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Abstract
In this paper, we propose a Mizuno-Todd-Ye predictor-corrector
infeasible-interior-point method for symmetric optimization using the arc-search
strategy. The proposed algorithm searches for optimizers along the ellipses that
approximate the central path and ensures that the duality gap and the infeasibility
have the same rate of decline. By analyzing, we obtain the iteration complexity
O(r logε–1) for the Nesterov-Todd direction, where r is the rank of the associated
Euclidean Jordan algebra and ε is the required precision. To our knowledge, the
obtained complexity bounds coincide with the currently best known theoretical
complexity bounds for infeasible symmetric optimization.
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1 Introduction
The purpose of this paper is to propose a Mizuno-Todd-Ye predictor-corrector (MTY-PC)
infeasible-interior-point method (infeasible-IPM) for symmetric optimization (SO) by us-
ing Euclidean Jordan algebra (EJA). Recently, SO has caused widespread concern, because
it provides a unified framework for various convex optimizations including linear opti-
mization (LO), second-order cone optimization (SOCO), and semi-definite optimization
(SDO) as special cases. Meanwhile, there are many methods for solving SO. Particularly,
the interior-point method (IPM), which was first proposed by Karmarkar [], is an impor-
tant kind of classification algorithm. There is extensive literature on the analysis of IPMs
for SO [–].

Nowadays, it is broadly accepted that the primal-dual IPM is the most efficient IPM
and includes the Mehrotra predictor-corrector (M-PC) algorithm [] and the MTY-PC
algorithm [] as two typical representatives. For literature on the research of the M-PC
algorithm, please see [, , ]. In the nineties of the last century, researchers began to
focus on the MTY-PC algorithm [–], because it had the property of the best iteration
complexity obtained so far for all the IPMs. Later, some researchers further studied other
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aspects of the MTY-PC algorithm [–]. Recently, Kitahara [] proposed a simple vari-
ant of the MTY-PC algorithm for LO, and Yang [] extended the MTY-PC algorithm to
SO. Inspired by their works, we present an O(r log ε–)-iteration complexity MTY-PC al-
gorithm for SO. Moreover, the proposed algorithm will use the infeasible starting, which
is found to be easy in practice. This kind of IPM is called infeasible-IPM and is studied in
the literature [, , , , –].

Moreover, the proposed algorithm in this paper has another invention, i.e., the arc-
search strategy. Yang [–] first developed the arc-search algorithm that searches for
optimizers along an ellipse that is an approximation of the central path and gave some of
the advantages of the arc-search algorithm. In order to further study the advantages of the
arc-search algorithm, Yang [, ] proposed two infeasible-IPMs for LO and SO, and re-
spectively obtained the O(n/ log ε–)-iteration complexity for LO and the O(r/ log ε–)
and O(r/ log ε–)-iteration complexity, where n is the larger dimension of a standard LO,
r is the rank of the associated EJA and ε is the required precision. In order to improve the
iteration complexity of infeasible-IPM, we will add the arc-search strategy to the MTY-PC
algorithm.

In this paper, we propose an MTY-PC infeasible-IPM for SO. The proposed algorithm
uses the arc-search strategy and ensures that the duality gap and the infeasibility have the
same rate of decline. By analyzing, we achieve the O(r log ε–) iteration complexity for
the Nesterov-Todd (NT) direction. To our knowledge, this is the best iteration complexity
obtained so far for an infeasible SO problem.

The outline of this paper is organized as follows. In Section , we briefly introduce some
key results on EJA. In Section , we give some preliminary discussions for an algorithm and
propose the algorithm. In Section , we establish the iteration complexity for the proposed
algorithm. Finally, we close the paper by some conclusions.

2 Euclidean Jordan algebra
In order to ensure the integrity of this paper, we give some results for EJA. Most of these
can be found in [, ].

