Oscillation and variation inequalities for the multilinear singular integrals related to Lipschitz functions

Yue $\mathrm{Hu}^{1 *}$ and Yueshan Wang ${ }^{2}$
"Correspondence:
huu3y3@163.com
${ }^{1}$ College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo, 454003, China Full list of author information is available at the end of the article

Abstract

The main purpose of this paper is to establish the weighted $\left(L^{p}, L^{q}\right)$ inequalities of the oscillation and variation operators for the multilinear Calderón-Zygmund singular integral with a Lipschitz function.

MSC: 42B25; 42B20; 47G10
Keywords: oscillation operator; variation operator; multilinear operator; Lipschitz function

1 Introduction and results

Let K be a kernel on $\mathbb{R} \times \mathbb{R} \backslash\{(x, x): x \in \mathbb{R}\}$. Suppose that there exist two constants δ and C such that

$$
\begin{align*}
& |K(x, y)| \leq \frac{C}{|x-y|} \quad \text { for } x \neq y \tag{1.1}\\
& \left|K(x, y)-K\left(x^{\prime}, y\right)\right| \leq \frac{C\left|x-x^{\prime}\right|^{\delta}}{|x-y|^{1+\delta}} \quad \text { for }|x-y| \geq 2\left|x-x^{\prime}\right| \tag{1.2}\\
& \left|K(x, y)-K\left(x, y^{\prime}\right)\right| \leq \frac{C\left|y-y^{\prime}\right|^{\delta}}{|x-y|^{1+\delta}} \quad \text { for }|x-y| \geq 2\left|y-y^{\prime}\right| \tag{1.3}
\end{align*}
$$

We consider the family of operators $T=\left\{T_{\epsilon}\right\}_{\epsilon>0}$ given by

$$
\begin{equation*}
T_{\epsilon} f(x)=\int_{|x-y|>\epsilon} K(x, y) f(y) d y \tag{1.4}
\end{equation*}
$$

A common method of measuring the speed of convergence of the family T_{ϵ} is to consider the square functions

$$
\left(\sum_{i=1}^{\infty}\left|T_{\epsilon_{i}} f-T_{\epsilon_{i+1}} f\right|^{2}\right)^{1 / 2},
$$

where ϵ_{i} is a monotonically decreasing sequence which approaches 0 . For convenience, other expressions have also been considered. Let $\left\{t_{i}\right\}$ be a fixed sequence which decreases
to zero. Following [1], the oscillation operator is defined as

$$
\mathcal{O}(T f)(x)=\left(\sum_{i=1}^{\infty} \sup _{t_{i+1} \leq \epsilon_{i+1}<\epsilon_{i} \leq t_{i}}\left|T_{\epsilon_{i+1}} f(x)-T_{\epsilon_{i}} f(x)\right|^{2}\right)^{1 / 2}
$$

and the ρ-variation operator is defined as

$$
\mathcal{V}_{\rho}(T f)(x)=\sup _{\epsilon_{i} \searrow 0}\left(\sum_{i=1}^{\infty}\left|T_{\epsilon_{i+1}} f(x)-T_{\epsilon_{i}} f(x)\right|^{\rho}\right)^{1 / \rho}
$$

where the sup is taken over all sequences of real number $\left\{\epsilon_{i}\right\}$ decreasing to zero.
The oscillation and variation for some families of operators have been studied by many authors on probability, ergodic theory, and harmonic analysis; see [2-4]. Recently, some authors [5-8] researched the weighted estimates of the oscillation and variation operators for the commutators of singular integrals.
Let m be a positive integer, let b be a function on \mathbb{R}, and let $R_{m+1}(b ; x, y)$ be the $m+1$ th Taylor series remainder of b at x expander about y, i.e.

$$
R_{m+1}(b ; x, y)=b(x)-\sum_{\alpha \leq m} \frac{1}{\alpha!} b^{(\alpha)}(y)(x-y)^{\alpha} .
$$

We consider the family of operators $T^{b}=\left\{T_{\epsilon}^{b}\right\}_{\epsilon>0}$, where T_{ϵ}^{b} are the multilinear singular integral operators of T_{ϵ},

$$
\begin{equation*}
T_{\epsilon}^{b} f(x)=\int_{|x-y|>\epsilon} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f(y) d y \tag{1.5}
\end{equation*}
$$

Note that when $m=0, T_{\epsilon}^{b}$ is just the commutator of T_{ϵ} and b, which is denoted by $T_{\epsilon, b}$, that is to say

$$
\begin{equation*}
T_{\epsilon, b} f(x)=\int_{|x-y|>\epsilon}(b(x)-b(y)) K(x, y) f(y) d y . \tag{1.6}
\end{equation*}
$$

However, when $m>0, T_{\epsilon}^{b}$ is a non-trivial generation of the commutator. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors (see [9-13]).
A locally integrable function b is said to be in Lipschitz space $\operatorname{Lip}_{\beta}(\mathbb{R})$ if

$$
\|b\|_{\lambda_{\beta}}=\sup _{I} \frac{1}{|I|^{1+\beta}} \int_{I}\left|b(x)-b_{I}\right| d x<\infty,
$$

where

$$
b_{I}=\frac{1}{|I|} \int_{I} b(x) d x .
$$

In this paper, we will study the boundedness of oscillation and variation operators for the family of the multilinear singular integral related to a Lipschitz function defined by (1.5) in weighted Lebesgue space. Our main results are as follows.

