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Abstract
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1 Introduction
For a sample of independent observation X, . . . , Xn on a distribution F , the order sample
values Xn() ≤ Xn() ≤ · · · ≤ Xn(n) are called the order statistics. During the past many years,
order statistics which is used to deal with properties and applications of ordered random
variables and of functions of these variables appears in many statistical applications and
are widely used in statistical modeling and inference based on some suitable functions
of the order statistics. It might play a fundamental role in many diverse practical applica-
tions, for example, life-testing and reliability, robustness studies, statistical quality control,
filtering theory, signal processing, image processing, radar target detection, and so on [,
].

The commonly used models of order statistics, such as the extreme values Xn() and Xn(n),
the median, the sample range and the linear functions of order statistics are extensively
studied and widely used in many fields. Recently, some scholars have paid increasing at-
tention to the ratios of order statistics in theory, which can be used to measure the stability
of areas of interest. For the convenience of description, let {Xni,  ≤ i ≤ mn, n ≥ } be an
array of independent random variables drawn from distribution functions Fn. Denote by
{Xn(k), k = , , . . . , mn} the kth order statistics of the random variables {Xni,  ≤ i ≤ mn, n ≥
} for every given n, that is, Xn() ≤ Xn() ≤ · · · ≤ Xn(mn). The scholars are interested in the
following ratios of order statistics: {Xn(k),  ≤ k ≤ mn}.

Rnij =
Xn(j)

Xn(i)
,  ≤ i < j ≤ mn. (.)

For some suitable probability distribution, there are a number of research results. We
refer to Adler [–] for the order statistics from the Pareto distribution; refer to Miao et
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al. [] and Zhang and Ding [] for the order statistics from exponentials; refer to Adler []
and Miao et al. [] for the order statistics from the uniform distribution.

As is well known, the uniform distribution plays an important role in the theory of or-
der statistics, because many problems about order statistics of samples from a general
continuous distribution can be rephrased in terms of the set of order statistics from the
uniform distribution by the technique which is called the quantile transformation. We re-
fer to Chapter  of [] for details. It is thus especially important to study uniform order
statistics.

The aim of this paper is to further study the asymptotic properties of the ratios Rnij of
order statistics {Xn(k),  ≤ k ≤ mn} as the array of independent random variables {Xni,  ≤
i ≤ mn, n ≥ } drawn from a sequence of uniform distributions U(an, bn) on the basis of
the research by Adler [] and Miao et al. []. Note that the ratio Rnij takes value in [,∞)
and [, bn/an] as an =  and an > , respectively. Furthermore, as an > , the moments of
the ratios Rnij exist although they are cumbersome to use, so the asymptotic properties of
the ratios Rnij are ordinary in this case. Thus, we will focus on the asymptotic properties
of the ratios Rnij under an = .

The layout of our work is as follows. Our main results are presented in Section  and the
proofs of the main results are provided in Section . This paper is then ended with a brief
summary. Throughout this paper, let log x = ln max{e, x} where ln is the natural logarithm,
the symbol C denote a generic positive real number which is not necessarily the same in
each appearance, and I(A) represent the indicator function of the set A.

2 Main results
The exact joint density function of the ith and jth order statistics of the random variables
{Xni,  ≤ i ≤ mn, n ≥ } from U(, bn) for every given n is easily found.

f (xi, xj) =
mn!xi–

i (xj – xi)j–i–(bn – xj)mn–j

(i – )!(j – i – )!(mn – j)!bmn
n

I ( ≤ xi < xj ≤ bn).

Let y = xi, x = xj/xi, then by the Jacobian we see that the joint density function of the ith
order statistics Xn(i) and the ratio Rnij is

f (x, y) =
mn!yj–(x – )j–i–(bn – xy)mn–j

(i – )!(j – i – )!(mn – j)!bmn
n

I (y ≥ , x > , xy ≤ bn).

Then it is easy to see that the density function of the ratio Rnij is

fRnij (x) =
mn!(x – )j–i–

(i – )!(j – i – )!(mn – j)!bmn
n

∫ bn/x


yj–(bn – xy)mn–j dyI (x > ). (.)

In this paper, we also study the three most representative ratios Rn, Rn and Rnj based
on the previous research.

