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Abstract
Let G = (V , E) be a simple graph. The resistance distance between i, j ∈ V , denoted by
rij , is defined as the net effective resistance between nodes i and j in the
corresponding electrical network constructed from G by replacing each edge of G
with a resistor of 1 Ohm. The resistance-distance matrix of G, denoted by R(G), is a
|V| × |V| matrix whose diagonal entries are 0 and for i �= j, whose ij-entry is rij . In this
paper, we determine the eigenvalues of the resistance-distance matrix of complete
multipartite graphs. Also, we give some lower and upper bounds on the largest
eigenvalue of the resistance-distance matrix of complete multipartite graphs.
Moreover, we obtain a lower bound on the second largest eigenvalue of the
resistance-distance matrix of complete multipartite graphs.

Keywords: resistance distance; resistance-distance matrix; largest
resistance-distance eigenvalue; second largest resistance-distance eigenvalue

1 Introduction
Throughout the paper we consider only simple graphs, that is, graphs without loops and
multi-edges. Let G = (V , E) be a connected graph with a vertex set V = {, , . . . , n} and an
edge set E = E(G). The resistance distance [] between any two vertices i and j, denoted
by rij, is defined as the net effective resistance between nodes i and j in the corresponding
electrical network constructed from G by replacing each edge with a resistor of  Ohm.
The resistance-distance matrix of G, denoted by R(G), is a |V |×|V | matrix whose diagonal
entries are  and for i �= j, whose ij-entry is rij. Let ρ ≥ ρ ≥ · · · ≥ ρn denote the eigenvalues
of R(G). They are usually called the resistance-distance eigenvalues of G. In recent years,
much study has been done on resistance distances. For more information, the readers are
referred to most recent papers [–] and the references therein. In this paper, we study
the resistance-distance matrix of complete multipartite graphs. The paper is organized as
follows. In Section , we compute resistance distances in complete multipartite graphs.
In Section , we determine the eigenvalues of the resistance distance matrix of complete
multipartite graphs. In Section , we give some lower and upper bounds on the largest
eigenvalue of the resistance-distance matrix of complete multipartite graphs. In Section ,
we obtain a lower bound on the second largest eigenvalue of the resistance-distance matrix
of complete multipartite graphs.
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2 Resistance distances in complete multipartite graphs
In this section, we compute resistance distances between any pair of vertices in the com-
plete multipartite graph Kn,n,...,nk via electrical network approach. Recall that G is a com-
plete k-partite graph if the vertex set V can be partitioned into k parts V, V, . . . , Vk such
that uv ∈ E(G) if and only if u and v are in different parts. If |Vi| = ni (i = , , . . . , k), then
G is denoted by Kn,n,...,nk . The following two lemmas play essential roles further.

Lemma . ([]) Let i, j be vertices of G satisfying that they have the same neighborset N
in V /{i, j}. Then

rij =

⎧
⎨

⎩


|N |+ if ij ∈ E(G),


|N | otherwise.
()

Lemma . ([] (The reduction principle)) If S ⊂ V satisfies that all vertices in S have
the same neighborset N in G – S. Let H be the graph obtained from G[S ∪ N] by deleting all
the edges between vertices in N . Then the resistance distance between any two vertices of S
in G is the same as the resistance distance between them in H .

Now we are ready to give the main result of this section.

Theorem . Resistance distances in Kn,n,...,nk can be computed as follows:

ruv =

⎧
⎨

⎩


n–ni

if u, v ∈ Vi,
(n–)(n–ni–nj)

n[n–(ni+nj)n+ninj]
if u ∈ Vi, v ∈ Vj, and i �= j.

()

Proof For u, v ∈ Vi, it is easily seen that u and v have the same neighborset N with |N | =
n – ni. Hence, by Lemma ., we have

ruv =


n – ni
,

as required.
Now suppose that u ∈ Vi and v ∈ Vj. Let S = Vi ∪ Vj and N = V – S. Let G∗ be the graph

obtained from Kn,n,...,nk by deleting all the edges between vertices in N . Then, by the re-
duction principle, the resistance distance between u and v in Kn,n,...,nk is equal to the
resistance distance between u and v in G∗. In what follows, we compute the resistance
distance between u and v in G∗. If we apply a unit potential across u and v, then by sym-
metry, all the vertices in Vi \ {u} have the same potential, all the vertices in Vj \ {v} have
the same potential, and all the vertices in N have the same potential. In an electrical point
of view, vertices that have the same potential can be regarded as identical so that they can
be shortened together. Consequently, we shorten all the vertices in Vi \ {u} together to
get a new vertex x, shorten all the vertices in Vj \ {v} together to get a new vertex y, and
shorten all the vertices in N together to get a new vertex w. Then G∗ can be simplified to
the network N as shown in Figure , where the weight cab on each edge ab denotes the
edge conductance (i.e., reciprocal of edge resistance).
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Figure 1 The simplified graph G∗ .