Theorem 1.1 Suppose that $K(x, y)$ satisfies (1.1)-(1.3), $b^{(m)} \in \dot{\wedge}_{\beta}, 0<\beta \leq \delta<1$, where δ is the same as in (1.2). Let $\rho>2, T=\left\{T_{\epsilon}\right\}_{\epsilon>0}$ and $T^{b}=\left\{T_{\epsilon}^{b}\right\}_{\epsilon>0}$ be given by (1.4) and (1.5), respectively. If $\mathcal{O}(T)$ and $\mathcal{V}_{\rho}(T)$ are bounded on $L^{p_{0}}(\mathbb{R}, d x)$ for some $1<p_{0}<\infty$, then, for any $1<p<1 / \beta$ with $1 / q=1 / p-\beta, \omega \in A_{p, q}(\mathbb{R}), \mathcal{O}\left(T^{b}\right)$ and $\mathcal{V}_{\rho}\left(T^{b}\right)$ are bounded from $L^{p}\left(\mathbb{R}, \omega^{p} d x\right)$ into $L^{q}\left(\mathbb{R}, \omega^{q} d x\right)$.

Corollary 1.1 Suppose that $K(x, y)$ satisfies (1.1)-(1.3), $b \in \dot{\wedge}_{\beta}, 0<\beta \leq \delta<1$, where δ is the same as in (1.2). Let $\rho>2, T=\left\{T_{\epsilon}\right\}_{\epsilon>0}$ and $T_{b}=\left\{T_{b, \epsilon}\right\}_{\epsilon>0}$ be given by (1.4) and (1.6), respectively. If $\mathcal{O}(T)$ and $\mathcal{V}_{\rho}(T)$ are bounded on $L^{p_{0}}(\mathbb{R}, d x)$ for some $1<p_{0}<\infty$, then, for any $1<p<1 / \beta$ with $1 / q=1 / p-\beta, \omega \in A_{p, q}(\mathbb{R}), \mathcal{O}\left(T_{b}\right)$ and $\mathcal{V}_{\rho}\left(T_{b}\right)$ are bounded from $L^{p}\left(\mathbb{R}, \omega^{p} d x\right)$ into $L^{q}\left(\mathbb{R}, \omega^{q} d x\right)$.

In this paper, we shall use the symbol $A \lesssim B$ to indicate that there exists a universal positive constant C, independent of all important parameters, such that $A \leq C B . A \approx B$ means that $A \lesssim B$ and $B \lesssim A$.

2 Some preliminaries

2.1 Weight

A weight ω is a nonnegative, locally integrable function on \mathbb{R}. The classical weight theories were introduced by Muckenhoupt and Wheeden in [14] and [15].
A weight ω is said to belong to the Muckenhoup class $A_{p}(\mathbb{R})$ for $1<p<\infty$, if there exists a constant C such that

$$
\left(\frac{1}{|I|} \int_{I} \omega(x) d x\right)\left(\frac{1}{|I|} \int_{I} \omega(x)^{-\frac{1}{p-1}} d x\right)^{p-1} \leq C
$$

for every interval I. The class $A_{1}(\mathbb{R})$ is defined by replacing the above inequality with

$$
\frac{1}{|I|} \int_{I} \omega(x) d x \lesssim \underset{x \in I}{\operatorname{essinf}} w(x) \quad \text { for every ball } I \subset \mathbb{R}
$$

When $p=\infty$, we define $A_{\infty}(\mathbb{R})=\bigcup_{1 \leq p<\infty} A_{p}(\mathbb{R})$.
A weight $\omega(x)$ is said to belong to the class $A_{p, q}(\mathbb{R}), 1<p \leq q<\infty$, if

$$
\left(\frac{1}{|I|} \int_{I} \omega(x)^{q} d x\right)^{1 / q}\left(\frac{1}{|I|} \int_{I} \omega(x)^{-p^{\prime}} d x\right)^{1 / p^{\prime}} \leq C
$$

It is well known that if $\omega \in A_{p . q}(\mathbb{R})$, then $\omega^{q} \in A_{\infty}(\mathbb{R})$.

2.2 Function of $\operatorname{Lip}_{\beta}(\mathbb{R})$

The function of $\operatorname{Lip}_{\beta}(\mathbb{R})$ has the following important properties.

Lemma 2.1 Let $b \in \operatorname{Lip}_{\beta}(\mathbb{R})$. Then
(1) $1 \leq p<\infty$

$$
\sup _{I} \frac{1}{|I|^{\beta}}\left(\frac{1}{|I|} \int_{I}\left|b(x)-b_{I}\right|^{p} d x\right)^{1 / p} \leq C\|b\|_{\dot{\lambda}_{\beta}}
$$

(2) for any $I_{1} \subset I_{2}$,

$$
\frac{1}{\left|I_{2}\right|} \int_{I_{2}}\left|b(y)-b_{I_{1}}\right| d y \lesssim \frac{\left|I_{2}\right|}{\left|I_{1}\right|}\left|I_{2}\right|^{\beta}\|b\|_{\lambda_{\beta}}
$$

2.3 Maximal function

We recall the definition of Hardy-Littlewood maximal operator and fractional maximal operator. The Hardy-Littlewood maximal operator is defined by

$$
M(f)(x)=\sup _{I \ni x} \frac{1}{|I|} \int_{I}|f(y)| d y .
$$

The fractional maximal function is defined as

$$
M_{\beta, r}(f)(x)=\sup _{I \ni x}\left(\frac{1}{|I|^{1-r \beta}} \int_{I}|f(y)|^{r} d y\right)^{1 / r}
$$

for $1 \leq r<\infty$. In order to simplify the notation, we set $M_{\beta}(f)(x)=M_{\beta, 1}(f)(x)$.

