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1 Introduction and results
Let K be a kernel on R×R \ {(x, x) : x ∈ R}. Suppose that there exist two constants δ and
C such that

∣
∣K(x, y)

∣
∣ ≤ C

|x – y| for x �= y; (.)

∣
∣K(x, y) – K

(

x′, y
)∣
∣ ≤ C|x – x′|δ

|x – y|+δ
for |x – y| ≥ 

∣
∣x – x′∣∣; (.)

∣
∣K(x, y) – K

(

x, y′)∣∣ ≤ C|y – y′|δ
|x – y|+δ

for |x – y| ≥ 
∣
∣y – y′∣∣. (.)

We consider the family of operators T = {Tε}ε> given by

Tε f (x) =
∫

|x–y|>ε

K(x, y)f (y) dy. (.)

A common method of measuring the speed of convergence of the family Tε is to consider
the square functions

( ∞
∑

i=

|Tεi f – Tεi+ f |
)/

,

where εi is a monotonically decreasing sequence which approaches . For convenience,
other expressions have also been considered. Let {ti} be a fixed sequence which decreases
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to zero. Following [], the oscillation operator is defined as

O(Tf )(x) =

( ∞
∑

i=

sup
ti+≤εi+<εi≤ti

∣
∣Tεi+ f (x) – Tεi f (x)

∣
∣

)/

and the ρ-variation operator is defined as

Vρ(Tf )(x) = sup
εi↘

( ∞
∑

i=

∣
∣Tεi+ f (x) – Tεi f (x)

∣
∣
ρ

)/ρ

,

where the sup is taken over all sequences of real number {εi} decreasing to zero.
The oscillation and variation for some families of operators have been studied by many

authors on probability, ergodic theory, and harmonic analysis; see [–]. Recently, some
authors [–] researched the weighted estimates of the oscillation and variation operators
for the commutators of singular integrals.

Let m be a positive integer, let b be a function on R, and let Rm+(b; x, y) be the m + th
Taylor series remainder of b at x expander about y, i.e.

Rm+(b; x, y) = b(x) –
∑

α≤m


α!

b(α)(y)(x – y)α .

We consider the family of operators Tb = {Tb
ε }ε>, where Tb

ε are the multilinear singular
integral operators of Tε ,

Tb
ε f (x) =

∫

|x–y|>ε

Rm+(b; x, y)
|x – y|m K(x, y)f (y) dy. (.)

Note that when m = , Tb
ε is just the commutator of Tε and b, which is denoted by Tε,b,

that is to say

Tε,bf (x) =
∫

|x–y|>ε

(

b(x) – b(y)
)

K(x, y)f (y) dy. (.)

However, when m > , Tb
ε is a non-trivial generation of the commutator. It is well known

that multilinear operators are of great interest in harmonic analysis and have been widely
studied by many authors (see [–]).

A locally integrable function b is said to be in Lipschitz space Lipβ (R) if

‖b‖∧̇β
= sup

I


|I|+β

∫

I

∣
∣b(x) – bI

∣
∣dx < ∞,

where

bI =

|I|

∫

I
b(x) dx.

In this paper, we will study the boundedness of oscillation and variation operators for the
family of the multilinear singular integral related to a Lipschitz function defined by (.)
in weighted Lebesgue space. Our main results are as follows.
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Theorem . Suppose that K(x, y) satisfies (.)-(.), b(m) ∈ ∧̇β ,  < β ≤ δ < , where δ is
the same as in (.). Let ρ > , T = {Tε}ε> and Tb = {Tb

ε }ε> be given by (.) and (.), re-
spectively. If O(T) and Vρ(T) are bounded on Lp (R, dx) for some  < p < ∞, then, for
any  < p < /β with /q = /p – β , ω ∈ Ap,q(R), O(Tb) and Vρ(Tb) are bounded from
Lp(R,ωp dx) into Lq(R,ωq dx).

Corollary . Suppose that K(x, y) satisfies (.)-(.), b ∈ ∧̇β ,  < β ≤ δ < , where δ is
the same as in (.). Let ρ > , T = {Tε}ε> and Tb = {Tb,ε}ε> be given by (.) and (.),
respectively. If O(T) and Vρ(T) are bounded on Lp (R, dx) for some  < p < ∞, then,
for any  < p < /β with /q = /p – β , ω ∈ Ap,q(R), O(Tb) and Vρ(Tb) are bounded from
Lp(R,ωp dx) into Lq(R,ωq dx).