Now apply a unit potential across u and v in N and suppose the absolute potentials of
u, v, x, y, w are Vu = , Vv = , Vx, Vy, Vw, respectively. Then, by Kirchhoff’s laws, we have

(Vx – Vy)cxy + (Vx – Vv)cxv + (Vx – Vw)cxw = ,

(Vy – Vx)cxy + (Vy – Vu)cyu + (Vy – Vw)cyw = ,

(Vw – Vu)cwu + (Vw – Vx)cxw + (Vw – Vy)cyw + (Vw – Vv)cwv = .

Then simple calculation shows that

Vx =
(ni – )(nj – )Vy + (ni – )(n – ni – nj)Vw

ni –  + (ni – )(nj – ) + (ni – )(n – ni – nj)
, ()

Vy =
nj –  + (ni – )(nj – )Vx + (nj – )(n – ni – nj)Vw

nj –  + (ni – )(nj – ) + (nj – )(n – ni – nj)
, ()

Vw =
n – ni – nj + (ni – )(n – ni – nj)Vx + (nj – )(n – ni – nj)Vy

(n – ni – nj) + (ni – )(n – ni – nj) + (nj – )(n – ni – nj)
. ()

Solving the above linear system, we get

Vx =
n(nj – ) + (n – )(n – ni – nj)

(n – ni – nj)(n – )
,

Vy =
n(n – ni)

(n – ni – nj)(n – )
,

Vw =
n – ni

n – ni – nj
.

Denote the total current flows from u to v by I . Then, by Ohm’s law, we have

ruv =
Vu – Vv

I
=

 – 
I

=


(Vu – Vw)(n – ni – nj) + (Vu – Vy)(nj – ) + (Vu – Vv) × 

=


( – n–ni
n–ni–nj

)(n – ni – nj) + [ – n(n–ni)
(n–ni–nj)(n–) ](nj – ) + 

=
(n – )(n – ni – nj)

n[n – (ni + nj)n + ninj]
,

as required. �
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Remark It should be mentioned that resistance distances in complete multipartite graphs
have also been determined in [] via an alternative method.

By Theorem ., for simplicity, in the following, we use ri to denote the resistance dis-
tance between any two vertices in Vi, and use rij to denote the resistance distance between
any u ∈ Vi and v ∈ Vj. Thus the resistance-distance matrix R(Kn,n,...,nk ) of Kn,n,...,nk is

⎛

⎜
⎜
⎜
⎜
⎝

rJn,n – rIn rJn,n rJn,n . . . rkJn,nk

rJn,n rJn,n – rIn rJn,n . . . rkJn,nk
...

...
... . . .

...
rkJnk ,n rkJnk ,n rkJnk ,n . . . rkJnk ,nk – rkInk

⎞

⎟
⎟
⎟
⎟
⎠

,

where Jst denotes the s × t matrix of all ones, Il denotes the identity matrix of order l. In
what follows, we always write R(Kn,n,...,nk ) to R for short.

3 The eigenvalues of the resistance-distance matrix of complete multipartite
graphs

In this section we obtain the eigenvalues of the resistance-distance matrix of complete
k-partite graphs Kn,n,...,nk .

Theorem . Let G be a complete k-partite graph Kn,n,...,nk on n vertices. Then the char-
acteristic polynomial of R is

RG(x) = det(xIn – R) =
k∏

i=

(x + ri)ni–|xIk – D|,

where

D =

⎛

⎜
⎜
⎜
⎜
⎝

(n – )r nr nr · · · nkrk

nr (n – )r nr · · · nkrk
...

...
...

. . .
...

nrk nrk nrk · · · (nk – )rk

⎞

⎟
⎟
⎟
⎟
⎠

. ()

Proof As given above, the resistance-distance matrix of Kn,n,...,nk is

R =

⎛

⎜
⎜
⎜
⎜
⎝

rJn,n – rIn rJn,n rJn,n . . . rkJn,nk

rJn,n rJn,n – rIn rJn,n . . . rkJn,nk
...

...
... . . .