Lemma 2.2 Let $1<p<\infty$ and $\omega \in A_{\infty}(\mathbb{R})$. Then

$$
\|M f\|_{L^{p}(\omega)} \lesssim\left\|M^{\sharp} f\right\|_{L^{p}(\omega)}
$$

for all f such that the left hand side is finite.
Lemma 2.3 Suppose $0<\beta<1,1 \leq r<p<1 / \beta, 1 / q=1 / p-\beta$. If $\omega \in A_{p, q}(\mathbb{R})$, then

$$
\left\|M_{\beta, r} f\right\|_{L^{q}\left(\omega^{q}\right)} \lesssim\|f\|_{L^{p}\left(\omega^{p}\right)}
$$

2.4 Taylor series remainder

The following lemma gives an estimate on Taylor series remainder.

Lemma 2.4 [10] Let b be a function on \mathbb{R} and $b^{(m)} \in L^{s}(\mathbb{R})$ for any $s>1$. Then

$$
\left|R_{m}(b ; x, y)\right| \lesssim|x-y|^{m}\left(\frac{1}{\left|I_{x}^{y}\right|} \int_{I_{x}^{y}}\left|b^{(m)}(z)\right|^{s} d z\right)^{1 / s}
$$

where I_{x}^{y} is the interval $(x-5|x-y|, x+5|x-y|)$.

2.5 Oscillation and variation operators

We consider the operator

$$
\mathcal{O}^{\prime}(T f)(x)=\left(\sum_{i=1}^{\infty} \sup _{t_{i+1}<\delta_{i}<t_{i}}\left|T_{t_{i+1}} f(x)-T_{\delta_{i}} f(x)\right|^{2}\right)^{1 / 2}
$$

It is easy to check that

$$
\mathcal{O}^{\prime}(T f) \approx \mathcal{O}(T f)
$$

Following [4], we denote by E the mixed norm Banach space of two variable function h defined on $\mathbb{R} \times \mathbb{N}$ such that

$$
\|h\|_{E} \equiv\left(\sum_{i}\left(\sup _{s}|h(s, i)|\right)^{2}\right)^{1 / 2}<\infty
$$

Given $T=\left\{T_{\epsilon}\right\}_{\epsilon>0}$, where T_{ϵ} defined as (1.4), for a fixed decreasing sequence $\left\{t_{i}\right\}$ with $t_{i} \searrow 0$, let $J_{i}=\left(t_{i+1}, t_{i}\right]$ and define the E-valued operator $\mathcal{U}(T): f \rightarrow \mathcal{U}(T) f$ by

$$
\mathcal{U}(T) f(x)=\left\{T_{t_{i+1}} f(x)-T_{s} f(x)\right\}_{s \in J_{i}, i \in \mathbb{N}}=\left\{\int_{\left\{t_{i+1}<|x-y|<s\right\}} K(x, y) f(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}} .
$$

Then

$$
\begin{aligned}
\mathcal{O}^{\prime}(T f)(x) & =\|\mathcal{U}(T) f(x)\|_{E}=\left\|\left\{T_{t_{i+1}} f(x)-T_{s} f(x)\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \\
& =\left\|\left\{\int_{\left\{t_{i+1}<|x-y|<s\right\}} K(x, y) f(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} .
\end{aligned}
$$

On the other hand, let $\Theta=\left\{\beta: \beta=\left\{\epsilon_{i}\right\}, \epsilon_{i} \in \mathbb{R}, \epsilon_{i} \searrow 0\right\}$. We denote by F_{ρ} the mixed norm space of two variable functions $g(i, \beta)$ such that

$$
\|g\|_{F_{\rho}} \equiv \sup _{\beta}\left(\sum_{i}|g(i, \beta)|^{\rho}\right)^{1 / \rho} .
$$

We also consider the F_{ρ}-valued operator $\mathcal{V}(T): f \rightarrow \mathcal{V}(T) f$ given by

$$
\mathcal{V}(T) f(x)=\left\{T_{t_{i+1}} f(x)-T_{t_{i}} f(x)\right\}_{\beta=\left\{\epsilon_{i}\right\} \in \Theta} .
$$

Then

$$
\mathcal{V}_{\rho}(T) f(x)=\|\mathcal{V}(T) f(x)\|_{F_{\rho}}
$$

Next, let B be a Banach space and φ be a B-valued function, we define the sharp maximal operator as follows:

$$
\varphi^{\sharp}(x)=\sup _{x \in I} \frac{1}{|I|} \int_{I}\left\|\varphi(y)-\frac{1}{|I|} \int_{I} \varphi(z) d z\right\|_{B} d y \approx \sup _{x \in I} \inf _{c} \frac{1}{|I|} \int_{I}\|\varphi(y)-c\|_{B} d y .
$$

Then

$$
M^{\sharp}\left(\mathcal{O}^{\prime}(T f)\right) \leq 2(\mathcal{U}(T) f)^{\sharp}(x)
$$

and

$$
M^{\sharp}\left(\mathcal{V}_{\rho}(T f)\right) \leq 2(\mathcal{V}(T) f)^{\sharp}(x) .
$$

Finally, let us recall some results about oscillation and variation operators.

Lemma 2.5 ([5]) Suppose that $K(x, y)$ satisfies (1.1)-(1.3), $\rho>2$. Let $T=\left\{T_{\epsilon}\right\}_{\epsilon>0}$ be given by (1.4). If $O(T)$ and $V_{\rho}(T)$ are bounded on $L^{p_{0}}(R)$ for some $1<p_{0}<\infty$, then, for any $1<p<\infty$, $\omega \in A_{p}(\mathbb{R})$,

$$
\left\|\mathcal{O}^{\prime}(T f)\right\|_{L^{p}(\omega)} \leq\|\mathcal{O}(T f)\|_{L^{p}(\omega)} \lesssim\|f\|_{L^{p}(\omega)}
$$

and

$$
\left\|\mathcal{V}_{\rho}(T f)\right\|_{L^{p}(\omega)} \lesssim\|f\|_{L^{p}(\omega)} .
$$