2.1 Asymptotic properties of Rn12

From (.), we can see that the density function of the ratio Rn is

fRn (x) =

x I (x > ),



Xu and Miao Journal of Inequalities and Applications  (2017) 2017:295 Page 3 of 18

which is independent of n. Furthermore, we have ERn = ∞ and ERβ
n < ∞ for all β ∈

(, ). It follows that the classical strong laws of Rn fail. Fortunately, Adler [] and Miao et
al. [] studied the following analog of the ratio Rn, which is called the exact law of large
numbers or exact strong law.

If  = an < bn, then, for all α > –,

lim
N→∞


(log N)α+

N∑
n=

(log n)α

n
Rn =


α + 

almost surely.

Motivated by the above work, we naturally consider to establish the corresponding com-
plete convergence of the ratio Rn, which implies the above almost sure convergence by
using the Borel-Cantelli lemma. Therefore, we first give the following complete conver-
gence.

Theorem . If  = an < bn and α > –, then, for any r >  and every δ > ,

∞∑
N=


N(log N)δ

P

(∣∣∣∣∣
N∑

n=

(log n)α/nRn

(log N)α+ –


α + 

∣∣∣∣∣ ≥ r

)
< ∞.

Note that

lim
x→∞ exp{λx}P(Rn > x) = lim

x→∞
exp{λx}

x
= ∞

for all λ > , we say that the ratio Rn is heavy tailed. Large deviation techniques are very
useful tools in different areas of probability theory, statistics, statistical physics, insurance
mathematics, and other applied fields. For the heavy tailed random variables, the main
stream of research has been centered on the study of the logarithmic asymptotic behaviors
of the partial sums. Thus, we establish the following large deviation principle.

Theorem . If  = an < bn, then, for any x > ,

lim
N→∞


log N

log P

( N∑
n=

Rn > Nx

)
= –x + .

2.2 Asymptotic properties of Rn23

From (.), it is not difficult to check that the density function of the ratio Rn is

fRn (x) =

x I (x > ),

which is independent of n. Unlike the ratio Rn, the β-order moment of Rn exists for
any β ∈ (, ) and the second moment is infinite. This enables us to study the classical
strong laws of Rn. Then we can give the following Marcinkiewicz-Zygmund law of large
numbers.

Theorem . If  = an < bn, then, for any δ ∈ (, ), we have

∑N
n=(Rn – c)

N /δ →  a.s.
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for some finite constant c, which takes value  as δ ∈ [, ) while is arbitrary for δ ∈ (, ).
In particular, the classical strong law of large numbers holds as δ = .

In previous research, Miao et al. [] obtained the following central limit theorem of the
ratio Rn:


zN

N∑
n=

(Rn – ERn) d−→ �(x) as N → ∞, (.)

where �(x) denotes the standard normal distribution, zN =  ∨ sup{x > ; NL(x) ≥ x} and
L(x) = E[R

nI(|Rn| ≤ x)] is a slowly varying function at ∞.
Berkes and Csáki [] pointed out that not only the central limit theorem, but every weak

limit theorem for independent random variables, subject to minor technical conditions,
has an analogous almost sure version. This motivates us to study the almost sure central
limit theorem of the ratio Rn. Let us briefly recall the almost sure central limit theorem
which is started by Brosamler [] and Schatte []. In the past decade, there has been a
lot of work on the almost sure central limit theorem and related ‘logarithmic’ limit the-
orems for partial sums of independent random variables. The simple form of the almost
sure central limit theorem reads as follows. Let {X, X, . . .} be a sequence of i.i.d. random
variables with mean  and variance  and denote Sn =

∑n
i= Xi, then

lim
N→∞


log N

N∑
n=


n

I
(

Sn√
n

≤ x
)

= �(x) a.s.,

for any real x. In this paper, we only need the simplest version under our model.

Theorem . If  = an < bn, then, for any real x, we have

lim
N→∞


log N

N∑
n=


n

I
(

Sn

zn
≤ x

)
= �(x) a.s.,

where Sn =
∑n

i= Yi, Yn = Rn – ERn, zn =  ∨ sup{x > ; nL(x) ≥ x} and L(x) =
E(R

nI(|Rn| ≤ x)) is a slowly varying function at ∞.

It is easy to see that the ratio Rn is heavy tailed as well as Rn. Thus, analogously to
Theorem ., we can also consider to establish the following large deviation principle of
the ratio Rn.

Theorem . If  = an < bn, then, for any x > ,

lim
N→∞


log N

log P

( N∑
n=

Rn > Nx

)
= –x + .