...
rkJnk ,n rkJnk ,n rkJnk ,n . . . rkJnk ,nk – rkInk

⎞

⎟
⎟
⎟
⎟
⎠

.

Hence, by linear algebra knowledge,

RG(x) = det(xIn – R)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

(x + r)In – rJn,n –rJn,n –rJn,n . . . –rkJn,nk
–rJn,n (x + r)In – rJn,n –rJn,n . . . –rkJn,nk

...
...

... . . .
...

–rkJnk ,n –rkJnk ,n –rkJnk ,n . . . (x + rk)Ink – rkJnk ,nk

∣
∣
∣
∣
∣
∣
∣
∣
∣
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=
k∏

i=
(x + ri)ni–

∣
∣
∣
∣
∣
∣
∣
∣
∣

x – (n – )r –nr –nr · · · –nkrk
–nr x – (n – )r –nr · · · –nkrk

...
...

...
. . .

...
–nrk –nrk –nrk · · · x – (nk – )rk

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

This completes the proof. �

Corollary . Let G = Kn,n,...,nk . Then the eigenvalues for the resistance-distance matrix
of G are –ri of multiplicity ni –  (i = , , . . . , k) and the remaining eigenvalues satisfy the
following:

|xIk – D| = ,

where D is given by ().

Corollary . The largest eigenvalue of the resistance-distance matrix of complete k-
partite graph Kn,n,...,nk is given by

|xIk – D| = .

4 Lower and upper bounds on the largest eigenvalue of the
resistance-distance matrix of complete multipartite graphs

In this section we give some lower and upper bounds on ρ(G) of complete k-partite graph
Kn,n,...,nk . For this we need the following two results.

Lemma . ([]) If q, q, . . . , qn are positive numbers, then

min
i

pi

qi
≤ p + p + · · · + pn

q + q + · · · + qn
≤ max

i

pi

qi

for any real numbers p, p, . . . , pn. Equality holds on both sides if and only if all the ratios
pi
qi

are equal.

Now we obtain the spectral radius for the resistance-distance matrix of Kn,n,...,n .

Lemma . Let G be a complete k-partite graph Kn,n,...,n of order n. Then

ρ(G) =


n – n

[

n –  +
n(k – )(n – )

n

]

.

Furthermore, all the remaining eigenvalues are – 
n–n

and – 
n , with multiplicities n – k and

k – , respectively.

Proof For G = Kn,n,...,n , by Theorem ., we have ri = 
n–n

(i = , , . . . , k) and rij =
n–

n ( 
n–n

+ 
n–n

) for all i and j, i �= j. Since

D =

⎛

⎜
⎜
⎜
⎜
⎝

(n – )r nr nr · · · nr

nr (n – )r nr · · · nr
...

...
...

. . .
...

nr nr nr · · · (n – )r

⎞

⎟
⎟
⎟
⎟
⎠

,
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it is easily obtained that the eigenvalues of D are

(n – )r + (k – )r, (n – )r – nr, . . . , (n – )r – nr︸ ︷︷ ︸
k–

.

Simple calculation shows that

(n – )r + (k – )r =


n – n

[

n –  +
n(k – )(n – )

n

]

and (n – )r – nr = –

n

.

Thus it follows that

ρ(G) =


n – n

[

n –  +
n(k – )(n – )

n

]

.

Together with the result in Theorem ., we conclude that eigenvalues other than ρ(G)
are

–

n

, . . . , –

n︸ ︷︷ ︸

k–

, –


n – n
, . . . , –


n – n︸ ︷︷ ︸

n–k

.

�

Theorem . Let G be a complete k-partite graph Kn,n,...,nk of order n with n ≥ n ≥
· · · ≥ nk . Then


n – nk

[

nk –  +
nk(k – )(n – )

n

]

≤ ρ(G) ≤ 
n – n

[

n –  +
n(k – )(n – )

n

]

. ()

Moreover, the equality holds in both sides if and only if n = n = · · · = nk .

Proof Let x = (x, x, . . . , xn)T be an eigenvector corresponding to the eigenvalue ρ(G) of
D. Then we have

Dx = ρ(G)x. ()

From the ith equation of (), we get

ρ(G)xi = (ni – )rixi +
k∑

j=,j �=i

njrijxj

=
(ni – )

n – ni
xi +

n – 
n

k∑

j=,j �=i

[


n – ni
+


n – nj

]

njxj

≥ (nk – )
n – nk

xi +
(n – )

n(n – nk)

k∑

j=,j �=i

njxj as ni, nj ≥ nk . ()

Taking summation on both sides from i =  to k, we get

ρ(G)
k∑

i=

xi ≥ (nk – )
n – nk

k∑

i=

xi +
(n – )(k – )

n(n – nk)

k∑

i=

nixi.
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By Lemma ., we get

∑k
i= nixi

∑k
i= xi

≥ nk . ()

From the above two results, we get

ρ(G) ≥ (nk – )
n – nk

+
(n – )(k – )

n(n – nk)
nk =


n – nk

[

nk –  +
nk(k – )(n – )

n

]

.