3 The proof of main results

Note that if $\omega \in A_{p, q}(\mathbb{R})$, then $\omega^{q} \in A_{\infty}(\mathbb{R})$. By Lemma 2.2 and Lemma 2.3, we only need to prove

$$
\begin{equation*}
M^{\sharp}\left(\mathcal{O}^{\prime}\left(T^{b}\right) f\right)(x) \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(M_{\beta, r}(f)(x)+M_{\beta}(f)(x)\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{\sharp}\left(\mathcal{V}_{\rho}\left(T^{b}\right) f\right)(x) \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}}\left(M_{\beta, r}(f)(x)+M_{\beta}(f)(x)\right) \tag{3.2}
\end{equation*}
$$

hold for any $1<r<\infty$.
We will prove only inequality (3.1), since (3.2) can be obtained by a similar argument. Fix f and x_{0} with an interval $I=\left(x_{0}-l, x_{0}+l\right)$. Write $f=f_{1}+f_{2}=f \chi_{5 I}+f \chi_{\mathbb{R} \backslash 5 I}$, and let

$$
C_{I}=\left\{\int_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}} \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) f_{2}(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}}=\mathcal{U}\left(T^{b}\right) f_{2}\left(x_{0}\right) .
$$

Then

$$
\begin{aligned}
\mathcal{U}\left(T^{b}\right) f(x) & =\left\{\int_{\left\{t_{i+1}<|x-y|<s\right\}} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}} \\
& =\mathcal{U}(T)\left(\frac{R_{m+1}(b ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)+\mathcal{U}\left(T^{b}\right) f_{2}(x) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{1}{|I|} \int_{I}\left\|\mathcal{U}\left(T^{b}\right) f(x)-C_{I}\right\|_{E} d x \\
& \quad \leq \frac{1}{|I|} \int_{I}\left\|\mathcal{U}(T)\left(\frac{R_{m+1}(b ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right\|_{E} d x+\frac{1}{|I|} \int_{I}\left\|\mathcal{U}\left(T^{b}\right) f_{2}(x)-\mathcal{U}\left(T^{b}\right) f_{2}\left(x_{0}\right)\right\|_{E} d x \\
& \quad=M_{1}+M_{2}
\end{aligned}
$$

For $x \in I, k=0,-1,-2, \ldots$, let $E_{k}=\left\{y: 2^{k-1} \cdot 6 l \leq|y-x|<2^{k} \cdot 6 l\right\}$, let $I_{k}=\{y:|y-x|<$ $\left.2^{k} \cdot 6 l\right\}$, and let $b_{k}(z)=b(z)-\frac{1}{m!}\left(b^{(m)}\right)_{I_{k}} z^{m}$. By [10] we have $R_{m+1}(b ; x, y)=R_{m+1}\left(b_{k} ; x, y\right)$ for any $y \in E_{k}$.

By Lemma 2.5, we know $\mathcal{O}^{\prime}(T)$ is bounded on $L^{u}(\mathbb{R})$ for $u>1$. Then, using Hölder's inequality, we deduce

$$
\begin{aligned}
M_{1} & \lesssim\left(\frac{1}{|I|} \int_{I}\left\|\mathcal{U}(T)\left(\frac{R_{m+1}(b ; x, \cdot)}{|x-\cdot|^{m}} f_{1}\right)\right\|_{E}^{u} d x\right)^{1 / u} \\
\lesssim & \left(\frac{1}{|I|} \int_{\{y:|y-x|<6 l\}}\left|\frac{R_{m+1}(b ; \cdot, y)}{|y-\cdot|^{m}} f(y)\right|^{u} d y\right)^{1 / u} \\
= & \left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}\left|\left(\frac{R_{m+1}\left(b_{k} ; \cdot, y\right)}{|y-\cdot|^{m}} f(y)\right)\right|^{r} d y\right)^{1 / r} \\
\lesssim & \left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}\left|\left(\left(\frac{R_{m}\left(b_{k} ; \cdot, y\right)}{|y-\cdot|^{m}}-\frac{1}{m!} \frac{(y-\cdot)^{m} b_{k}^{(m)}(y)}{|y-\cdot|^{m}}\right) f(y)\right)\right|^{u} d y\right)^{1 / u} \\
\lesssim & \left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}\left|\frac{R_{m}\left(b_{k} ; \cdot \cdot y\right)}{|y-\cdot|^{m}} f(y)\right|^{u} d y\right)^{1 / u} \\
& +\left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}\left|\frac{1}{m!} \frac{(y-\cdot)^{m} b_{k}^{(m)}(y)}{|y-\cdot|^{m}} f(y)\right|^{u} d y\right)^{1 / u} \\
= & M_{11}+M_{12} .
\end{aligned}
$$

By Lemma 2.4 and Lemma 2.1,

$$
\begin{aligned}
\left|R_{m}\left(b_{k} ; x, y\right)\right| & \lesssim|x-y|^{m}\left(\frac{1}{\left|I_{x}^{y}\right|} \int_{I_{x}^{y}}\left|b_{k}^{(m)}(z)\right|^{s} d z\right)^{1 / s} \\
& \lesssim|x-y|^{m}\left(\frac{1}{2^{k} \cdot 30 l} \int_{|y-x|<2^{k} \cdot 30 l}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}\right|^{s} d z\right)^{1 / s} \\
& \lesssim|x-y|^{m}\left(2^{k} l\right)^{\beta}\left\|b^{(m)}\right\|_{\lambda_{\beta}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
M_{11} & \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} l^{\beta}\left(\frac{1}{|I|} \sum_{k=-\infty}^{0} 2^{k \beta u} \int_{E_{k}}|f(y)|^{u} d y\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} l^{\beta}\left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}|f(y)|^{u} d y\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} l^{\beta}\left(\frac{1}{|I|} \int_{7 I}|f(y)|^{u} d y\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} l^{\beta}\left(\frac{1}{|I|} \int_{7 I}|f(y)|^{r} d y\right)^{1 / r} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right) .
\end{aligned}
$$

