Corollary . Let X be a -uniformly convex and uniformly smooth Banach space, and
let K be a nonempty closed and convex subset of X. Let S : K → X∗ be a γ -inverse strongly
monotone mapping with constant γ ∈ (, ), let G : K × K → R be a nonlinear mapping
satisfying Assumption .(i)-(iv), and let T : K → K be a relatively nonexpansive mapping
such that � := Sol(EP(.)) ∩ Sol(VIP(.)) ∩ Fix(T) �= ∅. Let the iterative sequence {xn} be
generated as follows:

x = x ∈ K ,

zn =
∏

K

J–(Jxn – λnSxn),

yn = J–(θnJxn + ( – θn)JTzn
)
,

un ∈ K

such that

G(un, y) +

tn

〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ K ,

Pn =
{

z ∈ K : φ(z, un) ≤ φ(z, xn) – ( – θn)φ(zn, xn) – ( – θn)λn〈zn – z, Sxn – Szn〉
}

,

Qn =
{

z ∈ K : 〈xn – z, Jx – Jxn〉 ≥ 
}

,

xn+ =
∏

Pn∩Qn

x, ∀n ∈ N ∪ {},
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where J is the normalized duality mapping on X, tn ∈ (,∞), and {λn} and {θn} are the
sequences in (,∞) and (,) satisfying the following:

(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < c
 γ

 , where c is the constant in Lemma .;
(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < .

Then, {xn} converges strongly to
∏

� x.

Proof The proof follows by taking ξ =  in Theorem .. �

Corollary . Let X be a -uniformly convex and uniformly smooth Banach space, and
let K be a nonempty closed and convex subset of X. Let S : K → X∗ be a γ -inverse strongly
monotone mapping with constant γ ∈ (, ), and let T : K → K be a relatively nonexpan-
sive mapping such that � := Sol(VIP(.)) ∩ Fix(T) �= ∅. Let the iterative sequence {xn} be
generated as follows:

x = x ∈ K ,

zn =
∏

K

J–(Jxn – λnSxn),

yn = J–(θnJxn + ( – θn)JTzn
)
,

Pn =
{

z ∈ K : φ(z, un) ≤ φ(z, xn) – ( – θn)φ(zn, xn) – ( – θn)λn〈zn – z, Sxn – Szn〉
}

,

Qn =
{

z ∈ K : 〈xn – z, Jx – Jxn〉 ≥ 
}

,

xn+ =
∏

Pn∩Qn

x, ∀n ∈ N ∪ {},

where J is the normalized duality mapping on X, and {λn} and {θn} are sequences in (,∞)
and (, ) satisfying the following:

(i)  < lim infn→∞ λn ≤ lim supn→∞ λn < c
 γ

 , where c is the constant in Lemma .;
(ii)  < lim infn→∞ θn ≤ lim supn→∞ θn < .

Then, {xn} converges strongly to
∏

� x.

Proof The proof follows by taking ξ =  and G =  in Theorem .. �

4 Conclusion
In this paper, we propose an iterative algorithm to find the common solution of the gener-
alized equilibrium problem, variational inequality problem, and fixed point problem for a
relatively nonexpansive mapping in a real Banach space. Further, using the hybrid projec-
tion method, we proved the strong convergence of the sequences generated by the iterative
algorithm. Finally, we derived some consequences from our main result. The result pre-
sented in this paper is an improvement and extension of the corresponding results of [,
, –].
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