EJA is a triple (J ,◦, 〈·, ·〉), where (J , 〈·, ·〉) is an n-dimensional inner product space over
R and (x, y) �→ x◦y : J ×J �→ J is a bilinear mapping satisfying the following conditions:

(a) x ◦ y = y ◦ x for all x, y ∈ J .
(b) x ◦ (x ◦ y) = x ◦ (x ◦ y) for all x, y ∈ J , where x := x ◦ x.
(c) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ J .
We call x ◦ y the Jordan product of x and y and define the inner product as 〈x, y〉 :=

tr(x ◦ y). If there exists an element e such that x ◦ e = e ◦ x = x for all x ∈ J , then e is called
the multiplicative identity element of EJA. For any x ∈ J , the degree of x is denoted by
deg(x), which is defined as the smallest integer k such that the set {e, x, x, . . . , xk} is linearly
dependent. The rank of J , simply denoted by r, is the maximum of deg(x) for all x ∈ J .
For EJA J , the corresponding cone of squares K := {x : x ∈ J } is indeed a symmetric
cone. A cone is symmetric if and only if it is the cone of squares of some EJA. Moreover,
intK denotes the interior of the symmetric cone K.

An idempotent c is a nonzero element of J such that c = c. An idempotent is primitive
if it cannot be written as the sum of two idempotents. Two idempotents c and c are
orthogonal if c ◦ c = . A complete system of orthogonal idempotents is a set {c, . . . , ck}
of idempotents, where ci ◦ cj =  for all i �= j, and c + · · · + ck = e. A complete system of
orthogonal primitive idempotents is called a Jordan frame.
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Theorem . (Spectral decomposition [, Theorem III..]) Let J be EJA with rank r.
Then, for every x ∈ J , there exist a Jordan frame {c, . . . , cr} and real numbers λ, . . . ,λr

such that

x = λc + λc + · · · + λrcr =
r∑

i=

λici,

where the λi’s are called the eigenvalues of x.

Let x =
∑r

i= λici be the spectral decomposition of x. We say x ∈ K if and only if λi ≥ 
and x ∈ intK if and only if λi >  for all i = , . . . , r. Define the square root x/ :=

∑
λ/

i ci

for x ∈ K, the inverse x– :=
∑

λ–
i ci, ∀λi �=  and the trace tr(x) :=

∑
λi for x ∈ J and the

determinant det(x) :=
∏

λi for x ∈ J . We also define the spectral norm ‖x‖ := maxi |λi|
and the Frobenius norm ‖x‖F :=

√〈x, x〉 =
√∑

λ
i .

Since ‘◦’ is bilinear for every x ∈ J , there exists a linear operator Lx such that, for every
y ∈ J , x ◦ y = Lxy. In particular, Lxe = x and Lxx = x. We say that two elements x, y ∈ J
operator commute if LxLy = LyLx. It can be proven that x and s operator commute if and
only if they share a common Jordan frame [, Theorem ]. For each x, y ∈ J , define Qx,y :=
LxLy + LyLx – Lx◦y, Qx := Qx,x = L

x – Lx and Qx is called the quadratic representation of x.
The following is a useful proposition of quadratic representation.

Proposition . ([, Proposition ]) Let x, y, p ∈ intK and define x̃ := Qpx and ỹ := Qp– y,
then Qx/ y, Qy/ x and Qx̃/ ỹ have the same spectrum.

3 Preliminary discussions and algorithm
3.1 SO problem and ellipse approximate center
First, we give the standard form of SO and its dual form, as follows:

(P) min〈c, x〉, s.t. Ax = b, x ∈K, ()

(D) max〈b, y〉, s.t. A∗y + s = c, s ∈K, y ∈R
m, ()

where c ∈ J , b ∈ R
m, A is a linear operator that maps J into R

m and A∗ is its adjoint
operator such that 〈x, A∗y〉 = 〈Ax, y〉 for all x ∈ J , y ∈R

m.
Moreover, we denote the sets of optimal solutions of (P) and (D) by P∗ and D∗, and

assume that A is surjective and F �= ∅, where F indicates a primal-dual strict feasibility
set that is defined by

F :=
{

(x, y, s) ∈ intK ×R
m × intK : Ax = b, A∗y + s = c

}
.

The Karush-Kuhn-Tucker (KKT) conditions for (P) and (D) are given by

Ax = b, x ∈K, A∗y + s = c, s ∈K, y ∈R
m, x ◦ s = , ()

where x ◦ s =  is called the complementarity slackness condition.
By relaxing x ◦ s =  with x ◦ s = μe, we obtain

Ax = b, x ∈K, A∗y + s = c, s ∈K, y ∈R
m, x ◦ s = μe, ()

where μ = 〈x, s〉/r >  is called the duality gap.
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System () has unique solutions (x(μ), y(μ), s(μ)), the set of which is called the central
path, which is denoted by

C =
{(

x(μ), y(μ), s(μ)
)