Since $b_{k}^{(m)}(y)=b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}$, then, applying Hölder's inequality and Lemma 2.1, we get

$$
\begin{aligned}
M_{12} & \lesssim\left(\frac{1}{|I|} \sum_{k=-\infty}^{0} \int_{E_{k}}\left|\left(b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}\right) f(y)\right|^{u} d y\right)^{1 / u} \\
& \lesssim\left(\frac{1}{|I|} \sum_{k=-\infty}^{0}\left(\int_{I_{k}}|f(y)|^{r} d y\right)^{u / r}\left(\int_{I_{k}}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}\right|^{\frac{u r}{r-u}}\right)^{1-u / r}\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(\frac{1}{|I|} \sum_{k=-\infty}^{0}\left(\int_{I_{k}}|f(y)|^{r} d y\right)^{u / r}\left|I_{k}\right|^{\beta u+1-u / r}\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} M_{\beta, r}(f)\left(x_{0}\right)\left(\frac{1}{|I|} \sum_{k=-\infty}^{0}\left|I_{k}\right|\right)^{1 / u} \\
& \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} M_{\beta, r}(f)\left(x_{0}\right) .
\end{aligned}
$$

We now estimate M_{2}. For $x \in I$, we have

$$
\begin{aligned}
\| \mathcal{U}(& \left.T^{b}\right) f_{2}(x)-\mathcal{U}\left(T^{b}\right) f_{2}\left(x_{0}\right) \|_{E} \\
= & \|\left\{\int_{\left\{t_{i+1}<|x-y|<s\right\}} \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y) f_{2}(y) d y\right. \\
& \left.-\int_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}} \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) f_{2}(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}} \|_{E} \\
\leq & \left\|\left\{\int_{\left\{t_{i+1}<|x-y|<s\right\}}\left(\frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y)-\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right)\right) f_{2}(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \\
& +\left\|\left\{\int_{R}\left(\chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)-\chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y)\right) \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) f_{2}(y) d y\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \\
= & N_{1}+N_{2} .
\end{aligned}
$$

For $k=0,1,2, \ldots$, let $F_{k}=\left\{y: 2^{k} \cdot 4 l \leq\left|y-x_{0}\right|<2^{k+1} \cdot 4 l\right\}$, let $\tilde{I}_{k}=\left\{y:\left|y-x_{0}\right|<2^{k} \cdot 4 l\right\}$, and let $\widetilde{b}_{k}(z)=b(z)-\frac{1}{m!}\left(b^{(m)}\right) \tilde{I}_{k} z^{m}$. Note that

$$
\begin{aligned}
& \frac{R_{m+1}(b ; x, y)}{|x-y|^{m}} K(x, y)-\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) \\
& =\frac{R_{m+1}\left(\widetilde{b}_{k} ; x, y\right)}{|x-y|^{m}} K(x, y)-\frac{R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) \\
& =\frac{1}{|x-y|^{m}}\left(R_{m}\left(\widetilde{b}_{k} ; x, y\right)-R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right) K(x, y) \\
& \quad+R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\left(\frac{1}{|x-y|^{m}}-\frac{1}{\left|x_{0}-y\right|^{m}}\right) K(x, y) \\
& \quad-\frac{1}{m!} \widetilde{b}_{k}^{(m)}(y)\left(\frac{(x-y)^{m}}{|x-y|^{m}}-\frac{\left(x_{0}-y\right)^{m}}{\left|x_{0}-y\right|^{m}}\right) K(x, y) \\
& \quad+\frac{R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\left(K(x, y)-K\left(x_{0}, y\right)\right) .
\end{aligned}
$$

By Minkowski's inequalities and $\left\|\left\{\chi_{\left\{t_{i+1}<|x-y|<s\right\}}\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \leq 1$, we obtain

$$
\begin{aligned}
N_{1} \leq & \int_{\mathbb{R}}\left\|\left\{\chi_{\left.\left\langle t_{i+1}<\right| x-y \mid<s\right\}}\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \\
& \times\left|\frac{R_{m+1}\left(\widetilde{b}_{k} ; x, y\right)}{|x-y|^{m}} K(x, y)-\frac{R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right)\right|\left|f_{2}(y)\right| d y \\
\leq & \sum_{k=0}^{\infty} \int_{F_{k}} \frac{1}{|x-y|^{m}}\left|R_{m}\left(\widetilde{b}_{k} ; x, y\right)-R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right||K(x, y)|\left|f_{2}(y)\right| d y \\
& +\sum_{k=0}^{\infty} \int_{F_{k}}\left|R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right|\left|\frac{1}{|x-y|^{m}}-\frac{1}{\left|x_{0}-y\right|^{m}}\right||K(x, y)|\left|f_{2}(y)\right| d y \\
& +\sum_{k=0}^{\infty} \int_{F_{k}} \frac{1}{m!}\left|\widetilde{b}_{k}^{(m)}(y)\right|\left|\frac{(x-y)^{m}}{|x-y|^{m}}-\frac{\left(x_{0}-y\right)^{m}}{\left|x_{0}-y\right|^{m}}\right||K(x, y)|\left|f_{2}(y)\right| d y \\
& +\sum_{k=0}^{\infty} \int_{F_{k}}\left|\frac{R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|\left|K(x, y)-K\left(x_{0}, y\right)\right|\left|f_{2}(y)\right| d y \\
= & N_{11}+N_{12}+N_{13}+N_{14} .
\end{aligned}
$$