We would like to mention that the proof of Theorem . is very close to the proof of
Theorem ., so is omitted.
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2.3 Asymptotic properties of Rn1j

For the ratio of the first and jth order statistics when the sample size is fixed as m, it follows
from (.) that the density function can be expressed as

fRnj (x) =
m!(x – )j–

(j – )!(m – j)!xj

m–j∑
k=

(
m – j

k

)
(–)k

j + k
I (x > ).

Obviously, it is dependent to n and the first moment of Rnj is infinite, in other words,
the distribution of the ratio belongs to a Pareto family as well as Rn. Thus, there are not
classical strong laws of large numbers of Rnj. Miao et al. [] obtained the following exact
strong law.

If  = an < bn, then, for all α > –,

lim
N→∞

∑N
n=(log n)α/nRnj

(log N)α+ =
m!

(j – )!(m – j)!(α + )

m–j∑
k=

(
m – j

k

)
(–)k

j + k
a.s.

Based on the above result we can establish the following complete convergence of the
ratio Rnj.

Theorem . If  = an < bn,  ≤ j ≤ m and α > –, then, for any r >  and every δ >  we
have

∞∑
N=


N(ln N)δ

P

(∣∣∣∣∣
N∑

n=

(log n)α/nRnj

(ln N)α+ –
m!γmj

(j – )!(m – j)!(α + )

∣∣∣∣∣ ≥ r

)
< ∞,

where

γmj =
m–j∑
k=

(
m – j

k

)
(–)k

j + k
.

For any x > , we have

P(Rnj > x) =
m!γmj

(j – )!(m – j)!

∫ ∞

x

(t – )j–

tj dt

=
m!γmj

(j – )!(m – j)!

∫ ∞

x

j–∑
i=

(
j – 

i

)
(–)it–i– dt

=
m!γmj

(j – )!(m – j)!

j–∑
i=

(
j – 

i

)
(–)i

i + 
x–i–,

which implies

lim
x→∞ exp{λx}P(Rnj > x) = ∞ for all λ > .

It follows that the ratio Rnj is heavy tailed too. Thus, we naturally consider to establish the
following large deviation principle of the ratio Rnj.
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Theorem . If  = an < bn, then, for any x > ,

lim
N→∞


log N

log P

( N∑
n=

Rnj > Nx

)
= –x + .

3 Proofs of main results
To prove the complete convergence of Rn and Rnj, the following lemma obtained by Sung
et al. [] will be used.

Lemma . Let {Xni,  ≤ i ≤ mn, n ≥ } be an array of rowwise independent random vari-
ables and {dn, n ≥ } a sequence of positive constants such that

∑∞
n= dn = ∞. Suppose that

for every r >  and some ε > :
(i)

∑∞
n= dn

∑mn
i= P(|Xni| > r) < ∞,

(ii) there exists J ≥  such that

∞∑
n=

dn

( mn∑
i=

EX
niI

(|Xni| ≤ ε
))J

< ∞,

(iii)
∑mn

i= EXniI(|Xni| ≤ ε) →  as n → ∞.
Then we have

∞∑
n=

dnP

(∣∣∣∣∣
mn∑
i=

Xni

∣∣∣∣∣ > r

)
< ∞ for all r > .

Proof of Theorem . Let cn = n(log n). It is easy to see that

N∑
n=

(log n)α/nRn

(log N)α+ =: IN + IIN + IIIN , (.)

where

IN :=
N∑

n=

(log n)α/n[RnI( ≤ Rn ≤ cn) – ERnI( ≤ Rn ≤ cn)]
(log N)α+ ,

IIN :=
N∑

n=

(log n)α/nRnI(Rn > cn)
(log N)α+ ,

IIIN :=
N∑

n=

(log n)α/nERnI( ≤ Rn ≤ cn)
(log N)α+ .

By simple calculation, we have

ERnI( ≤ Rn ≤ cn) = log cn ∼ log n,

which implies IIIN ∼


α+ . Similarly, from the fact that

ER
nI( ≤ Rn ≤ cn) = n(log n) – 
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and the Markov inequality, we have

P
(|IN | ≥ r

) ≤ C
log N

for any r > .

Combining the conclusions of IN and IIIN , we can see that

∞∑
N=


N(log N)δ

P
(∣∣∣∣IN + IIIN –


α + 

∣∣∣∣ ≥ r
)

< ∞. (.)

