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Abstract
In this paper, we study some new retarded Volterra-Fredholm type integral
inequalities on time scales, which provide explicit bounds on unknown functions.
These inequalities generalize and extend some known inequalities and can be used
as tools in the qualitative theory of certain classes of retarded dynamic equations on
time scales. Some applications are also presented to illustrate the usefulness of our
results.

Keywords: time scale; retarded integral inequality; Volterra-Fredholm type

1 Introduction
In , Hilger introduced the theory of time scales in order to unify and extend the dif-
ference and differential calculus in a consistent way (see []). Since then, more and more
researchers are getting involved in this fast-growing field, for example, [–] and the ref-
erences therein. Among various aspects of the theory, we notice that dynamic inequalities
on time scales is an object of long standing interest [–]. However, to the best of our
knowledge, there are few results dealing with Volterra-Fredholm type integral inequalities
on time scales. Recent results in this direction include the works of Gu and Meng [] and
Meng and Shao [].

The purpose of this paper is to investigate some new retarded Volterra-Fredholm type
integral inequalities on time scales, which not only generalize and extend the results of
[, ] and some known integral inequalities but also provide a handy and effective tool
for the study of qualitative properties of solutions of some complicated Volterra-Fredholm
type dynamic equations.

The paper is organized as follows. In Section , some necessary definition and lemmas
are presented. In Section , some new retarded Volterra-Fredholm type integral inequali-
ties on time scales are investigated. Finally, Section  is devoted to applying our results to
a retarded Volterra-Fredholm type dynamic integral equation on time scales.

2 Preliminaries
Throughout this paper, knowledge and understanding of time scales and time scale nota-
tion is assumed. For an excellent introduction to the calculus on time scales, we refer the
reader to [] and [].
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List of abbreviations. In what follows, we always assume that R denotes the set of real
numbers, R+ = [,∞), Z denotes the set of integers, T is an arbitrary time scale (nonempty
closed subset of R), R denotes the set of all regressive and rd-continuous functions, R+ =
{p ∈ R :  + μ(t)p(t) >  for all t ∈ T} and I = [t, T] ∩ T

κ , where t ∈ T
κ , T ∈ T

κ , T >
t. The set Tκ is defined as follows: If T has a maximum m and m is left-scattered, then
T

κ = T – {m}. Otherwise T
κ = T. The graininess function μ : T → [,∞) is defined by

μ(t) := σ (t) – t, the forward jump operator σ : T → T by σ (t) := inf{s ∈ T : s > t}, and the
“circle plus” addition ⊕ is defined by (p ⊕ q)(t) := p(t) + q(t) + μ(t)p(t)q(t) for all t ∈ T

κ .
The following lemmas and definition are useful in the proof of the main results of this

paper.

Lemma . ([, Theorem .]) Assume that f : T→R is a function and let t ∈ T. If f is
differentiable at t, then

f
(
σ (t)

)
= f (t) + μ(t)f �(t).

Lemma . ([, Theorem .]) Assume that ν : T → R is a strictly increasing function
and T̃ := ν(T) is a time scale. If f : T → R is an rd-continuous function and ν is differen-
tiable with rd-continuous derivative, then for a, b ∈ T,

∫ b

a
f (t)ν�(t)�t =

∫ ν(b)

ν(a)

(
f ◦ ν–)(s)�̃s.

Lemma . Let α : I → I be a continuous and strictly increasing function such that α(t) ≤
t, and α� is rd-continuous. Assume that f : I →R is an rd-continuous function, then

g(t) =
∫ α(t)

α(t)
f (s)�s, t ∈ I, (.)

implies

g�(t) = f
(
α(t)

)
α�(t), t ∈ I. (.)

Proof From (.), we get, for any t ∈ I ,

g(t) =
∫ α(t)

α(t)
f (s)�s =

∫ α(t)

α(t)
f
(
α
(
α–(s)

))
�s.