In this paper, we shall use the symbol A � B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A ≤ CB. A ≈ B
means that A � B and B � A.

2 Some preliminaries
2.1 Weight
A weight ω is a nonnegative, locally integrable function on R. The classical weight theories
were introduced by Muckenhoupt and Wheeden in [] and [].

A weight ω is said to belong to the Muckenhoup class Ap(R) for  < p < ∞, if there exists
a constant C such that

(

|I|

∫

I
ω(x) dx

)(

|I|

∫

I
ω(x)– 

p– dx
)p–

≤ C

for every interval I . The class A(R) is defined by replacing the above inequality with


|I|

∫

I
ω(x) dx � ess inf

x∈I
w(x) for every ball I ⊂R.

When p = ∞, we define A∞(R) =
⋃

≤p<∞ Ap(R).
A weight ω(x) is said to belong to the class Ap,q(R),  < p ≤ q < ∞, if

(

|I|

∫

I
ω(x)q dx

)/q( 
|I|

∫

I
ω(x)–p′

dx
)/p′

≤ C.

It is well known that if ω ∈ Ap.q(R), then ωq ∈ A∞(R).

2.2 Function of Lipβ (R)
The function of Lipβ (R) has the following important properties.

Lemma . Let b ∈ Lipβ (R). Then
()  ≤ p < ∞

sup
I


|I|β

(

|I|

∫

I

∣
∣b(x) – bI

∣
∣
p dx

)/p

≤ C‖b‖∧̇β
;
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() for any I ⊂ I,


|I|

∫

I

∣
∣b(y) – bI

∣
∣dy � |I|

|I| |I|β‖b‖∧̇β
.

2.3 Maximal function
We recall the definition of Hardy-Littlewood maximal operator and fractional maximal
operator. The Hardy-Littlewood maximal operator is defined by

M(f )(x) = sup
I�x


|I|

∫

I

∣
∣f (y)

∣
∣dy.

The fractional maximal function is defined as

Mβ ,r(f )(x) = sup
I�x

(


|I|–rβ

∫

I

∣
∣f (y)

∣
∣
r dy

)/r

for  ≤ r < ∞. In order to simplify the notation, we set Mβ (f )(x) = Mβ ,(f )(x).

Lemma . Let  < p < ∞ and ω ∈ A∞(R). Then

‖Mf ‖Lp(ω) �
∥
∥M�f

∥
∥

Lp(ω)

for all f such that the left hand side is finite.

Lemma . Suppose  < β < ,  ≤ r < p < /β , /q = /p – β . If ω ∈ Ap,q(R), then

‖Mβ ,rf ‖Lq(ωq) � ‖f ‖Lp(ωp).

2.4 Taylor series remainder
The following lemma gives an estimate on Taylor series remainder.

Lemma . [] Let b be a function on R and b(m) ∈ Ls(R) for any s > . Then

∣
∣Rm(b; x, y)

∣
∣� |x – y|m

(


|Iy
x |

∫

Iy
x

∣
∣b(m)(z)

∣
∣
s dz

)/s

,

where Iy
x is the interval (x – |x – y|, x + |x – y|).

2.5 Oscillation and variation operators
We consider the operator

O′(Tf )(x) =

( ∞
∑

i=

sup
ti+<δi<ti

∣
∣Tti+ f (x) – Tδi f (x)

∣
∣

)/

.

It is easy to check that

O′(Tf ) ≈O(Tf ).



Hu and Wang Journal of Inequalities and Applications  (2017) 2017:292 Page 5 of 14

Following [], we denote by E the mixed norm Banach space of two variable function h
defined on R×N such that

‖h‖E ≡
(

∑

i

(

sup
s

∣
∣h(s, i)

∣
∣

)
)/

< ∞.

Given T = {Tε}ε>, where Tε defined as (.), for a fixed decreasing sequence {ti} with
ti ↘ , let Ji = (ti+, ti] and define the E-valued operator U (T) : f → U (T)f by

U (T)f (x) =
{

Tti+ f (x) – Tsf (x)
}

s∈Ji ,i∈N =
{∫

{ti+<|x–y|<s}
K(x, y)f (y) dy

}

s∈Ji ,i∈N
.