To complete the proof of this theorem, it is sufficient to prove

∞∑
N=


N(log N)δ

P
(|IIN | ≥ r

)
< ∞. (.)

By using Lemma . with

XNn =
(log n)α/nRnI(Rn > cn)

(log N)α+ and dN =


N(log N)δ
,

we only need to verify the following three conditions: (.)-(.). Firstly, for every r > ,

N∑
n=

P(XNn ≥ r) ≤
N∑

n=

P
(

Rn ≥ max

{
cn,

nr(log N)α+

(log n)α

})

=
N∑

n=

∫ ∞

ξ


x dx

≤ C
N∑

n=

max

{


n(log n) ,
(log n)α

nr(log N)α+

}
≤ C

log N
,

where ξ = max{cn, nr(log N)α+/(log n)α}. It follows that

∞∑
N=

dN

N∑
n=

P(XNn ≥ r) < ∞. (.)

Secondly, we obtain

∞∑
N=

dN

( N∑
n=

EX
NnI(XNn ≤ ε)

)

< ∞, (.)

where we used the fact that

N∑
n=

EX
NnI(XNn ≤ ε) ≤ C

(log N)α+

N∑
n=

(log n)α

n
≤ C

log N
.

Finally, for any ε > , we have

N∑
n=

EXNnI(XNn ≤ ε) ≤ C
log log N

(log N)α+

N∑
n=

(log n)α

n
≤ C

log log N
log N

,
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which implies

N∑
n=

EXNnI(XNn ≤ ε) →  as N → ∞. (.)

The proof is completed. �

Proof of Theorem . For any x > , it is easy to see that

P
(
Rn > Nx) = N–x.

Thus, we have

P

( N∑
n=

Rn > Nx

)
≥ P

(
there exists at least a n ∈ [, N] such that Rn > Nx)

= P
( ⋃

≤n≤N

{
Rn > Nx})

=
N∑

n=

P
(
Rn > Nx) = N–x+.

It follows that

lim inf
N→∞


log N

log P

( N∑
n=

Rn > Nx

)
≥ –x + . (.)

Next, we shall show that, for any x > ,

lim sup
N→∞


log N

log P

( N∑
n=

Rn > Nx

)
≤ –x + . (.)

Denote R̃n = RnI(Rn ≤ Nx/υ/β ), where  < β < , υ >  and x > . Notice that

{ N∑
n=

Rn > Nx

}
⊂

{ N⋃
n=

{
Rn > Nx/υ/β}} ∪

{ N∑
n=

R̃n > Nx

}
,

which implies

P

( N∑
n=

Rn > Nx

)
≤

N∑
n=

P
(
Rn > Nx/υ/β)

+ P

( N∑
n=

R̃n > Nx

)
. (.)

Since P(Rn > Nx/υ/β ) = υ/βN–x, we obtain for every N ,

log

[ N∑
n=

P
(
Rn > Nx/υ/β)]

= β– logυ + (–x + ) log N .
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It follows that the first term of the right-hand side in (.) satisfies

lim sup
N→∞


log N

log

[ N∑
n=

P
(
Rn > Nx/υ/β)]

= –x + . (.)

Next, we are concerned with the second term of the right-hand side in (.). By simple
calculation, we have, for every  ≤ n ≤ N and any λ > ,

E
(
exp{λR̃n}

)
= E

(
exp{λR̃n} – 

R̃β
n

R̃β
n

)
+ 

≤ exp{λNx/υ/β} – 
Nβx/υ

ER̃β
n + 

≤ exp

{
exp{λNx/υ/β} – 

Nβx/υ
ER̃β

n

}

≤ exp

{
exp{λNx/υ/β} – 

Nβx/υ
ERβ

n

}
.

Then, by Markov’s inequality and the fact that ERβ
n = ( – β)–, we have

P

( N∑
n=

R̃n > Nx

)
≤ exp

{
–λNx} N∏

n=

E
(
exp{λR̃n}

)

≤ exp

{
–λNx +

exp{λNx/υ/β} – 
Nβx/υ

N( – β)–
}

≤ exp
{
υ/β}[

( – β)–N –βxυ–/β]υ/β

by taking λ = υ/β/Nx[(/β – ) logυ + (βx – ) log N + log( – β)]. It follows that

lim sup
N→∞


log N

log P

( N∑
n=

R̃n > Nx

)
≤ υ/β ( – βx). (.)