: μ > 
}

. ()

In this paper, we will use the idea of Yang [–], which is that the central path C is
replaced by an ellipse �, where � is defined as follows:

� =
{(

x(θ ), y(θ ), s(θ )
)

:
(
x(θ ), y(θ ), s(θ )

)
= a cos(θ ) + b sin(θ ) + c

}
, ()

where a ∈R
n+m and b ∈R

n+m are the axes of the ellipse perpendicular to each other, and
c ∈R

n+m is the center of the ellipse.
For the point z = (x, y, s) = (x(θ), y(θ), s(θ)) ∈ �, we require its first and second deriva-

tives such that

Aẋ = rp, A∗ẏ + ṡ = rd, s ◦ ẋ + x ◦ ṡ = x ◦ s, ()

Aẍ = , A∗ÿ + s̈ = , s ◦ ẍ + x ◦ s̈ = –ẋṡ, ()

where rp = Ax – b and rd = A∗y + s – c.
Systems () and () do not always have a unique solution due to the fact that x and s do

not operator commute in general. To overcome this difficulty, we apply a scaling scheme
that follows from [, Lemma ]. For the scaling point p ∈ intK, there are several appro-
priate choices (see []). In this paper, we select the classical NT-scaling point that is

p =
[
Qx/ (Qx/ s)–/]–/ =

[
Qs–/ (Qs/ x)/]–/, ()

which was first proposed by Nesterov and Todd for self-scaled cones [] and then adapted
by Faybusovich [] for symmetric cones.

3.2 Foundation of the MTY-PC algorithm
Since the MTY-PC algorithm requires two matrix factorizations and at most three back-
solves for each iteration, it is generally divided into two steps, which are the predictor step
and the corrector step.

In the predictor step, using p in (), systems () and () are rewritten as

Ã ˙̃x = r̃p, Ã∗ẏ + ˙̃s = r̃d, s̃ ◦ ˙̃x + x̃ ◦ ˙̃s = x̃ ◦ s̃, ()

Ã ¨̃x = , Ã∗ÿ + ¨̃s = , s̃ ◦ ¨̃x + x̃ ◦ ¨̃s = – ˙̃x ◦ ˙̃s, ()

where Ã = AQp– , c̃ = Qp– c, x̃ = Qpx, Qp– s = s̃ and ˙̃x = Qpẋ, ˙̃s = Qp– ṡ, ¨̃x = Qpẍ, ¨̃s = Qp– s̈,
r̃p = Ãx̃ – b, r̃d = Ã∗y + s̃ – c̃.

By solving systems () and (), we obtain the predictor directions ( ˙̃x, ˙̃y, ˙̃s) and ( ¨̃x, ¨̃y, ¨̃s)
and have the following lemma.

Lemma . ([, Theorem .]) Let (x̃(θ ), y(θ ), s̃(θ )) be an arc defined by () passing
through a point (x̃, y, s̃), and its first and second derivatives at (x̃, y, s̃) be ( ˙̃x, ˙̃y, ˙̃s) and ( ¨̃x, ¨̃y, ¨̃s),
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which are defined by () and (). Then an ellipsoidal approximation of the central path
is given by

x̃(θ ) := x̃ – sin(θ ) ˙̃x +
(
 – cos(θ )

) ¨̃x, (a)

s̃(θ ) := s̃ – sin(θ )˙̃s +
(
 – cos(θ )

)¨̃s, (b)

y(θ ) := y – sin(θ )ẏ +
(
 – cos(θ )

)
ÿ. (c)

Using (a), (b), (c), the third equations in () and (), we have

x̃(θ ) ◦ s̃(θ ) =
(
 – sin(θ )

)
x̃ ◦ s̃ – g(θ ) ˙̃x ◦ ˙̃s + g(θ ) sin(θ )ξ + g(θ ) ¨̃x ◦ ¨̃s, ()

where g(θ ) = ( – cos(θ )), ξ = ˙̃x ◦ ¨̃s + ˙̃s ◦ ¨̃x.
Furthermore, using (), we have

〈
x̃(θ ), s̃(θ )

〉
=

(
 – sin(θ )

)
μr – g(θ ) tr( ˙̃x ◦ ˙̃s) + g(θ ) sin(θ ) tr(ξ ).

