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Abstract
In this paper, we study some properties of degenerate Changhee-Genocchi numbers
and polynomials and give some new identities of these polynomials and numbers
which are derived from the generating function. In particular, we provide interesting
identities related to the Changhee-Genocchi polynomials of the second kind and
Changhee-Genocchi numbers of the second kind.
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1 Introduction
Carlitz first introduced the concept of degenerate numbers and polynomials which are
related to Bernoulli and Euler numbers and polynomials (see [, ]). After Carlitz intro-
duced the degenerate polynomials, many researchers studied the degenerate polynomials
associated with special polynomials in various areas (see [–]).

Recently, Kim and Kim gave same new and interesting identities of Changhee numbers
and polynomials which are derived from the non-linear differential equation (see []).
These identities and technical method are very useful for studying some problems which
are related to mathematical physics.

As is known, the Genocchi polynomials are defined by the generating function to be

t
et + 

ext =
∞∑

n=

Gn(x)
tn

n!
(
see [–]

)
. (.)

When x = , Gn = Gn() are called the Genocchi numbers. From (.), we note that

G(x) = , En(x) =
Gn+(x)

n + 
(n ≥ )

(
see []

)
.

Here, En(x) are ordinary Euler polynomials which are given by the generating function to
be


et + 

ext =
∞∑

n=

En(x)
tn

n!
. (.)
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Recently, the Changhee polynomials have been defined by the generating function to be


t + 

( + t)x =
∞∑

n=

Chn(x)
tn

n!
(
see [, –]

)
. (.)

When x = , Chn = Chn() are called the Changhee numbers. From (.), we note that

∞∑

n=

Chn(x)
tn

n!
=


elog(+t) + 

elog(+t)x

=
∞∑

k=

Ek(x)

k!

(
log( + t)

)k

=
∞∑

n=

( n∑

k=

Ek(x)S(n, k)

)
tn

n!
, (.)

where S(n, k) is called the Stirling number of the first kind. From (.), we note that

Chn(x) =
n∑

k=

Ek(x)S(n, k) (n ≥ )
(
see []

)
. (.)

As is well known, the Bernoulli numbers of the second kind are defined by the generating
function to be

t
log( + t)

=
∞∑

n=

bn
tn

n!
(
see[]

)
. (.)

From (.), we note that

(
t

log( + t)

)r

( + t)x– =
∞∑

n=

B(n–r+)
n (x)

tn

n!
. (.)

When x =  and r = , we get

bn = B(n)
n () (n ≥ ),

where B(r)
n (x) are the higher-order Bernoulli polynomials which are defined by the gener-

ating function to be

(
t

et – 

)r

ext =
∞∑

n=

B(r)
n (x)

tn

n!
(
see [, , ]

)
.

In [], Changhee-Genocchi polynomials are defined by the generating function to be

 log( + t)
 + t

( + t)x =
∞∑

n=

CGn(x)
tn

n!
. (.)
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From (.), we note that

 log( + t)
 + t

( + t)x =
 log( + t)
elog(+t) + 

ex log(+t)

=
∞∑

k=

Gk(x)

k!

(
log( + t)

)k

=
∞∑

n=

( n∑

k=

Gk(x)S(n, k)

)
tn

n!
. (.)

By (.) and (.), we get

CGn(x) =
n∑

k=

Gk(x)S(n, k)
(
see [, ]

)
. (.)

Now, we consider the modified Changhee-Genocchi polynomials which are given by

t
 + t

( + t)x =
∞∑

n=

CG∗
n(x)

tn

n!
. (.)

Now, we observe that

t
 + t

( + t)x =
t

elog(+t) + 
ex log(+t)

= t
∞∑

k=

Ek(x)

k!

(
log( + t)

)k

= t
∞∑

n=

( n∑

k=

Ek(x)S(n, k)

)
tn

n!
. (.)

From (.), it is easy to show that CG∗
(x) = . Thus, by (.) and (.), we get

CG∗
n+(x)

n + 
=

n∑

k=

Ek(x)S(n, k) (n ≥ ). (.)

As is known, the degenerate Euler polynomials were defined by Carlitz [, ] to be


( + λt)


λ + 

( + λt)
x
λ =

∞∑

n=

En,λ(x)
tn

n!
. (.)