By Lemma ., we obtain

g(t) =
∫ t

t

f
(
α(s)

)
α�(s)�s, t ∈ I,

so we get

g�(t) = f
(
α(t)

)
α�(t). �
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Lemma . ([, Theorem .]) Suppose that, for each ε > , there exists a neighborhood
U of t, independent of τ ∈ [t,σ (t)], such that

∣∣w
(
σ (t), τ

)
– w(s, τ ) – w�

t (t, τ )
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣, s ∈ U , (.)

where w : T × T
κ → R+ is continuous at (t, t), t ∈ T

κ with t > t, and w�
t (t, ·) are rd-

continuous on [t,σ (t)]. Then

g(t) :=
∫ t

t

w(t, τ )�τ

implies

g�(t) =
∫ t

t

w�
t (t, τ )�τ + w

(
σ (t), t

)
, t ∈ T

κ . (.)

Lemma . ([, Theorem .]) Suppose that y and f are rd-continuous functions and
p ∈R+. Then

y�(t) ≤ p(t)y(t) + f (t) for all t ∈ T

implies

y(t) ≤ y(t)ep(t, t) +
∫ t

t

ep
(
t,σ (τ )

)
f (τ )�τ for all t ∈ T.

Definition . A function x : I → I is said to belong to the class ϒ if
() x is continuous and strictly increasing, and
() x(t) ≤ t and x� is rd-continuous.

3 Main results
Theorem . Assume that α ∈ ϒ and u, a, b, f, f, g : I →R+ are rd-continuous functions,
a is nondecreasing, λ ≥  is a constant, α�(t) ≥ , b�(t) ≥ , μ(t)A(t) < . Suppose that u
satisfies

u(t) ≤ a(t) + b(t)
∫ α(t)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s

+ λb(T)
∫ α(T)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I. (.)

If

β := eB⊕C(T , t) <  +

λ

, (.)

then

u(t) ≤ a(T)
λ +  – βλ

eB⊕C(t, t), t ∈ I, (.)



Liu Journal of Inequalities and Applications  (2017) 2017:293 Page 4 of 15

where we use the convention that 
 = +∞,

A(t) := b�(t)
∫ α(σ (t))

α(t)

[
f(s) + f(s)

∫ s

α(t)
g(τ )�τ

]
�s, B(t) :=

A(t)
 – μ(t)A(t)

, (.)

C(t) := b(t)
[

f
(
α(t)

)
+ f

(
α(t)

)∫ α(t)

α(t)
g(τ )�τ

]
α�(t). (.)

Proof Denote

z(t) := a(T) + b(t)
∫ α(t)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s

+ λb(T)
∫ α(T)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I. (.)

Then z is nondecreasing on I ,

u(t) ≤ z(t), t ∈ I, (.)

and

z(t) = a(T) + λb(T)
∫ α(T)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s. (.)

From Lemma . and (.)-(.), we have

z�(t) = b�(t)
∫ α(σ (t))

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s

+ b(t)
[

f
(
α(t)

)
u
(
α(t)

)
+ f

(
α(t)

)∫ α(t)

α(t)
g(τ )u(τ )�τ

]
α�(t)

≤ b�(t)
∫ α(σ (t))

α(t)

[
f(s)z(s) + f(s)

∫ s

α(t)
g(τ )z(τ )�τ

]
�s

+ b(t)
[

f
(
α(t)

)
z
(
α(t)

)
+ f

(
α(t)

)∫ α(t)

α(t)
g(τ )z(τ )�τ

]
α�(t)

≤ z
(
σ (t)

)
b�(t)

∫ α(σ (t))

α(t)

[
f(s) + f(s)

∫ s

α(t)
g(τ )�τ

]
�s

+ z(t)b(t)
[

f
(
α(t)

)
+ f

(
α(t)

)∫ α(t)

α(t)
g(τ )�τ

]
α�(t)

= A(t)z
(
σ (t)

)
+ C(t)z(t), t ∈ I. (.)