From the mean value theorem, there exists $\eta \in I$ such that

$$
R_{m}\left(\widetilde{b}_{k} ; x, y\right)-R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)=\left(x-x_{0}\right) R_{m-1}\left(\widetilde{b}_{k}^{\prime} ; \eta, y\right) .
$$

For $\eta, x \in I, y \in F_{k}$, we have $\left|y-x_{0}\right| \approx|y-x| \approx|y-\eta|$ and $5|y-\eta| \approx 5\left|y-x_{0}\right| \leq 2^{k+1} \cdot 20 l$. By Lemma 2.4 and Lemma 2.1 we get

$$
\begin{aligned}
\left|R_{m-1}\left(\widetilde{b}_{k}^{\prime} ; \eta, y\right)\right| & \lesssim|\eta-y|^{m-1}\left(\frac{1}{\left|I_{\eta}^{y}\right|} \int_{I_{\eta}^{y}}\left|\widetilde{b}_{k}^{(m)}(z)\right|^{s} d z\right)^{1 / s} \\
& \lesssim|x-y|^{m-1}\left(\frac{1}{2^{k+1} \cdot 20 l} \int_{\left|z-x_{0}\right|<2^{k+1} \cdot 20 l}\left|b^{(m)}(z)-\left(b^{(m)}\right)_{\widetilde{I}_{k}}\right|^{s} d z\right)^{1 / s} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}}\left(2^{k} l\right)^{\beta}|x-y|^{m-1} .
\end{aligned}
$$

Then

$$
\left|R_{m}\left(\widetilde{b}_{k} ; x, y\right)-R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right| \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(2^{k} l\right)^{\beta}\left|x-x_{0}\right||x-y|^{m-1}
$$

Since $|K(x, y)| \leq C\left|x_{0}-y\right|^{-1}$,

$$
\begin{aligned}
N_{11} & \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} \sum_{k=0}^{\infty}\left(2^{k} l\right)^{\beta} \int_{2^{k} \cdot 4 l \leq\left|x_{0}-y\right|<2^{k+1} \cdot 4 l} \frac{l}{\left(2^{k} \cdot 4 l\right)^{2}}|f(y)| d y \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{\left(2^{k} l\right)^{\beta}}{2^{k} l} \int_{\left|x_{0}-y\right|<2^{k+1} \cdot 4 l}|f(y)| d y \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta}(f)\left(x_{0}\right) .
\end{aligned}
$$

For N_{12}, since $x \in I, y \in F_{k}$,

$$
\left|R_{m}\left(\widetilde{b}_{k} ; x, y\right)\right| \lesssim|x-y|^{m}\left(\frac{1}{\left|I_{x}^{y}\right|} \int_{I_{x}^{l}}\left|\widetilde{b}_{k}^{(m)}(z)\right|^{s} d z\right)^{1 / s} \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}}\left(2^{k} l\right)^{\beta}|x-y|^{m}
$$

and

$$
\left|\frac{1}{|x-y|^{m}}-\frac{1}{\left|x_{0}-y\right|^{m}}\right| \lesssim \frac{\left|x-x_{0}\right|}{|x-y|^{m+1}} .
$$

Thus

$$
N_{12} \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} \sum_{k=0}^{\infty}\left(2^{k} l\right)^{\beta} \int_{2^{k} \cdot 4 l \leq\left|x_{0}-y\right|<2^{k+1} \cdot 4 l} \frac{l}{\left(2^{k} \cdot 4 l\right)^{2}}|f(y)| d y \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta}(f)\left(x_{0}\right)
$$

As for N_{13}, due to

$$
\left|\frac{(x-y)^{m}}{|x-y|^{m}}-\frac{\left(x_{0}-y\right)^{m}}{\left|x_{0}-y\right|^{m}}\right| \lesssim \frac{\left|x-x_{0}\right|}{|x-y|},
$$

and noting $\widetilde{b}_{k}^{(m)}(y)=b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}$, we have

$$
\begin{aligned}
& N_{13} \lesssim \\
& \sum_{k=0}^{\infty} \int_{F_{k}}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{\tilde{I}_{k}}\right| \frac{\left|x-x_{0}\right|}{\left|x_{0}-y\right|^{2}}|f(y)| d y \\
& \lesssim \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{I_{k}}\right||f(y)| d y \\
& \lesssim \sum_{k=0}^{\infty} \frac{1}{2^{k}}\left(\frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}|f(y)|^{r} d y\right)^{1 / r} \\
& \times\left(\frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{\tilde{I}_{k}}\right|^{r^{\prime}} d y\right)^{1 / r^{\prime}} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{r, \beta}(f)\left(x_{0}\right) \sum_{k=0}^{\infty} \frac{1}{2^{k}} \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right) .
\end{aligned}
$$

Notice

$$
\begin{aligned}
\left|R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right| & \leq\left|R_{m}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right|+\frac{1}{m!}\left|\widetilde{b}_{k}^{(m)}(y)\left(x_{0}-y\right)^{m}\right| \\
& \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(2^{k} l\right)^{\beta}\left|x_{0}-y\right|^{m}+\mid b^{(m)}(y)-\left(b^{(m)} \tilde{I}_{k}| | x_{0}-\left.y\right|^{m}\right.
\end{aligned}
$$

and by (1.2),

$$
\left|K(x, y)-K\left(x_{0}, y\right)\right| \lesssim \frac{\left|x-x_{0}\right|^{\delta}}{\left|x_{0}-y\right|^{1+\delta}}
$$

Similar to the estimates for N_{11}, we have

$$
\sum_{k=0}^{\infty} \int_{F_{k}} \frac{\left|R_{m}\left(\tilde{b}_{k} ; x_{0}, y\right)\right|}{|x-y|^{m}} \frac{\left|x-x_{0}\right|^{\delta}}{\left|x_{0}-y\right|^{1+\delta}}|f(y)| d y \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} M_{\beta}(f)\left(x_{0}\right) .
$$