Now, we consider the following degenerate Genocchi polynomials which are derived
from (.):

t

( + λt)

λ + 

( + λt)
x
λ =

∞∑

n=

Gn,λ(x)
tn

n!
. (.)



Kim et al. Journal of Inequalities and Applications  (2017) 2017:294 Page 4 of 10

Thus, by (.), we get

∞∑

n=

lim
λ→

Gn,λ(x)
tn

n!
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x
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From (.) and (.)

lim
λ→

Gn,λ(x) = Gn(x) (n ≥ ). (.)

It is not difficult to show that
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Therefore, by (.) and (.), for n ≥ , we get

En,λ(x) =


n + 
Gn+,λ(x).

When x = , Gn,λ = Gn,λ() are called the degenerate Genocchi numbers. From (.),
we have
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λ
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(|λ)m
tm
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{
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(
n
l

)
Gl,λ(|λ)n–l

}
tn

n!
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where (x|λ)n = x(x – λ) · · · (x – (n – )λ) (n ≥ ), (x|λ) = .
By comparing the coefficients on the both sides of (.), we have

Gn,λ +
n∑

l=

(
n
l

)
Gl,λ(|λ)n–l =

⎧
⎪⎪⎨

⎪⎪⎩

 if n = ,

δn, if n = ,

 if n > .

Note that G,λ = .
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In [], the degenerate Changhee-Genocchi polynomials are defined by the generating
function to be

λ log( + 
λ

log( + λt))
λ + log( + λt)

(
 + λ– log( + λt)

)x =
∞∑

n=

CGn,λ(x)
tn

n!
. (.)

From (.) and (.), we note that

lim
λ→

CGn,λ(x) = CGn(x) (n ≥ )
(
see []

)
. (.)

The modified degenerate Changhee-Genocchi polynomials are considered by the gen-
erating function to be

tλ
λ + log( + λt)

(
 + λ– log( + λt)

)x =
∞∑

n=

CG∗
n,λ(x)

tn

n!
. (.)

Note that limλ→ CG∗
n,λ(x) = CG∗

n(x) (n ≥ ).
As is known, the degenerate Changhee polynomials are given by


 + λ– log( + λt)

(
 + λ– log( + λt)

)x =
∞∑

n=

Chn,λ(x)
tn

n!
(
see []

)
. (.)

From (.) and (.), we have

Chn,λ(x) =


n + 
CG∗

n+,λ(x) (n ≥ ). (.)

When x = , CG∗
n,λ = CG∗

n,λ() are called the modified degenerate Changhee-Genocchi
numbers. From (.), for x = , we note that

t =
(
 + λ– log( + λt)

)
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l,λ
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l!

)

=

(
 +

∞∑

k=

(–)k–λk–

k
tk

)( ∞∑
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CG∗
l,λ

tl
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)

=
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n=

(
CG∗
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k=

(
n
k

)
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n–k,λ

)
tn

n!
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Comparing the coefficients on the both sides of (.), we have
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n∑
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(
n
k

)
(k – )!(–)k–λk–CG∗

n–k,λ = δn,, (.)

where δn,k is the Kronecker delta symbol. In the viewpoint of (.), we consider the follow-
ing partially degenerate Changhee-Genocchi polynomials which are derived from (.):
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When x = , PCGn,λ = PCGn,λ() are called the partially degenerate Changhee-Genocchi
numbers. Note that limλ→ PCGn,λ(x) = CGn(x) (n ≥ ).

From (.), for x = , we note that

 log( + t) =
(
 + λ– log( + λt)

)
( ∞∑

l=

PCGl,λ
tl

l!

)

=
∞∑

n=

(
PCGn,λ +

n∑
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n
k

)
PCGn–k,λ

)
tn

n!
. (.)

Thus, by (.), we get
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(

n
k

)
PCGn–k,λ = (–)n–(n – )!, (.)

where n = , , , . . . .
In this paper, we study the degenerate Changhee-Genocchi polynomials and numbers of

the second kind which are different from previous degenerate Changhee-Genocchi poly-
nomials and numbers. In addition, we give some new identities from our numbers and
polynomials.

2 Changhee-Genocchi numbers and polynomials of the second kind
First, we consider the Changhee-Genocchi polynomials of the second kind which are given
by the generating function to be

 log( + t)
( + λ log( + t))


λ + 

(
 + λ log( + t)

) x
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n=

Jn,λ(x)
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n!
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Thus, by (.) and (.), we get
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n=

lim
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Jn,λ(x)
tn

n!
=

 log( + t)
 + t

( + t)x =
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CGn(x)
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n!
. (.)