Note that from (.) we get

A(t) =
B(t)

 + μ(t)B(t)
,
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and from (.) we have

z�(t) ≤ B(t)
 + μ(t)B(t)

z
(
σ (t)

)
+ C(t)z(t)

=
B(t)

 + μ(t)B(t)
[
z(t) + μ(t)z�(t)

]
+ C(t)z(t),

which yields


 + μ(t)B(t)

z�(t) ≤
[

B(t)
 + μ(t)B(t)

+ C(t)
]

z(t),

i.e.,

z�(t) ≤ [
B(t) +

(
 + μ(t)B(t)

)
C(t)

]
z(t)

= (B ⊕ C)(t)z(t). (.)

Note that z is rd-continuous and B ⊕ C ∈R+, from Lemma . and (.), we obtain

z(t) ≤ z(t)eB⊕C(t, t), t ∈ I. (.)

From (.) and (.), we get

(
z(t) – a(T)

)λ + 
λ

+ a(T) = z(T),

i.e.,

λ + 
λ

z(t) –

λ

a(T) = z(T). (.)

From (.), (.) and (.), we have

λ + 
λ

z(t) –

λ

a(T) = z(T) ≤ z(t)eB⊕C(T , t) = z(t)β . (.)

In view of (.) and (.), we get

z(t) ≤ a(T)
λ +  – βλ

. (.)

Substituting (.) into (.), we obtain

z(t) ≤ a(T)
λ +  – βλ

eB⊕C(t, t), t ∈ I.

Noting u(t) ≤ z(t), we get the desired inequality (.). This completes the proof. �

If we let λ = 
b(T) in Theorem ., then we obtain the following corollary.
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Corollary . Assume that α, u, a, b, f, f, g , A, B, C are the same as in Theorem . and
b(T) 
= . Suppose that u satisfies

u(t) ≤ a(t) + b(t)
∫ α(t)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s

+
∫ α(T)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I.

If

β := eB⊕C(T , t) <  + b(T),

then

u(t) ≤ a(T)b(T)
 + b(T) – β

eB⊕C(t, t), t ∈ I.

Remark . If we take a(t) ≡ u, b(t) ≡ , α(t) = t and λ = , then Theorem . reduces
to [, Theorem ]. If we take a(t) ≡ u, b(t) ≡ , α(t) = t, f(t) = f(t) and λ = , then
Theorem . reduces to [, Theorem .].

Theorem . Assume that α, u, a, b, λ are the same as in Theorem . and μ(t)Ã(t) < .
Let v(t, s) and w(t, s) be defined as in Lemma . such that v�

t (t, s) ≥ , w�
t (t, s) ≥  for t ≥ s

and (.) holds. Suppose that u satisfies

u(t) ≤ a(t) + b(t)
∫ t

t

[
v(t, s)u(s) + w(t, s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s

+ λb(T)
∫ T

t

[
v(T , s)u(s) + w(T , s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I. (.)

If

β := eB̃⊕C̃(T , t) <  +

λ

, (.)

then

u(t) ≤ a(T)
λ +  – βλ

eB̃⊕C̃(t, t), t ∈ I, (.)

where

Ã(t) := b�(t)
∫ σ (t)

t

[
v
(
σ (t), s

)
+ w

(
σ (t), s

)∫ α(s)

α(t)
g(τ )�τ

]
�s,

B̃(t) :=
Ã(t)

 – μ(t)Ã(t)
,

(.)

C̃(t) := b(t)
[

v
(
σ (t), t

)
+ w

(
σ (t), t

)∫ α(t)

α(t)
g(τ )�τ

+
∫ t

t

[
v�

t (t, s) + w�
t (t, s)

∫ α(s)

α(t)
g(τ )�τ

]
�s

]
.

(.)
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Proof Denote

z(t) := a(T) + b(t)
∫ t

t

[
v(t, s)u(s) + w(t, s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s

+ λb(T)
∫ T

t

[
v(t, T)u(s) + w(T , s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I. (.)

Then z is nondecreasing on I ,

u(t) ≤ z(t), t ∈ I, (.)

and

z(t) = a(T) + λb(T)
∫ T

t

[
v(T , s)u(s) + w(T , s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s. (.)