From (.)-(.) and the elementary inequality

log(a + b) ≤ log  + max{log a, log b}

for all a >  and b > , we have

lim sup
N→∞


log N

log P

( N∑
n=

Rn ≥ Nx

)
≤ max

{
–x + ,υ/β ( – βx)

}
. (.)

At last, by choosing suitable β and υ such that υ/β ( – βx) ≤ –x + , we obtain the desired
result (.). The proof is completed. �

Proof of Theorem . For any δ ∈ (, ), we obtain

E|Rn|δ =
∫ ∞




x–δ

dx =


 – δ
< ∞.
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So by the Marcinkiewicz-Zygmund theorem, which can be found on page  in [], we
have the desired result. �

Proof of Theorem . Denote

Y ′
Nn = YnI

(|Yn| > zN
)

– E
[
YnI

(|Yn| > zN
)]

and

Y ′′
Nn = YnI

(|Yn| ≤ zN
)

– E
[
YnI

(|Yn| ≤ zN
)]

.

Obviously, we have

SN =
N∑

n=

Y ′
Nn +

N∑
n=

Y ′′
Nn =: S′

N + S′′
N .

Note that, for any ε >  and all x ∈ R,

I
(

S′′
n

zn
≤ x – ε

)
– I

(∣∣∣∣S′
n

zn

∣∣∣∣ > ε

)

≤ I
({

S′′
n

zn
≤ x – ε

}
∩

{∣∣∣∣S′
n

zn

∣∣∣∣ < ε

})

≤ I
{

Sn

zn
≤ x

}
≤ I

(
S′′

n
zn

≤ x + ε

)
+ I

(∣∣∣∣S′
n

zn

∣∣∣∣ > ε

)
.

Therefore, to obtain the desired result, it is enough to show that

lim
N→∞


log N

N∑
n=


n

I
(

S′′
n

zn
≤ x ± ε

)
= �(x ± ε) a.s. (.)

and

lim
N→∞


log N

N∑
n=


n

I
(∣∣∣∣S′

n
zn

∣∣∣∣ ≥ ε

)
=  a.s. (.)

Firstly, we shall prove (.). Notice that, for any N ,

E|S′
N |

zN
≤ N

zN
E

[|Y|I
(|Y| > zN

)] ≤ .

It follows from Markov’s inequality that S′
N /zN →  in probability as N → ∞. Then by the

Slutsky theorem and (.), we have

S′′
N

zN

d−→ �(x) as N → ∞. (.)

Let g be a bounded Lipschitz function. It follows from (.) that

Eg
(

S′′
N

zN

)
→ Eg

(
N(, )

)
as N → ∞. (.)
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On the other hand, notice that (.) is equivalent to (cf. Theorem . of Billingsley []
and Section  of Lacey and Philipp [])

lim
N→∞


log N

N∑
n=


n

g
(

S′′
n

zn

)
= Eg

(
N(, )

)
a.s. (.)

From (.), to prove (.), it is sufficient to show that, as N → ∞,


log N

N∑
n=


n

[
g
(

S′′
n

zn

)
– Eg

(
S′′

n
zn

)]
=:


log N

N∑
n=


n

Tn →  a.s. (.)

It is easy to see that

E

(


log N

N∑
n=


n

Tn

)

=


log N

( N∑
n=


n ET

n + 
N–∑
n=

N∑
m=n+


nm

ETnTm

)
. (.)

Because g is a bounded Lipschitz function, the first term of the right-hand side in (.)
satisfies


log N

N∑
n=


n ET

n ≤ C
log N

N∑
n=


n ≤ C

log N
. (.)

Moreover, for  ≤ n < m ≤ N , we have

|ETnTm| =
∣∣∣∣Cov

[
g
(

S′′
n

zn

)
, g

(
S′′

m
zm

)]∣∣∣∣

=
∣∣∣∣Cov

[
g
(

S′′
n

zn

)
, g

(
S′′

m
zm

)
– g

(
S′′

m –
∑n

i= Y ′′
mi

zm

)]∣∣∣∣

≤ C
zm

E

∣∣∣∣∣
n∑

i=

Y ′′
mi

∣∣∣∣∣ ≤ C
zm

(
E

∣∣∣∣∣
n∑

i=

Y ′′
mi

∣∣∣∣∣
)/

≤
√

nC
zm

{
E

[
Y 

 I
(|Y| ≤ zm

)]}/ ≤
√

nC
zm

√
L(zm). (.)