In what follows, we discuss a method for selecting the predictor step. Firstly, we give the
neighborhood that is used in this paper as follows:

NF (γ ) =
{

(x, y, s) ∈ intK×R
m × intK : ‖w – μe‖F ≤ γμ

}
, ()

where w = Qx/ s,  < γ < .
The neighborhood NF (γ ) has some important properties, which are given in the follow-

ing proposition. For more details, readers are referred to [].

Proposition . Let NF (γ ) be defined in () and w = Qx/ s, then
(a) The neighborhood NF (γ ) is scaling invariant.
(b) ‖w – μe‖F ≤ γμ implies λmin(w) ≥ βμ, where β =  – γ .

Now, we give the method of selecting the predictor step, which is to find the largest
positive θ̄ ∈ (,π/] and to satisfy for all θ ∈ (, θ̄ ] that

∥∥x̃(θ ) ◦ s̃(θ ) –
(
 – sin(θ )

)
μe

∥∥
F ≤ γ

(
 – sin(θ )

)
μ, ()

x̃(θ ) ∈ intK, s̃(θ ) ∈ intK. ()

In the corrector step, we define (x̄, ȳ, s̄) = (Qp– x̃(θ̄ ), y(θ̄ ), Qps̃(θ̄ )) and calculate the cor-
rector direction (�x,�y,�s) by

A�x = , A∗�y + �s = , s̄ ◦ �x + x̄ ◦ �s = rc, ()

where rc = ( – sin(θ̄ ))μe – x̄ ◦ s̄.
Similarly, system () does not always have a unique solution. Thus, we need to choose

an NT-scaling point p such that

p =
[
Qx̄/ (Qx̄/ s̄)–/]–/ =

[
Qs̄–/ (Qs̄/ x̄)/]–/.
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The scaling corrector direction is given by solving the following system:

Â�x̂ = , Â∗�y + �ŝ = , ŝ ◦ �x̂ + x̂ ◦ �ŝ = r̂c, ()

where x̂ = Qp x̄, ŝ = Qp–


s̄, Â = Qp–


A, r̂c = ( – sin(θ̄ ))μe – x̂ ◦ ŝ.
Eventually, the next iteration point is updated by

(
x̂(θ̄ ), y(θ̄ ), ŝ(θ̄ )

)
:= (x̂, ŷ, ŝ) + (�x̂,�y,�ŝ). ()

In what follows, we give two useful expressions

x̂(θ̄ ) ◦ ŝ(θ̄ ) = x̂ ◦ ŝ +
(
 – sin(θ̄ )

)
μe – x̂ ◦ ŝ + �x̂ ◦ �ŝ

=
(
 – sin(θ̄ )

)
μe + �x̂ ◦ �ŝ, ()

μ(θ̄ ) =

r
〈
x̂(θ̄ ), ŝ(θ̄ )

〉
=

(
 – sin(θ̄ )

)
μ. ()

3.3 Framework of the MTY-PC algorithm
Based on the previous analysis, we state the generic framework of the proposed MTY-PC
algorithm in this paper.

Algorithm  Let ε > , γ ≤ /, (x, y, s) ∈NF (γ ) and μ = 〈x, s〉/r, φ = , k := .

Step  If xk ∈ intK, sk ∈ intK and φk ≤ ε, then stop.
Step  (Predictor step) The predictor directions ( ˙̃xk , ẏk , ˙̃sk), ( ¨̃xk , ÿk , ¨̃sk) are obtained by solv-

ing the linear system (), () and the largest positive θ̄ k ∈ (,π/] is computed by
solving () and (). Set (x̄k , ȳk , s̄k) = (Qp– x̃k+(θ̄ k), yk+(θ̄ k), Qps̃k+(θ̄ k)).

Step  (Corrector step) Solve corrector direction (�x̂k ,�yk ,�ŝk) from (). Let
(x̂k+, yk+, ŝk+) = (x̂k(θ̄ k), yk(θ̄ k), ŝk(θ̄ k)) and (xk+, yk+, sk+) = (Qp–


x̂k+, yk+,

Qp ŝk+). Go to Step .
Step  Compute μk+ = 〈x̂k (θ̄k ),ŝk (θ̄k )〉

r = 〈xk+,sk+〉
r and φk+ = ( – sin(θ̄ k))φk . Set k := k +  and

go to Step .

To analyze complexity, we give two remarks for Algorithm .