From Lemma . and (.)-(.), we have

z�(t) = b�(t)
∫ σ (t)

t

[
v
(
σ (t), s

)
u(s) + w

(
σ (t), s

)∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s

+ b(t)
[

v
(
σ (t), t

)
u(t) + w

(
σ (t), t

)∫ α(t)

α(t)
g(τ )u(τ )�τ

+
∫ t

t

[
v�

t (t, s)u(s) + w�
t (t, s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s

]

≤ b�(t)
∫ σ (t)

t

[
v
(
σ (t), s

)
z(s) + w

(
σ (t), s

)∫ α(s)

α(t)
g(τ )z(τ )�τ

]
�s

+ b(t)
[

v
(
σ (t), t

)
z(t) + w

(
σ (t), t

)∫ α(t)

α(t)
g(τ )z(τ )�τ

+
∫ t

t

[
v�

t (t, s)z(s) + w�
t (t, s)

∫ α(s)

α(t)
g(τ )z(τ )�τ

]
�s

]

≤ z
(
σ (t)

)
b�(t)

∫ σ (t)

t

[
v
(
σ (t), s

)
+ w

(
σ (t), s

)∫ α(s)

α(t)
g(τ )�τ

]
�s

+ z(t)b(t)
[

v
(
σ (t), t

)
+ w

(
σ (t), t

)∫ α(t)

α(t)
g(τ )�τ

+
∫ t

t

[
v�

t (t, s) + w�
t (t, s)

∫ α(s)

α(t)
g(τ )�τ

]
�s

]

= Ã(t)z
(
σ (t)

)
+ C̃(t)z(t), t ∈ I. (.)

Similar to the proof of Theorem ., we get (.). This completes the proof. �

If we let λ = 
b(T) in Theorem ., then we obtain the following corollary.
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Corollary . Assume that u, a, b, v, w, Ã, B̃, C̃ are the same as in Theorem . and
b(T) 
= . Suppose that u satisfies

u(t) ≤ a(t) + b(t)
∫ t

t

[
v(t, s)u(s) + w(t, s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s

+
∫ T

t

[
v(T , s)u(s) + w(T , s)

∫ α(s)

α(t)
g(τ )u(τ )�τ

]
�s, t ∈ I.

If

β := eB̃⊕C̃(T , t) <  + b(T),

then

u(t) ≤ a(T)
λ +  – βλ

eB̃⊕C̃(t, t), t ∈ I.

Theorem . Assume that u, a, f , λ are the same as in Theorem .. Let g(t, s) be defined
as in Lemma . such that g�

t (t, s) ≥  for t ≥ s and (.) holds. Suppose that u satisfies

u(t) ≤ a(t) +
∫ t

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s

+ λ

∫ T

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s, t ∈ I. (.)

If

β :=
∫ T

t

f (s)eA(s, t)�s <

λ

, (.)

then

u(t) ≤ a(T)
 – βλ

[
 +

∫ t

t

f (s)eA(s, t)�s
]

, t ∈ I, (.)

where

A(t) := f (t) + g
(
σ (t), t

)
+

∫ t

t

g�
t (t, τ )�τ . (.)

Proof Denote

z(t) := a(T) +
∫ t

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s

+ λ

∫ T

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s, t ∈ I. (.)

Then z is nondecreasing on I ,

u(t) ≤ z(t), t ∈ I, (.)
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and

z(t) = a(T) + λ

∫ T

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s. (.)

From Lemma . and (.)-(.), we get

z�(t) = f (t)u(t) + f (t)
∫ t

t

g(t, τ )u(τ )�τ

≤ f (t)
[

z(t) +
∫ t

t

g(t, τ )z(τ )�τ

]
, t ∈ I. (.)

Let

V (t) = z(t) +
∫ t

t

g(t, τ )z(τ )�τ , t ∈ I. (.)

Obviously,

V (t) = z(t), z(t) ≤ V (t), z�(t) ≤ f (t)V (t). (.)

From Lemma ., (.) and (.), we obtain

V �(t) = z�(t) + g
(
σ (t), t

)
z(t) +

∫ t

t

g�
t (t, τ )z(τ )�τ

≤
[

f (t) + g
(
σ (t), t

)
+

∫ t

t

g�
t (t, τ )�τ

]
V (t)

= A(t)V (t), t ∈ I.