Similar to the estimates for N_{13}, we have

$$
\sum_{k=0}^{\infty} \int_{F_{k}} \frac{\left|\widetilde{b}_{k}^{(m)}(y)\left(x_{0}-y\right)^{m}\right|}{|x-y|^{m}} \frac{\left|x-x_{0}\right|^{\delta}}{\left|x_{0}-y\right|^{1+\delta}}|f(y)| d y \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}} M_{\beta, r}(f)\left(x_{0}\right) .
$$

Then

$$
N_{14} \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(M_{\beta}(f)\left(x_{0}\right)+M_{\beta, r}(f)\left(x_{0}\right)\right) .
$$

Finally, let us estimate N_{2}. Notice that the integral

$$
\int_{R}\left(\chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)-\chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y)\right) \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) f_{2}(y) d y
$$

will be non-zero in the following cases:
(i) $t_{i+1}<|x-y|<s$ and $\left|x_{0}-y\right| \leq t_{i+1}$;
(ii) $t_{i+1}<|x-y|<s$ and $\left|x_{0}-y\right| \geq s$;
(iii) $t_{i+1}<\left|x_{0}-y\right|<s$ and $|x-y| \leq t_{i+1}$;
(iv) $t_{i+1}<\left|x_{0}-y\right|<s$ and $|x-y| \geq s$.

In case (i) we have $t_{i+1}<|x-y| \leq\left|x_{0}-x\right|+\left|x_{0}-y\right|<l+t_{i+1}$ as $\left|x-x_{0}\right|<l$. Similarly, in case (iii) we have $t_{i+1}<\left|x_{0}-y\right|<l+t_{i+1}$ as $\left|x-x_{0}\right|<l$. In case (ii) we have $s<\left|x_{0}-y\right|<l+s$ and in case (iv) we have $s<|x-y|<l+s$. By (1.1) and taking $1<t<r$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}}(\left(\chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)-\chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y)\right) \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}} K\left(x_{0}, y\right) f_{2}(y) d y \\
& \lesssim \\
& \quad \int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y) \chi_{\left\{t_{i+1}<|x-y|<l+t_{i+1}\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right| \frac{\left|f_{2}(y)\right|}{\left|x_{0}-y\right|} d y \\
&+\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y) \chi_{\left\{s<\left|x_{0}-y\right|<l+s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right| \frac{\left|f_{2}(y)\right|}{\left|x_{0}-y\right|} d y \\
&+\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y) \chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<l+t_{i+1}\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right| \frac{\left|f_{2}(y)\right|}{\left|x_{0}-y\right|} d y \\
& \quad+\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y) \chi_{\{s<|x-y|<l+s\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right| \frac{\left|f_{2}(y)\right|}{\left|x_{0}-y\right|} d y \\
& \lesssim l^{1 / t^{\prime}}\left(\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right)^{1 / t} \\
& \quad+l^{1 / t^{\prime}}\left(\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right)^{1 / t} .
\end{aligned}
$$

Then

$$
\begin{aligned}
N_{2} \lesssim & \lesssim l^{1 / t^{\prime}}\left\|\left\{\left(\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right)^{1 / t}\right\}_{s \in J_{i}, i \in \mathbb{N}}\right\|_{E} \\
& +l^{1 / t^{\prime}}\left\|\left\{\left(\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<\left|x_{0}-y\right|<s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right)^{1 / t}\right\}_{s \in J_{i, i} \in \mathbb{N}}\right\|_{E} \\
= & N_{21}+N_{22} .
\end{aligned}
$$

Notice

$$
\left|R_{m+1}\left(\widetilde{b}_{k} ; x_{0}, y\right)\right| \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}}\left(2^{k} l\right)^{\beta}\left|x_{0}-y\right|^{m}+\left|b^{(m)}(y)-\left(b^{(m)}\right)_{\tilde{I}_{k}}\right|\left|x_{0}-y\right|^{m} .
$$

Choosing $1<r<p$ with $t=\sqrt{r}$, we have

$$
\left.\left.\begin{array}{rl}
N_{21} & \lesssim l^{1 / t^{\prime}}\left\{\sum_{i \in \mathbb{N}} \sup _{s \in J_{i}}\left(\int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<s\right\}}(y)\left|\frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right)^{2 / t}\right\}^{1 / 2} \\
& \lesssim l^{1 / t^{\prime}}\left\{\left.\sum_{i \in \mathbb{N}} \int_{\mathbb{R}} \chi_{\left\{t_{i+1}<|x-y|<t_{i}\right\rangle}(y)\right|^{R_{m+1}\left(b ; x_{0}, y\right)}\right. \\
\left|x_{0}-y\right|^{m}
\end{array}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right\}^{1 / t} l^{1 / t^{\prime}}\left\{\left.\int_{\mathbb{R}} \frac{R_{m+1}\left(b ; x_{0}, y\right)}{\left|x_{0}-y\right|^{m}}\right|^{t} \frac{\left|f_{2}(y)\right|^{t}}{\left|x_{0}-y\right|^{t}} d y\right\}^{1 / t} .
$$