Since ni, nj ≤ n and

∑k
i= nixi

∑k
i= xi

≤ n,

similarly, from the above, we get

ρ(G) ≤ 
n – n

[

n –  +
n(k – )(n – )

n

]

.

First part of the proof is done.
Now suppose that the left-hand side equality holds in (). Then all the inequalities above

must be equalities. From the equality in (), we get n = n = · · · = nk . From the equality in
(), we get n = n = · · · = nk . Similarly, if the right-hand side equality holds in (), then
we have n = n = · · · = nk .

Conversely, let G ∼= Kn,n,...,n . By Lemma ., equalities on both sides hold in (). �

Now we give another upper bound on ρ(G) of complete k-partite graph Kn,n,...,nk .

Theorem . Let G be a complete k-partite graph Kn,n,...,nk of order n with n ≥ n ≥
· · · ≥ nk . Then

ρ(G) ≤ (n – )
n – n

+
n(n – )(k – )
n(n – n)(nk – )

–
(n – )(n – n)

n(n – )

+
(n – )(n – nk)(k – )

n(nk – )

[

 –
(n – )
n – n

+
n(n – )
(n – n)

]

()

with equality holding if and only if n = n = · · · = nk .

Proof Let x = (x, x, . . . , xn)T be an eigenvector corresponding to the eigenvalue ρ(G) of
C–DC, where C = diag((n – )r, (n – )r, . . . , (nk – )rk). Then we have

C–DCX = ρ(G)X. ()

We can assume that xi =  and xk ≤  for all k. From the ith equation of (), we get

ρ(G)xi = (ni – )rixi +
k∑

j=,j �=i

(nj – )rjnjrij

(ni – )ri
xj,
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that is,

ρ(G) ≤ (ni – )ri +
k∑

j=,j �=i

(nj – )rjnjrij

(ni – )ri
()

=
(ni – )

n – ni
+

k∑

j=,j �=i

(n – )(nj – )nj

n(ni – )

[


n – nj
+

n – ni

(n – nj)

]

. ()

Since

nj(nj – )
n – nj

=  – n – nj +
n(n – )
n – nj

and

nj(nj – )
(n – nj) =  –

n – 
n – nj

+
n(n – )
(n – nj) ,

from (), we get

ρ(G) ≤ (ni – )
n – ni

+
n – 

n(ni – )

k∑

j=,j �=i

[

 – n – nj +
n(n – )
n – nj

]

+
(n – )(n – ni)

n(ni – )

×
k∑

j=,j �=i

[

 –
n – 
n – nj

+
n(n – )
(n – nj)

]

.

Since

f (x) =
n(n – )
(n – x) –

n – 
(n – x)

is an increasing function on x, from the above, we get

ρ(G) ≤ (ni – )
n – ni

+
n – 

n(ni – )

[

–(n – )(k – ) – (n – ni) +
n(n – )(k – )

n – n

]

+
(n – )(n – ni)

n(ni – )

[

 –
n – 
n – n

+
n(n – )
(n – n)

]

(k – )

=
(ni – )

n – ni
+

n(n – )(k – )
n(n – n)(ni – )

–
(n – )(n – ni)

n(ni – )

+
(n – )(n – ni)(k – )

n(ni – )

[

 –
(n – )
n – n

+
n(n – )
(n – n)

]

. ()

Let us consider a function

g(x) =  –
(n – )

n – x
+

n(n – )
(n – x) ,  ≤ x ≤ n – .

Then

g ′(x) =


(n – x)

[
(n – )x – n

]
> .
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Therefore g(x) ≥ g() = . Since

n – n

n – 
≤ n – ni

ni – 
≤ n – nk

nk – 

and nk ≤ ni ≤ n ( ≤ i ≤ k), from (), we get

ρ(G) ≤ (n – )
n – n

+
n(n – )(k – )
n(n – n)(nk – )

–
(n – )(n – n)

n(n – )

+
(n – )(n – nk)(k – )

n(nk – )

[

 –
(n – )
n – n

+
n(n – )
(n – n)

]

, ()

which gives the required result in (). First part of the proof is done.
Now suppose that equality holds in (). Then all the inequalities above must be equali-

ties. From equality in (), we get x = x = · · · = xk . From equality in (), we get n = n =
· · · = ni– = ni+ = · · · = nk . From equality in (), we get ni = n = nk . From these results we
conclude that n = n = · · · = nk .