In addition, it is easy to check that, as m → ∞,

zm → ∞ and z
m ∼ mL(zm). (.)

It follows from (.) and (.) that the last term of the right-hand side in (.) is


log N

N–∑
n=

N∑
m=n+


nm

ETnTm ≤ C
log N

N–∑
n=

N∑
m=n+


n/m/

=
C

log N

N∑
m=

m–∑
n=


n/m/ ≤ C

log N
. (.)
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Thus, by (.), (.) and (.), we have

E

(


log N

N∑
n=


n

Tn

)

≤ C
log N

. (.)

Take Nn = enδ , where δ > . It follows from the Borel-Cantelli lemma and (.) that

lim
n→∞


log Nn

Nn∑
n=


n

[
g
(

S′′
n

zn

)
– Eg

(
S′′

n
zn

)]
=  a.s. (.)

Then, from g is a bounded function and the fact that

log Nn+

log Nn
=

(n + )δ

nδ
→  as n → ∞,

we have, for Nn < N ≤ Nn+,

∣∣∣∣∣


log N

N∑
n=


n

[
g
(

S′′
n

zn

)
– Eg

(
S′′

n
zn

)]∣∣∣∣∣

≤ 
log Nn

∣∣∣∣∣
Nn∑
n=


n

Tn

∣∣∣∣∣ +


log Nn

∣∣∣∣∣
Nn+∑

n=Nn+


n

Tn

∣∣∣∣∣

≤
∣∣∣∣∣


log Nn

Nn∑
n=


n

[
g
(

S′′
n

zn

)
– Eg

(
S′′

n
zn

)]∣∣∣∣∣ +
C

log Nn

Nn+∑
n=Nn+


n

. (.)

A combination of (.) with (.) yields the desired result (.). Therefore, the proof
of (.) is completed.

Next, we show the proof of (.). Let h be a real-valued function satisfying

I(x ≥ ε) ≤ h(x) ≤ I(x ≥ ε/) sup
x

∣∣h′(x)
∣∣ < ∞,

where h′(x) is the first derivative of h(x). Thus, we have

I
(

S′
n

zn
> ε

)
≤ h

(
S′

n
zn

)
≤ h

(
S′

n
zn

)
– Eh

(
S′

n
zn

)
+ Eh

(
S′

n
zn

)
. (.)

By the same argument used to obtain (.), we can see that (.) in the case {S′
n/zn > ε}

is equivalent to

lim
N→∞


log N

N∑
n=


n

h
(

S′
n

zn

)
=  a.s. (.)

To prove (.), first we shall prove that as N → ∞,


log N

N∑
n=


n

[
h
(

S′
n

zn

)
– Eh

(
S′

n
zn

)]
→  a.s. (.)
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We would like to mention that the proof of (.) is a little bit different from the proof of
(.). For  ≤ n < m ≤ N , we have

∣∣∣∣Cov

[
h
(

S′
n

zn

)
, h

(
S′

m
zm

)]∣∣∣∣

=
∣∣∣∣Cov

[
h
(

S′
n

zn

)
, h

(
S′

m
zm

)
– h

(
S′

m –
∑n

i= Y ′
mi

zm

)]∣∣∣∣

≤ C
zm

E

∣∣∣∣∣
n∑

i=

Y ′
mi

∣∣∣∣∣ ≤ Cn
zm

E
[|Y|I

(|Y| > zm
)]

. (.)

Denote L̃(x) = E[Y 
 I(|Y| ≤ x)]. Note that EY =  and L̃(x) is a slowly varying function at

∞, so by Lemma  of Csörgõ et al. [], we have

E
[|Y|I

(|Y| > zm
)]

= o
(


zm

L̃(zm)
)

. (.)

It follows from the facts that L̃(x) ∼ L(x) and z
m ∼ mL(zm) that

E
[|Y|I

(|Y| > zm
)]

= o
(

zm

m

)
. (.)

From (.) and (.), we get


log N

N–∑
n=

N∑
m=n+


nm

∣∣∣∣Cov

[
h
(

S′
n

zn

)
, h

(
S′

m
zm

)]∣∣∣∣ ≤ C
log N

.