It is easy to see that A ∈R+. Therefore, from Lemma . and the above inequality, we have

V (t) ≤ V (t)eA(t, t) = z(t)eA(t, t), t ∈ I. (.)

Combining (.) and (.), we get

z�(t) ≤ f (t)z(t)eA(t, t). (.)

Setting t = τ in (.), integrating it from t to t, we easily obtain

z(t) ≤ z(t) + z(t)
∫ t

t

f (s)eA(s, t)�s. (.)

From (.) and (.), we have

(
z(t) – a(T)

)λ + 
λ

+ a(T) = z(T),

i.e.,

λ + 
λ

z(t) –

λ

a(T) = z(T). (.)
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From (.), (.) and (.), we have

λ + 
λ

z(t) –

λ

a(T) = z(T) ≤ z(t) + z(t)
∫ T

t

f (s)eA(s, t)�s = z(t) + z(t)β .

In view of (.), we get

z(t) ≤ a(T)
 – βλ

. (.)

Substituting (.) into (.), we have

z(t) ≤ a(T)
 – βλ

[
 +

∫ t

t

f (s)eA(s, t)�s
]

. (.)

Noting u(t) ≤ z(t), we get the desired inequality (.). This completes the proof. �

If we let λ =  in Theorem ., then we obtain the following corollary.

Corollary . Assume that u, a, f , g and A are the same as in Theorem .. Suppose that
u satisfies

u(t) ≤ a(t) +
∫ t

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s

+
∫ T

t

f (s)
[

u(s) +
∫ s

t

g(s, τ )u(τ )�τ

]
�s, t ∈ I.

If

β :=
∫ T

t

f (s)eA(s, t)�s < ,

then

u(t) ≤ a(T)
 – β

[
 +

∫ t

t

f (s)eA(s, t)�s
]

, t ∈ I.

Remark . If we take a(t) ≡ u, g(s, t) = g(t) and λ = , then Theorem . reduces to
[, Theorem ]. If we take T = R, a(t) ≡ u and λ = , then Theorem . reduces to [,
Theorem . (a)]. If we take T = Z, a(t) ≡ u and λ = , then Theorem . reduces to [,
Theorem . (c)].

4 Applications
In this section, we will present some simple applications for our results.
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Example . Consider the following retarded Volterra-Fredholm type dynamic integral
equation on time scales:

u(t) = a(t) + b(t)
∫ α(t)

α(t)
F
(

s, u(s),
∫ s

α(t)
H

(
τ , u(τ )

)
�τ

)
�s

+
∫ α(T)

α(t)
F̃
(

s, u(s),
∫ s

α(t)
H̃

(
τ , u(τ )

)
�τ

)
�s, t ∈ I, (.)

where u, a, b : I → R are rd-continuous functions, |a| is nondecreasing, b(T) 
= , α ∈ ϒ ,
F , F̃ : I ×R×R →R and H , H̃ : I ×R→R are continuous functions.

The following theorem gives an estimate for the solutions of Eq. (.).

Theorem . Suppose that the functions F , H , F̃ and H̃ in (.) satisfy the conditions

∣∣F(t, u, v)
∣∣ ≤ f(t)|u| + f(t)|v|, t ∈ I, u, v ∈R, (.)

∣
∣H(t, u)

∣
∣ ≤ g(t)|u|, t ∈ I, u ∈R, (.)

∣∣̃F(t, u, v)
∣∣ ≤ f(t)|u| + f(t)|v|, t ∈ I, u, v ∈R, (.)

∣
∣H̃(t, u)

∣
∣ ≤ g(t)|u|, t ∈ I, u ∈R, (.)

where f, f, g : I →R+ are rd-continuous functions. If

β := eB⊕C(T , t) <  +
∣
∣b(T)

∣
∣,

then all solutions of Eq. (.) satisfy

∣∣u(t)
∣∣ ≤ |a(T)b(T)|

 + |b(T)| – β
eB⊕C(t, t), t ∈ I, (.)

where B(t) and C(t) are defined as in Theorem ..