Then

O′(Tf )(x) =
∥
∥U (T)f (x)

∥
∥

E =
∥
∥
{

Tti+ f (x) – Tsf (x)
}

s∈Ji ,i∈N
∥
∥

E

=
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}
K(x, y)f (y) dy

}

s∈Ji ,i∈N

∥
∥
∥
∥

E
.

On the other hand, let 	 = {β : β = {εi}, εi ∈R, εi ↘ }. We denote by Fρ the mixed norm
space of two variable functions g(i,β) such that

‖g‖Fρ ≡ sup
β

(
∑

i

∣
∣g(i,β)

∣
∣
ρ

)/ρ

.

We also consider the Fρ-valued operator V(T) : f → V(T)f given by

V(T)f (x) =
{

Tti+ f (x) – Tti f (x)
}

β={εi}∈	
.

Then

Vρ(T)f (x) =
∥
∥V(T)f (x)

∥
∥

Fρ
.

Next, let B be a Banach space and ϕ be a B-valued function, we define the sharp maximal
operator as follows:

ϕ�(x) = sup
x∈I


|I|

∫

I

∥
∥
∥
∥
ϕ(y) –


|I|

∫

I
ϕ(z) dz

∥
∥
∥
∥

B
dy ≈ sup

x∈I
inf

c


|I|

∫

I

∥
∥ϕ(y) – c

∥
∥

B dy.

Then

M�
(

O′(Tf )
) ≤ 

(

U (T)f
)�(x)

and

M�
(

Vρ(Tf )
) ≤ 

(

V(T)f
)�(x).

Finally, let us recall some results about oscillation and variation operators.
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Lemma . ([]) Suppose that K(x, y) satisfies (.)-(.), ρ > . Let T = {Tε}ε> be given by
(.). If O(T) and Vρ(T) are bounded on Lp (R) for some  < p < ∞, then, for any  < p < ∞,
ω ∈ Ap(R),

∥
∥O′(Tf )

∥
∥

Lp(ω) ≤ ∥
∥O(Tf )

∥
∥

Lp(ω) � ‖f ‖Lp(ω)

and

∥
∥Vρ(Tf )

∥
∥

Lp(ω) � ‖f ‖Lp(ω).

3 The proof of main results
Note that if ω ∈ Ap,q(R), then ωq ∈ A∞(R). By Lemma . and Lemma ., we only need
to prove

M�
(

O′(Tb)f
)

(x) �
∥
∥b(m)∥∥∧̇β

(

Mβ ,r(f )(x) + Mβ (f )(x)
)

(.)

and

M�
(

Vρ

(

Tb)f
)

(x) �
∥
∥b(m)∥∥∧̇β

(

Mβ ,r(f )(x) + Mβ (f )(x)
)

(.)

hold for any  < r < ∞.
We will prove only inequality (.), since (.) can be obtained by a similar argument.

Fix f and x with an interval I = (x – l, x + l). Write f = f + f = f χI + f χR\I , and let

CI =
{∫

{ti+<|x–y|<s}
Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy
}

s∈Ji ,i∈N
= U

(

Tb)f(x).

Then

U
(

Tb)f (x) =
{∫

{ti+<|x–y|<s}
Rm+(b; x, y)

|x – y|m K(x, y)f (y) dy
}

s∈Ji ,i∈N

= U (T)
(

Rm+(b; x, ·)
|x – ·|m f

)

+ U
(

Tb)f(x).

Therefore


|I|

∫

I

∥
∥U

(

Tb)f (x) – CI
∥
∥

E dx

≤ 
|I|

∫

I

∥
∥
∥
∥
U (T)

(
Rm+(b; x, ·)

|x – ·|m f

)∥
∥
∥
∥

E
dx +


|I|

∫

I

∥
∥U

(

Tb)f(x) – U
(

Tb)f(x)
∥
∥

E dx

= M + M.