The rest of the proof for (.) is omitted. On the other hand, it follows from (.) that

P
(

S′
n

zn
≥ ε



)
≤ Cn

εzn
E

[|Y|I
(|Y| > zn

)]
= o(),

which implies


log N

N∑
n=


n
Eh

(
S′

n
zn

)
≤ 

log N

N∑
n=


n

P
(

S′
n

zn
≥ ε



)
→  as N → ∞. (.)

From (.), (.) and (.), we have the desired result (.). Similarly, we can prove
the desired result as {S′

n/zn < –ε}. Thus, we obtain (.). The proof is completed. �

Proof of Theorem . Let cn = n(ln n). Note that

N∑
n=

(log n)α/nRnj

(ln N)α+ =: IN + IIN + IIIN , (.)

where

IN :=
N∑

n=

(log n)α/n[RnjI( ≤ Rnj ≤ cn) – ERnjI( ≤ Rnj ≤ cn)]
(log N)α+ ,
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IIN :=
N∑

n=

(log n)α/nRnjI(Rnj > cn)
(log N)α+ ,

IIIN :=
N∑

n=

(log n)α/nERnjI( ≤ Rnj ≤ cn)
(log N)α+ .

For the first term in the partition (.), by combining Markov’s inequality and the fact
that

ER
njI( ≤ Rnj ≤ cn) =

m!γmj

(j – )!(m – j)!

∫ cn



(x – )j–

xj– dx ≤ C
(
n(log n) – 

)
,

we have, for any r > ,

P
(|IN | ≥ r

) ≤ C
N∑

n=

((log n)α/n)

(log N)(α+) n(log n) ≤ C
log N

. (.)

For the third term in the partition (.), we have

ERnjI( ≤ Rn ≤ cn) =
m!γmj

(j – )!(m – j)!

∫ cn



(x – )j–

xj– dx

=
m!γmj

(j – )!(m – j)!

j–∑
i=

(
j – 

i

)
(–)j–i–

∫ cn


xi–j+ dx

∼
m!γmj

(j – )!(m – j)!
log cn

∼
m!γmj

(j – )!(m – j)!
log n,

which implies

IIIN ∼
m!γmj

(j – )!(m – j)!


(log N)α+

N∑
n=

(log n)α+

n
=

m!γmj

(j – )!(m – j)!(α + )
. (.)

From (.) and (.), we can see that

∞∑
N=


N(log N)δ

P
(∣∣∣∣IN + IIIN –

m!γmj

(j – )!(m – j)!(α + )

∣∣∣∣ ≥ r
)

< ∞. (.)

At last, we consider the second term in the partition (.) by using Lemma . with

XNn =
(log n)α/nRnjI(Rnj > cn)

(log N)α+ and dN =


N(log N)δ
.

For any r > , we have

N∑
n=

P(XNn ≥ r) ≤
N∑

n=

P
(

Rnj ≥ max

{
cn,

nr(log N)α+

(log n)α

})

≤ C
N∑

n=

∫ ∞

ξ

(x – )j–

xj dx
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≤ C
N∑

n=

∫ ∞

ξ


x dx

≤ C
N∑

n=

max

{

cn

,
(log n)α

nr(log N)α+

}
≤ C

log N
,

where ξ = max{cn, nr(log N)α+/(log n)α}. It follows that

∞∑
N=

dN

N∑
n=

P(XNn ≥ r) < ∞. (.)

Similarly, for any ε > , we see that

N∑
n=

EX
NnI(XNn ≤ ε) ≤ C

(log N)α+

N∑
n=

(log n)α

n

≤ C
log N

,

which implies

∞∑
N=

dN

( N∑
n=

EX
NnI(XNn ≤ ε)

)

< ∞. (.)

In the same way, for any ε > , we have

N∑
n=

EXNnI(XNn ≤ ε) ≤ C
log log N

(log N)α+

N∑
n=

(log n)α

n

≤ C
log log N

log N
→  (.)

as N → ∞. Thus, from Lemma . and (.)-(.), we have

∞∑
N=

dN P
(|IIN | ≥ r

)
< ∞. (.)

A combination of (.) and (.) yields the desired result. The proof is completed. �

Proof of Theorem . It is not difficult to see that, for any x > ,

P
(
Rnj > Nx) =

m!γmj

(j – )!(m – j)!

∫ ∞

Nx

(t – )j–

tj dt

=
m!γmj

(j – )!(m – j)!