But

$$
\begin{aligned}
l^{1 / t^{\prime}} & \left\{\sum_{k=0}^{\infty}\left(2^{k} l\right)^{\beta t} \int_{F_{k}} \frac{|f(y)|^{t}}{\left|x_{0}-y\right|^{t}} d y\right\}^{1 / t} \\
& \lesssim l^{1 / t^{\prime}}\left(\sum_{k=1}^{\infty} \frac{\left(2^{k} l\right)^{\beta t}}{\left(2^{k} \cdot 4 l\right)^{t}} \int_{\left|x_{0}-y\right|<2^{k+1.4 l}}|f(y)|^{t} d y\right)^{1 / t} \\
& \lesssim\left(\sum_{k=1}^{\infty} \frac{1}{2^{k(t-1)}} \frac{\left(2^{k} l\right)^{\beta t}}{2^{k} \cdot 5 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 5 l}|f(y)|^{t} d y\right)^{1 / t} \\
& \lesssim\left(\sum_{k=1}^{\infty} \frac{1}{2^{k(t-1)}}\left(\frac{\left(2^{k} l\right)^{\beta t^{2}}}{2^{k} \cdot 5 l} \int_{\left|x_{0}-y\right|<2^{k} .5 l}|f(y)|^{t^{2}} d y\right)^{1 / t}\right)^{1 / t} \\
& \lesssim\left(\sum_{k=1}^{\infty} \frac{1}{2^{k(t-1)}}\right)^{1 / t} M_{\beta, r}(f)\left(x_{0}\right) \lesssim M_{\beta, r}(f)\left(x_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& l^{1 / t^{\prime}}\left\{\sum_{k=0}^{\infty} \int_{F_{k}}\left(\left.\left|b^{(m)}(y)-\left(b^{(m)}\right)_{\tilde{I}_{k}}\right|\right|^{t} \frac{|f(y)|^{t}}{\left|x_{0}-y\right|^{t}} d y\right\}^{1 / t}\right. \\
& \quad \lesssim\left(\sum_{k=0}^{\infty} \frac{1}{2^{k(t-1)}} \frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}\left|b^{(m)}(y)-\left(b^{(m)}\right)_{\tilde{I}_{k}}\right|^{t}|f(y)|^{t} d y\right)^{1 / t}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim\left(\sum_{k=0}^{\infty} \frac{1}{2^{k(t-1)}}\left(\frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}|f(y)|^{t^{2}} d y\right)^{1 / t}\right. \\
& \times\left(\left.\frac{1}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l} \right\rvert\, b^{(m)}(y)-\left(\left.b^{(m)} \tilde{I}_{k}\right|^{t t^{\prime}}\right)^{1 / t^{\prime}}\right)^{1 / t} \\
& \lesssim\left\|b^{(m)}\right\|_{\lambda_{\beta}}\left(\sum_{k=0}^{\infty} \frac{1}{2^{k(t-1)}}\left(\frac{\left(2^{k} \cdot 4 l\right)^{r \beta}}{2^{k} \cdot 4 l} \int_{\left|x_{0}-y\right|<2^{k} \cdot 4 l}|f(y)|^{t^{2}} d y\right)^{1 / t}\right)^{1 / t} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right)\left(\sum_{k=0}^{\infty} \frac{1}{2^{k(t-1)}}\right)^{1 / t} \\
& \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right) .
\end{aligned}
$$

Therefore

$$
N_{21} \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right)
$$

Similarly,

$$
N_{22} \lesssim\left\|b^{(m)}\right\|_{\dot{\lambda}_{\beta}} M_{\beta, r}(f)\left(x_{0}\right)
$$

This completes the proof of (3.1). Hence, Theorem 1.1 is proved.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors completed the paper together. They also read and approved the final manuscript.

Author details

${ }^{1}$ College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo, 454003, China. ${ }^{2}$ Department of Mathematics, Jiaozuo University, Jiaozuo, 454003, China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 12 October 2017 Accepted: 9 November 2017 Published online: 25 November 2017

References

1. Campbell, JT, Jones, RL, Reinhold, K, Wierdl, M: Oscillation and variation for the Hilbert transform. Duke Math. J. 105, 59-83 (2000)
2. Akcoglu, M, Jones, RL, Schwartz, P: Variation in probability, ergodic theory and analysis. III. J. Math. 42, 154-177 (1998)
3. Crescimbeni, R, Martin-Reyes, FL, Torre, AL, Torrea, JL: The ρ-variation of the Hermitian Riesz transform. Acta Math. Sin. Engl. Ser. 26, 1827-1838 (2010)
4. Gillespie, TA, Torrea, JL: Dimension free estimates for the oscillation of Riesz transforms. Isr. J. Math. 141, 125-144 (2004)
5. Liu, F, Wu, HX: A criterion on oscillation and variation for the commutators of singular integral operators. Forum Math. 27, 77-97 (2015)
6. Zhang, J, Wu, HX: Oscillation and variation inequalities for singular integrals and commutators on weighted Morrey spaces. Front. Math. China 11, 423-447 (2016)
7. Zhang, J, Wu, HX: Oscillation and variation inequalities for the commutators of singular integrals with Lipschitz functions. J. Inequal. Appl. 2015, 214, 21 pp. (2015)
8. Zhang, J, Wu, HX: Weighted oscillation and variation inequalities for singular integrals and commutators satisfying Hörmander type condition. Acta Math. Sin. 33, 1397-1420 (2017)
9. Cohen, J: A sharp estimate for a multilinear singular integral on \mathbb{R}^{n}. Indiana Univ. Math. J. 30, 693-702 (1981)
10. Cohen, J, Gosselin, J: A BMO estimate for multilinear singular integral operators. III. J. Math. 30, 445-465 (1986)
11. Ding, Y, Lu, SZ: Weighted boundedness for a class rough multilinear operators. Acta Math. Sin. 17, 517-526 (2001)
12. Lu, SZ, Wu, HX, Zhang, P: Multilinear singular integral with rough kernel. Acta Math. Sin. 19, 51-62 (2003)
13. Chen, WG: A Besov estimate for multilinear singular integrals. Acta Math. Sin. 16, 613-626 (2000)
14. Muckenhoupt, B: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207-226 (1972)
15. Muckenhoupt, B, Wheeden, RL: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 249-258 (1971)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