Proof By (.)-(.), we get

∣∣u(t)
∣∣ ≤ ∣∣a(t)

∣∣ +
∣∣b(t)

∣∣
∫ α(t)

α(t)

∣∣∣
∣F

(
s, u(s),

∫ s

α(t)
H

(
τ , u(τ )

)
�τ

)∣∣∣
∣�s

+
∫ α(T)

α(t)

∣∣
∣∣̃F

(
s, u(s),

∫ s

α(t)
H̃

(
τ , u(τ )

)
�τ

)∣∣
∣∣�s

≤ ∣∣a(t)
∣∣ +

∣∣b(t)
∣∣
∫ α(t)

α(t)

[
f(s)

∣∣u(s)
∣∣ + f(s)

∫ s

α(t)
g(τ )

∣∣u(τ )
∣∣�τ

]
�s

+
∫ α(T)

α(t)

[
f(s)

∣
∣u(s)

∣
∣ + f(s)

∫ s

α(t)
g(τ )

∣
∣u(τ )

∣
∣�τ

]
�s, t ∈ I.

Using Corollary ., we obtain the desired inequality (.). �

The next result deals with the uniqueness of solutions of Eq. (.).
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Theorem . Suppose that the functions F , H , F̃ and H̃ in (.) satisfy the conditions

∣∣F(t, u, v) – F(t, u, v)
∣∣ ≤ f(t)|u – u| + f(t)|v – v|, t ∈ I, u, v ∈R, (.)

∣
∣H(t, u) – H(t, u)

∣
∣ ≤ g(t)|u – u|, t ∈ I, u, u ∈R, (.)

∣
∣̃F(t, u, v) – F̃(t, u, v)

∣
∣ ≤ f(t)|u – u| + f(t)|v – v|, t ∈ I, u, v ∈R, (.)

∣∣H̃(t, u) – H̃(t, u)
∣∣ ≤ g(t)|u – u|, t ∈ I, u, u ∈R, (.)

where f, f, g : I →R+ are rd-continuous functions. If

β := eB⊕C(T , t) <  +
∣
∣b(T)

∣
∣,

then Eq. (.) has at most one solution on I , where B(t) and C(t) are defined as in Theo-
rem ..

Proof Let u(t) and v(t) be two solutions of Eq. (.) on I . From (.) and (.)-(.), we
have

∣
∣u(t) – v(t)

∣
∣

≤ ∣
∣b(t)

∣
∣
∫ α(t)

α(t)

[
f(s)

∣
∣u(s) – v(s)

∣
∣ + f(s)

∫ s

α(t)
g(τ )

∣
∣u(τ ) – v(τ )

∣
∣�τ

]
�s

+
∫ α(T)

α(t)

[
f(s)

∣∣u(s) – v(s)
∣∣ + f(s)

∫ s

α(t)
g(τ )

∣∣u(τ ) – v(τ )
∣∣�τ

]
�s, t ∈ I. (.)

Applying Corollary . to (.), we get |u(t) – v(t)| ≤ , t ∈ I . Therefore u(t) ≡ v(t), that
is, there is at most one solution to Eq. (.). �

Example . Assume T = qN = {, q, q, . . .} with q >  and consider the following
Volterra-Fredholm type q-difference equation:

u(t) = a(t) + b(t)
t∑

s=t

[

f(s)u(s) + f(s)
s∑

τ=t

g(τ )u(τ )

]

+
T∑

s=t

[

f(s)u(s) + f(s)
s∑

τ=t

g(τ )u(τ )

]

, t ∈ I, (.)

where u, a, b, f, f, g : I →R+ are functions, t, T ∈ qN , T > t and I = [t, T] ∩ qN .