∫ ∞

Nx
t–

j–∑
i=

(
j – 

i

)
(–)it–i dt

=
m!γmj

(j – )!(m – j)!

[
N–x +

j–∑
i=

(
j – 

i

)
(–)i+

i + 
N–(i+)x

]
,
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which implies

lim
N→∞


log N

log P
(
Rnj > Nx) = –x (.)

and

lim
N→∞


log N

log max
≤n≤N

P
(
Rnj > Nx) = –x. (.)

Let r be an arbitrary positive number. From (.), we have, for all N large enough,

P
(
Rnj > Nx) ≥ N–x–r.

It follows that, for any x > ,

P

( N∑
n=

Rnj > Nx

)
≥ P

(
there exists at least a n ∈ [, N] such that Rnj > Nx)

= P
( ⋃

≤n≤N

{
Rnj > Nx})

=
N∑

n=

P
(
Rn > Nx) ≥ N–x–r+,

which together with the arbitrariness of r yields

lim inf
N→∞


log N

log P

( N∑
n=

Rnj > Nx

)
≥ –x + . (.)

Next we shall show that, for any x > ,

lim sup
N→∞


log N

log P

( N∑
n=

Rnj > Nx

)
≤ –x + . (.)

Let R̃nj = RnjI(Rnj ≤ Nx/υ/β ), where  < β < , υ >  and x > . Utilizing the approach in
the proof of Theorem ., we have

P

( N∑
n=

Rnj > Nx

)
≤

N∑
n=

P
(
Rnj > Nx/υ/β)

+ P

( N∑
n=

R̃nj > Nx

)
. (.)

From (.), we have

lim
N→∞


log N

log max
≤n≤N

P
(
Rnj > Nx/υ/β)

= –x.

It follows that the first term of the right-hand side in (.) satisfies

lim sup
N→∞


log N

log

[ N∑
n=

P
(
Rnj > Nx/υ/β)] ≤ –x + . (.)
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Next, we are concerned with the second term of the right-hand side in (.). It is easy to
see that

ERβ

nj =
m!γmj

(j – )!(m – j)!

∫ ∞


xβ–

(
 –


x

)j–

dx

=
m!γmj

(j – )!(m – j)!

∫ ∞



j–∑
i=

(
j – 

i

)
(–)ix–i+β– dt

=
m!γmj

(j – )!(m – j)!

[


 – β
+

j–∑
i=

(
j – 

i

)
(–)i

i – β + 

]
,

which implies

N∑
n=

ERβ

nj ≤ CN .

Then, by simple calculation, we have, for any λ > ,

P

( N∑
n=

R̃nj > Nx

)
≤ exp

{
–λNx} N∏

n=

E
(
exp{λR̃nj}

)

≤ exp

{
–λNx +

exp{λNx/υ/β} – 
Nβx/υ

N∑
n=

ERβ

nj

}

≤ C exp
{
υ/β}[

N –βxυ–/β]υ/β

by taking λ = υ/β/Nx[(/β – ) logυ + (βx – ) log N + log C]. It follows that

lim sup
N→∞


log N

log P

( N∑
n=

R̃nj > Nx

)
≤ υ/β ( – βx). (.)

A combination of (.) with (.) and (.) yields

lim sup
N→∞


log N

log P

( N∑
n=

Rnj ≥ Nx

)
≤ max

{
–x + ,υ/β ( – βx)

}
.

This proves (.) by choosing suitable β and υ such that υ/β ( – βx) ≤ –x + .
Finally, from (.) and (.), we can obtain the desired result. �

4 Conclusion
There has been a growing interest in the ratios Rnij of the order statistics from some suit-
able distribution. Because of the importance of the uniform distribution in order statistics,
we investigate the ratios Rnij of the order statistics from the uniform distribution in theory.
As an > , the moments of the ratios exist although they are cumbersome to use, thus the
asymptotic properties of the ratios are ordinary in this case. So we focus on studying the
ratios as an = . Based on the research of predecessors, we established some asymptotic
properties, which include the complete convergence and the large deviation principle of
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Rn, the Marcinkiewicz-Zygmund law of large numbers, the almost sure central limit the-
orem and the large deviation principle of Rn, the complete convergence and the large
deviation principle of Rnj. The results obtained in this paper might have a certain signifi-
cance for advancing the study of the ratios of the order statistics.
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