For x ∈ I , k = , –, –, . . . , let Ek = {y : k– · l ≤ |y – x| < k · l}, let Ik = {y : |y – x| <
k · l}, and let bk(z) = b(z) – 

m! (b
(m))Ik zm. By [] we have Rm+(b; x, y) = Rm+(bk ; x, y) for

any y ∈ Ek .
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By Lemma ., we know O′(T) is bounded on Lu(R) for u > . Then, using Hölder’s
inequality, we deduce

M �
(


|I|

∫

I

∥
∥
∥
∥
U (T)

(
Rm+(b; x, ·)

|x – ·|m f

)∥
∥
∥
∥

u

E
dx

)/u

�
(


|I|

∫

{y:|y–x|<l}

∣
∣
∣
∣

Rm+(b; ·, y)
|y – ·|m f (y)

∣
∣
∣
∣

u

dy
)/u

=

(


|I|


∑

k=–∞

∫

Ek

∣
∣
∣
∣

(
Rm+(bk ; ·, y)

|y – ·|m f (y)
)∣

∣
∣
∣

r

dy

)/r

�
(


|I|


∑

k=–∞

∫

Ek

∣
∣
∣
∣

((
Rm(bk ; ·, y)

|y – ·|m –


m!
(y – ·)mb(m)

k (y)
|y – ·|m

)

f (y)
)∣

∣
∣
∣

u

dy

)/u

�
(


|I|


∑

k=–∞

∫

Ek

∣
∣
∣
∣

Rm(bk ; ·, y)
|y – ·|m f (y)

∣
∣
∣
∣

u

dy

)/u

+

(


|I|


∑

k=–∞

∫

Ek

∣
∣
∣
∣


m!

(y – ·)mb(m)
k (y)

|y – ·|m f (y)
∣
∣
∣
∣

u

dy

)/u

= M + M.

By Lemma . and Lemma .,

∣
∣Rm(bk ; x, y)

∣
∣ � |x – y|m

(


|Iy
x |

∫

Iy
x

∣
∣b(m)

k (z)
∣
∣
s dz

)/s

� |x – y|m
(


k · l

∫

|y–x|<k ·l

∣
∣b(m)(y) –

(

b(m))

Ik

∣
∣
s dz

)/s

� |x – y|m(

kl
)β∥

∥b(m)∥∥∧̇β
.

Then

M �
∥
∥b(m)∥∥∧̇β

lβ
(


|I|


∑

k=–∞
kβu

∫

Ek

∣
∣f (y)

∣
∣
u dy

)/u

�
∥
∥b(m)∥∥∧̇β

lβ
(


|I|


∑

k=–∞

∫

Ek

∣
∣f (y)

∣
∣
u dy

)/u

�
∥
∥b(m)∥∥∧̇β

lβ
(


|I|

∫

I

∣
∣f (y)

∣
∣
u dy

)/u

�
∥
∥b(m)∥∥∧̇β

lβ
(


|I|

∫

I

∣
∣f (y)

∣
∣
r dy

)/r

�
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).
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Since b(m)
k (y) = b(m)(y) – (b(m))Ik , then, applying Hölder’s inequality and Lemma ., we get

M �
(


|I|


∑

k=–∞

∫

Ek

∣
∣
(

b(m)(y) –
(

b(m))

Ik

)

f (y)
∣
∣
u dy

)/u

�
(


|I|


∑

k=–∞

(∫

Ik

∣
∣f (y)

∣
∣
r dy

)u/r(∫

Ik

∣
∣b(m)(y) –

(

b(m))

Ik

∣
∣

ur
r–u

)–u/r)/u

�
∥
∥b(m)∥∥∧̇β

(


|I|


∑

k=–∞

(∫

Ik

∣
∣f (y)

∣
∣
r dy

)u/r

|Ik|βu+–u/r

)/u

�
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x)

(


|I|


∑

k=–∞
|Ik|

)/u

�
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

We now estimate M. For x ∈ I , we have

∥
∥U

(

Tb)f(x) – U
(

Tb)f(x)
∥
∥

E

=
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}
Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy

–
∫

{ti+<|x–y|<s}
Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy
}

s∈Ji ,i∈N

∥
∥
∥
∥

E

≤
∥
∥
∥
∥

{∫

{ti+<|x–y|<s}

(
Rm+(b; x, y)

|x – y|m K(x, y) –
Rm+(b; x, y)

|x – y|m K(x, y)
)

f(y) dy
}

s∈Ji ,i∈N

∥
∥
∥
∥

E

+
∥
∥
∥
∥

{∫

R

(

χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)
)Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy
}

s∈Ji ,i∈N

∥
∥
∥
∥

E

= N + N.