By comparing the coefficient on the both sides, we get

CGn(x) = lim
λ→

Jn,λ(x) (n ≥ ). (.)

When x = , Jn,λ = Jn,λ() are called the Changhee-Genocchi numbers of the second kind.
From (.) and (.), we note that
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=

( ∞∑
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) x
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where S(n, k) is the Stirling number of the first kind. By (.), (.) and (.), we obtain
the following theorem.

Theorem . For n ≥ , we have

Jn,λ(x) =
n–∑

k=

k∑

l=

(–)n–k–n!
(n – k)k!

El,λ(x)S(k, l)

and

Jn,λ(x) =
n–∑

l=

El,λ(x)(l + )S(n, l + ).

By replacing t by et –  in (.), we get
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x
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∞∑
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n!

=
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)
tn

n!
, (.)

where S(n, k) is the Stirling number of the second kind. Therefore, by (.) and (.), we
obtain the following theorem.
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Theorem . For n ≥ , we have

Gn,λ(x) =
n∑

k=

Jk,λ(x)S(n, k).

From (.), we have
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)

=
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+
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+
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)
(|λ)lS(m, l)Jn–m,λ

)
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=
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{
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(
n
m

)
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}
tn

n!
. (.)

It is easy to show that

 log( + t) = 
∞∑

n=

(–)n–

n
tn = 

∞∑

n=

(–)n–(n – )!
tn

n!
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

Jn,λ +
n–∑

m=

m∑

l=

(
n
m

)
(|λ)lS(m, l)Jn–m,λ = (–)n–(n – )!.

The degenerate Changhee polynomials of the second kind are also defined by the gen-
erating function to be


( + λ log( + t)) 

λ + 

(
 + λ log( + t)

) x
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n=
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(
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)
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Now, we observe that
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λ
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=

t
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m=
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=

( ∞∑
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bl
tl

l!
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tm
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)
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n=
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(
n
m

)
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m + 
bn–m

)
tn

n!
. (.)

By comparing the coefficients on the both sides of (.) and (.), we obtain the follow-
ing theorem.

Theorem . For n ≥ , we have

Cn,λ(x) =
n∑

m=

(
n
m

)
Jm+,λ(x)

m + 
bn–m.

From (.), we easily note that

∞∑

n=

Jn,λ(x)
tn

n!
=

 log( + t)
( + λ log( + t))


λ + 

(
 + λ log( + t)

) x
λ

=
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Jl,λ
tl

l!

)( ∞∑
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(
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)

m
λm 

m!
(
log( + t)

)m
)

=
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m=

(x|λ)m
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S(k, m)
tk
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)( ∞∑
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Jl,λ
tl

l!

)

=

( ∞∑
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( k∑

m=

(x|λ)mS(k, m)

)
tk

k!

)( ∞∑

l=

Jl,λ
tl

l!

)

=
∞∑

n=

( n∑

k=

k∑

m=

(
n
k

)
(x|λ)mS(k, m)Jn–k,λ

)
tn
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Therefore, by comparing the coefficients on the both sides of (.), we obtain the follow-
ing theorem.

Theorem . For n ≥ , we have

Jn,λ(x) =
n∑

k=

k∑

m=

(
n
k

)
(x|λ)mS(k, m)Jn–k,λ.

3 Conclusions
Kwon et al. [] introduced the degenerate Changhee-Genocchi polynomials and num-
bers. In this study, we defined the modified degenerate Changhee-Genocchi polynomi-
als and numbers (see (.)) and obtained an interesting identity (.) of the modified
degenerate Changhee-Genocchi numbers. Secondly, we defined the partially degenerate
Changhee-Genocchi polynomials and numbers (see (.)). We obtained a useful identity
(.) of the partially degenerate Changhee-Genocchi numbers (.). Finally, we defined
the Changhee-Genocchi polynomials of the second kind (see (.)). We provided useful
identities related to the Changhee-Genocchi polynomials of the second kind and the de-
generate Euler polynomials (see Theorem .). Furthermore, we obtained some interesting
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identities of the Changhee-Genocchi polynomials of the second kind (see Theorem .,
Theorem ., Theorem . and Theorem .).
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