Theorem . Assume that a is nondecreasing and (q – )tA(t) < . If

β :=
T/q∏

τ=t

[
 + (q – )τ

(
B(τ ) + C(τ ) + (q – )τB(τ )C(τ )

)]
<  + b(T),

then the solution u(t) of Eq. (.) satisfies the following inequality:

u(t) ≤ a(T)b(T)
 + b(T) – β

t/q∏

τ=t

[
 + (q – )τ

(
B(τ ) + C(τ ) + (q – )τB(τ )C(τ )

)]
, t ∈ I, (.)
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where

A(t) :=
b(qt) – b(t)

(q – )t

qt∑

s=t

[

f(s) + f(s)
s∑

τ=t

g(τ )

]

, B(t) :=
A(t)

 – (q – )tA(t)
,

C(t) := b(t)

[

f(t) + f(t)
t∑

τ=t

g(τ )

]

.

Proof Note that σ (t) = qt, μ(t) = (q – )t for any t ∈ qN and

ep(t, t) =
t/q∏

τ=t

[
 + (q – )τp(τ )

]

for t > t, where t, t, τ ∈ qN . Let u(t) be a solution of Eq. (.), we get

∣
∣u(t)

∣
∣ ≤ a(t) + b(t)

t∑

s=t

[

f(s)
∣
∣u(s)

∣
∣ + f(s)

s∑

τ=t

g(τ )
∣
∣u(τ )

∣
∣
]

+
T∑

s=t

[

f(s)
∣
∣u(s)

∣
∣ + f(s)

s∑

τ=t

g(τ )
∣
∣u(τ )

∣
∣
]

, t ∈ I. (.)

Then a suitable application of Corollary . to (.) yields the desired result (.). �

Example . Assume T = R and consider the following retarded Volterra-Fredholm type
integral equation:

u(t) = a(t) + b(t)
∫ α(t)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ ) dτ

]
ds

+ λ

∫ α(T)

α(t)

[
f(s)u(s) + f(s)

∫ s

α(t)
g(τ )u(τ ) dτ

]
ds, t ∈ I, (.)

where u, a, b,α, f, f, g : I →R+ are continuous functions, t, T ∈R, T > t and I = [t, T].

Theorem . Assume that a is nondecreasing, λ ≥  is a constant, α′(t) > , α(t) ≤ t and
b′(t) ≥ . If

β := exp

(∫ T

t

(A + C)(τ ) dτ

)
<  +

b(T)
λ

,

then the solution u(t) of Eq. (.) satisfies the following inequality:

u(t) ≤ a(T)b(T)
λ + b(T) – βλ

exp

(∫ t

t

(A + C)(τ ) dτ

)
, t ∈ I, (.)
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where we use the convention that 
 = +∞,

A(t) := b′(t)
∫ α(t)

α(t)

[
f(s) + f(s)

∫ s

α(t)
g(τ ) dτ

]
ds and

C(t) := b(t)
[

f
(
α(t)

)
+ f

(
α(t)

)∫ α(t)

α(t)
g(τ ) dτ

]
α′(t).

Proof Note that σ (t) = t, μ(t) =  for any t ∈ R, and

ep(t, t) = exp

(∫ t

t

p(τ ) dτ

)

for t > t. Let u(t) be a solution of Eq. (.), we have

∣∣u(t)
∣∣ ≤ a(t) + b(t)

∫ α(t)

α(t)

[
f(s)

∣∣u(s)
∣∣ + f(s)

∫ s

α(t)
g(τ )

∣∣u(τ )
∣∣dτ

]
ds

+ λ

∫ α(T)

α(t)

[
f(s)

∣∣u(s)
∣∣ + f(s)

∫ s

α(t)
g(τ )

∣∣u(τ )
∣∣dτ

]
ds, t ∈ I. (.)

Then a suitable application of Theorem . to (.) yields the desired result (.). �

5 Conclusions
In this paper we have established some new retarded Volterra-Fredholm type integral in-
equalities on time scales. Unlike some existing results in the literature (e.g., [, ]), the
integral inequalities considered in this paper involve the retarded term, which results in
difficulties in the estimation on the explicit bounds of unknown functions u(t). These in-
equalities generalize and extend some known inequalities and can be used as tools in the
qualitative theory of certain classes of retarded dynamic equations on time scales.
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