For k = , , , . . . , let Fk = {y : k · l ≤ |y – x| < k+ · l}, let Ĩk = {y : |y – x| < k · l},
and let b̃k(z) = b(z) – 

m! (b
(m))̃Ik zm. Note that

Rm+(b; x, y)
|x – y|m K(x, y) –

Rm+(b; x, y)
|x – y|m K(x, y)

=
Rm+(̃bk ; x, y)

|x – y|m K(x, y) –
Rm+(̃bk ; x, y)

|x – y|m K(x, y)

=


|x – y|m
(

Rm (̃bk ; x, y) – Rm (̃bk ; x, y)
)

K(x, y)

+ Rm (̃bk ; x, y)
(


|x – y|m –


|x – y|m

)

K(x, y)

–


m!
b̃(m)

k (y)
(

(x – y)m

|x – y|m –
(x – y)m

|x – y|m
)

K(x, y)

+
Rm+(̃bk ; x, y)

|x – y|m
(

K(x, y) – K(x, y)
)

.
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By Minkowski’s inequalities and ‖{χ{ti+<|x–y|<s}}s∈Ji ,i∈N‖E ≤ , we obtain

N ≤
∫

R

∥
∥{χ{ti+<|x–y|<s}}s∈Ji ,i∈N

∥
∥

E

×
∣
∣
∣
∣

Rm+(̃bk ; x, y)
|x – y|m K(x, y) –

Rm+(̃bk ; x, y)
|x – y|m K(x, y)

∣
∣
∣
∣

∣
∣f(y)

∣
∣dy

≤
∞

∑

k=

∫

Fk


|x – y|m

∣
∣Rm (̃bk ; x, y) – Rm (̃bk ; x, y)

∣
∣
∣
∣K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

+
∞

∑

k=

∫

Fk

∣
∣Rm (̃bk ; x, y)

∣
∣

∣
∣
∣
∣


|x – y|m –


|x – y|m

∣
∣
∣
∣

∣
∣K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

+
∞

∑

k=

∫

Fk


m!

∣
∣̃b(m)

k (y)
∣
∣

∣
∣
∣
∣

(x – y)m

|x – y|m –
(x – y)m

|x – y|m
∣
∣
∣
∣

∣
∣K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

+
∞

∑

k=

∫

Fk

∣
∣
∣
∣

Rm+(̃bk ; x, y)
|x – y|m

∣
∣
∣
∣

∣
∣K(x, y) – K(x, y)

∣
∣
∣
∣f(y)

∣
∣dy

= N + N + N + N.

From the mean value theorem, there exists η ∈ I such that

Rm (̃bk ; x, y) – Rm (̃bk ; x, y) = (x – x)Rm–
(

b̃′
k ;η, y

)

.

For η, x ∈ I , y ∈ Fk , we have |y – x| ≈ |y – x| ≈ |y – η| and |y – η| ≈ |y – x| ≤ k+ · l.
By Lemma . and Lemma . we get

∣
∣Rm–

(

b̃′
k ;η, y

)∣
∣� |η – y|m–

(


|Iy
η|

∫

Iy
η

∣
∣̃b(m)

k (z)
∣
∣
s dz

)/s

� |x – y|m–
(


k+ · l

∫

|z–x|<k+·l

∣
∣b(m)(z) –

(

b(m))

Ĩk

∣
∣
s dz

)/s

�
∥
∥b(m)∥∥∧̇β

(

kl
)β |x – y|m–.

Then

∣
∣Rm (̃bk ; x, y) – Rm (̃bk ; x, y)

∣
∣ �

∥
∥b(m)∥∥∧̇β

(

kl
)β |x – x||x – y|m–.