Conversely, let n = n = · · · = nk . Then n = nk. Now,

(n – )
n – n

+
n(n – )(k – )
n(n – n)(n – )

–
(n – )(n – n)

n(n – )
+

(n – )(n – n)(k – )
n(n – )

×
[

 –
(n – )
n – n

+
n(n – )
(n – n)

]

=
(n – )

n – n
+

(n – )

n(n – )
–

(n – )(n – n)
n(n – )

+
(n – )(k – )

k(n – )
× n(n – )

(n – n)

=
(n – )

n – n
+

(n – )
n

= ρ(G), by Lemma .. �

5 Lower bound on the second largest eigenvalue of the resistance-distance
matrix of complete multipartite graphs

In this section we find a lower bound on the second largest eigenvalue of the resistance-
distance matrix of complete multipartite graphs. For this we need the following result.

Lemma . ([]) Let A be a p × p symmetric matrix, and let Ak be its leading k × k
submatrix; that is, Ak is the matrix obtained from A by deleting its last p – k rows and
columns. Then, for i = , , . . . , k,

λp–i+(A) ≤ λk–i+(Ak) ≤ λk–i+(A), ()

where λi(A) is the ith largest eigenvalue of A.

Theorem . Let G be a complete k-partite graph Kn,n,...,nk of order n with n ≥ n ≥
· · · ≥ nk . Then

ρ(G) ≥ max
≤i<j≤k

[
(n + )(ni + nj) – (n + ninj)

(n – ni)(n – nj)
–

(n – )(ni + nj)
(n – ni)(n – nj)

×
√(

 +
ninj

n

)

–
ninj

n(ni + nj)

]

. ()
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Proof By Lemma ., we have ρ(G) ≥ max≤i<j≤k ρ ′
 and ρ(G) ≥ max≤i<j≤k ρ ′

, where ρ ′


and ρ ′
 are given by
∣
∣
∣
∣
∣

(ni – )ri – ρ njrij

nirij (nj – )rj – ρ

∣
∣
∣
∣
∣

= ,

that is,

ρ –
[
(ni – )ri + (nj – )rj

]
ρ + (ni – )(nj – )rirj – ninjr

ij = .

So,

ρ ′
 =

(ni – )ri + (nj – )rj +
√

[(ni – )ri – (nj – )rj] + ninjr
ij



and

ρ ′
 =

(ni – )ri + (nj – )rj –
√

[(ni – )ri – (nj – )rj] + ninjr
ij


. ()

Now,

(ni – )ri – (nj – )rj =
(ni – )

n – ni
–

(nj – )
n – nj

=
(n – )(ni – nj)
(n – ni)(n – nj)

.

Using the above result, we get

[
(ni – )ri – (nj – )rj

] + ninjr
ij

=
(n – )(ni – nj)

(n – ni)(n – nj) +
ninj(n – )

n

(


n – ni
+


n – nj

)

=
(n – )(ni + nj)

(n – ni)(n – nj)

[(

 +
ninj

n

)

–
ninj

n(ni + nj)

]

. ()

Moreover,

(ni – )ri + (nj – )rj =
(ni – )

n – ni
+

(nj – )
n – nj

=
[(n + )(ni + nj) – (n + ninj)]

(n – ni)(n – nj)
. ()

Using () and () in (), we get the required result in (). �

Corollary . Let G be a complete k-partite graph Kn,n,...,nk of order n with n ≥ n ≥
· · · ≥ nk . Then

ρ(G) ≥ (n + )(n + n) – (n + nn)
(n – n)(n – n)

–
(n – )(n + n)
(n – n)(n – n)

√(

 +
nn

n

)

–
nn

n(n + n)
.
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6 Conclusion
In this paper, resistance distances in complete multipartite graphs are given via the stan-
dard electrical approach. Then eigenvalues of the resistance-distance matrix of complete
multipartite graphs are studied, with emphasis being placed on bounds for the largest
and second largest eigenvalues. However, up to now, the study on the eigenvalues of a
resistance-distance matrix has still been in its infancy. Further study in this field is greatly
anticipated.
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