Since |K(x, y)| ≤ C|x – y|–,

N �
∥
∥b(m)∥∥∧̇β

∞
∑

k=

(

kl
)β

∫

k ·l≤|x–y|<k+·l

l
(k · l)

∣
∣f (y)

∣
∣dy

�
∥
∥b(m)∥∥∧̇β

∞
∑

k=


k

(kl)β

kl

∫

|x–y|<k+·l

∣
∣f (y)

∣
∣dy

�
∥
∥b(m)∥∥∧̇β

Mβ (f )(x).
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For N, since x ∈ I , y ∈ Fk ,

∣
∣Rm (̃bk ; x, y)

∣
∣ � |x – y|m

(


|Iy
x |

∫

Iy
x

∣
∣̃b(m)

k (z)
∣
∣
s dz

)/s

�
∥
∥b(m)∥∥∧̇β

(

kl
)β |x – y|m

and
∣
∣
∣
∣


|x – y|m –


|x – y|m

∣
∣
∣
∣
� |x – x|

|x – y|m+ .

Thus

N �
∥
∥b(m)∥∥∧̇β

∞
∑

k=

(

kl
)β

∫

k ·l≤|x–y|<k+·l

l
(k · l)

∣
∣f (y)

∣
∣dy �

∥
∥b(m)∥∥∧̇β

Mβ (f )(x).

As for N, due to
∣
∣
∣
∣

(x – y)m

|x – y|m –
(x – y)m

|x – y|m
∣
∣
∣
∣
� |x – x|

|x – y| ,

and noting b̃(m)
k (y) = b(m)(y) – (b(m))̃Ik , we have

N �
∞

∑

k=

∫

Fk

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
|x – x|
|x – y|

∣
∣f (y)

∣
∣dy

�
∞

∑

k=


k


k · l

∫

|x–y|<k ·l

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
∣
∣f (y)

∣
∣dy

�
∞

∑

k=


k

(


k · l

∫

|x–y|<k ·l

∣
∣f (y)

∣
∣
r dy

)/r

×
(


k · l

∫

|x–y|<k ·l

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
r′ dy

)/r′

�
∥
∥b(m)∥∥∧̇β

Mr,β (f )(x)
∞

∑

k=


k �

∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

Notice

∣
∣Rm+(̃bk ; x, y)

∣
∣ ≤ ∣

∣Rm (̃bk ; x, y)
∣
∣ +


m!

∣
∣̃b(m)

k (y)(x – y)m∣
∣

�
∥
∥b(m)∥∥∧̇β

(

kl
)β |x – y|m +

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣|x – y|m

and by (.),

∣
∣K(x, y) – K(x, y)

∣
∣ � |x – x|δ

|x – y|+δ
.

Similar to the estimates for N, we have

∞
∑

k=

∫

Fk

|Rm (̃bk ; x, y)|
|x – y|m

|x – x|δ
|x – y|+δ

∣
∣f (y)

∣
∣dy �

∥
∥b(m)∥∥∧̇β

Mβ (f )(x).
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Similar to the estimates for N, we have

∞
∑

k=

∫

Fk

|̃b(m)
k (y)(x – y)m|

|x – y|m
|x – x|δ

|x – y|+δ

∣
∣f (y)

∣
∣dy �

∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

Then

N �
∥
∥b(m)∥∥∧̇β

(

Mβ (f )(x) + Mβ ,r(f )(x)
)

.

Finally, let us estimate N. Notice that the integral

∫

R

(

χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)
)Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy

will be non-zero in the following cases:
(i) ti+ < |x – y| < s and |x – y| ≤ ti+;

(ii) ti+ < |x – y| < s and |x – y| ≥ s;
(iii) ti+ < |x – y| < s and |x – y| ≤ ti+;
(iv) ti+ < |x – y| < s and |x – y| ≥ s.

In case (i) we have ti+ < |x – y| ≤ |x – x| + |x – y| < l + ti+ as |x – x| < l. Similarly, in
case (iii) we have ti+ < |x – y| < l + ti+ as |x – x| < l. In case (ii) we have s < |x – y| < l + s
and in case (iv) we have s < |x – y| < l + s. By (.) and taking  < t < r, we have

∫

R

(

χ{ti+<|x–y|<s}(y) – χ{ti+<|x–y|<s}(y)
)Rm+(b; x, y)

|x – y|m K(x, y)f(y) dy

�
∫

R

χ{ti+<|x–y|<s}(y)χ{ti+<|x–y|<l+ti+}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

|f(y)|
|x – y| dy

+
∫

R

χ{ti+<|x–y|<s}(y)χ{s<|x–y|<l+s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

|f(y)|
|x – y| dy

+
∫

R

χ{ti+<|x–y|<s}(y)χ{ti+<|x–y|<l+ti+}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

|f(y)|
|x – y| dy

+
∫

R

χ{ti+<|x–y|<s}(y)χ{s<|x–y|<l+s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

|f(y)|
|x – y| dy

� l/t′
(∫

R

χ{ti+<|x–y|<s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

)/t

+ l/t′
(∫

R

χ{ti+<|x–y|<s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

)/t

.

Then

N � l/t′
∥
∥
∥
∥

{(∫

R

χ{ti+<|x–y|<s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

)/t}

s∈Ji ,i∈N

∥
∥
∥
∥

E

+ l/t′
∥
∥
∥
∥

{(∫

R

χ{ti+<|x–y|<s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

)/t}

s∈Ji ,i∈N

∥
∥
∥
∥

E

= N + N.
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Notice

∣
∣Rm+(̃bk ; x, y)

∣
∣ �

∥
∥b(m)∥∥∧̇β

(

kl
)β |x – y|m +

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣|x – y|m.

Choosing  < r < p with t =
√

r, we have

N � l/t′
{
∑

i∈N
sup
s∈Ji

(∫

R

χ{ti+<|x–y|<s}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

)/t}/

� l/t′
{
∑

i∈N

∫

R

χ{ti+<|x–y|<ti}(y)
∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

}/t

� l/t′
{∫

R

∣
∣
∣
∣

Rm+(b; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

}/t

� l/t′
{ ∞

∑

k=

∫

Fk

∣
∣
∣
∣

Rm+(̃bk ; x, y)
|x – y|m

∣
∣
∣
∣

t |f(y)|t
|x – y|t dy

}/t

�
∥
∥b(m)∥∥∧̇β

l/t′
{ ∞

∑

k=

(

kl
)βt

∫

Fk

|f (y)|t
|x – y|t dy

}/t

+ l/t′
{ ∞

∑

k=

∫

Fk

(∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
)t |f (y)|t

|x – y|t dy

}/t

.

But

l/t′
{ ∞

∑

k=

(

kl
)βt

∫

Fk

|f (y)|t
|x – y|t dy

}/t

� l/t′
( ∞

∑

k=

(kl)βt

(k · l)t

∫

|x–y|<k+·l

∣
∣f (y)

∣
∣
t dy

)/t

�
( ∞

∑

k=


k(t–)

(kl)βt

k · l

∫

|x–y|<k ·l

∣
∣f (y)

∣
∣
t dy

)/t

�
( ∞

∑

k=


k(t–)

(
(kl)βt

k · l

∫

|x–y|<k ·l

∣
∣f (y)

∣
∣
t

dy
)/t

)/t

�
( ∞

∑

k=


k(t–)

)/t

Mβ ,r(f )(x) � Mβ ,r(f )(x)

and

l/t′
{ ∞

∑

k=

∫

Fk

(∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
)t |f (y)|t

|x – y|t dy

}/t

�
( ∞

∑

k=


k(t–)


k · l

∫

|x–y|<k ·l

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
t∣
∣f (y)

∣
∣
t dy

)/t
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�
( ∞

∑

k=


k(t–)

(


k · l

∫

|x–y|<k ·l

∣
∣f (y)

∣
∣
t

dy
)/t

×
(


k · l

∫

|x–y|<k ·l

∣
∣b(m)(y) –

(

b(m))

Ĩk

∣
∣
tt′

)/t′)/t

�
∥
∥b(m)∥∥∧̇β

( ∞
∑

k=


k(t–)

(
(k · l)rβ

k · l

∫

|x–y|<k ·l

∣
∣f (y)

∣
∣
t

dy
)/t

)/t

�
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x)

( ∞
∑

k=


k(t–)

)/t

�
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

Therefore

N �
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

Similarly,

N �
∥
∥b(m)∥∥∧̇β

Mβ ,r(f )(x).

This completes the proof of (.). Hence, Theorem . is proved.
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