Remark  Let {(xk , yk , sk)} be generated by Algorithm , and φk+ ∈ [, ] such that φk+ =∏k
i=( – sin(θ̄ i)). Then rk+

p = Axk+ – b = φk+r
p , rk+

d = A∗yk+ + sk+ – c = φk+r
d , μk+ =

〈xk+,sk+〉
r = φk+μ for k ≥ .

Proof Using (), (), (a), (b), (c), (), (), by calculating directly, we have

rk+
p = Axk+ – b = AQp–


x̂k+ – b = AQp–


x̂k(θ̄ k) – b

= AQp–


(
x̂k + �x̂k) – b = Ax̄k + A�xk – b

= AQp– x̃k+(θ̄ k) – b

= AQp–
[
x̃k – sin

(
θ̄ k) ˙̃xk +

(
 – cos

(
θ̄ k)) ¨̃xk] – b

= A
[
xk – sin

(
θ̄ k)ẋk +

(
 – cos

(
θ̄ k))ẍk] – b
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= Axk – sin
(
θ̄ k)Aẋk +

(
 – cos

(
θ̄ k))Aẍk – b

=
[
 – sin

(
θ̄ k)]rk

p = φk+r
p .

In the same way, we have rk+
d = [ – sin(θ̄ k)]rk

p = φk+r
d .

In what follows, we focus on proving the last inequality and have

μk+ =
〈xk+, sk+〉

r
=

〈Qp–


x̂k+, Qp ŝk+〉
r

=
〈x̂k+, ŝk+〉

r

=
〈x̂k(θ̄ k), ŝk(θ̄ k)〉

r
=

〈x̂k + �x̂k , ŝk + �ŝk〉
r

=

r
[〈

x̂k ◦ ŝk , e
〉
+

〈
x̂k ◦ �ŝk + ŝk ◦ �x̂k , e

〉
+

〈�x̂k ◦ �ŝk , e
〉]

=

r
[〈

Qp–


x̃k(θ̄ k) ◦ Qp s̃k(θ̄ k), e
〉
+

〈
r̂k

c , e
〉]

=

r
[〈

x̃k(θ̄ k) ◦ s̃k(θ̄ k), e
〉
+

〈(
 – sin

(
θ̄ k))μke – x̃k(θ̄ k) ◦ s̃k(θ̄ k), e

〉]

=
[
 – sin

(
θ̄ k)]μk = φk+μ.

This completes the proof. �

From Remark , we have φk = ‖rk
p‖F

‖r
p‖F

= ‖rk
d‖F

‖r
d‖F

, which implies φk represents the relative in-

feasibility at (xk , yk , sk). Meanwhile, we also have φk = μk

μ , which is also the rate of decline
of the duality gap μ. Thus, if φk ≤ ε, then Algorithm  will stop and we obtain an approx-
imate optimal solution of SO.

Remark  For Algorithm , we choose a particular starting point, which is studied by
Zhang [, ] and Rangarajan []. In what follows, we give the particular starting point.

Let ǔ and (ř, v̌) be the minimum-norm solutions to the linear systems Ax = b and
A∗y + s = c, that is,

ǔ = arg min
{‖ǔ‖F : Aǔ = b

}
,

(
ř, v̌) = arg min

{‖v̌‖F : A∗ř + v̌ = c
}

. ()

Let ρ ≥ max{‖ǔ‖,‖v̌‖} and choose (x, y, s) such that

x = s = ρe, ()

which implies that x ∈ intK, s ∈ intK, x – ǔ ∈K, s – v̌ ∈K.
Let ρ∗ = min{max{‖x∗‖,‖s∗‖} : x∗ ∈ P∗, (y∗, s∗) ∈ D∗}. In addition, we assume that for

some constant � > , it has ρ ≥ ρ∗/� (note that we can always increase ρ).

4 Complexity analysis
For simplicity, we will often write x̃, y, s̃, x̄, s̄, x̂, ŝ, θ̄ and φ for x̃k , yk , s̃k , x̄k , s̄k , x̂k , ŝk , θ̄ k and
φk , respectively. Moreover, since the NT-scaling point is used in this paper, we can obtain
the following special results:

v := Qpx = Qp– s ⇔ v = x̃ = s̃ ⇒ v = x̃ ◦ s̃ = w̃ = Qx̃/ s̃, ()
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v̂ := Qp x̄ = Qp–


s̄ ⇔ v̂ = x̂ = ŝ ⇒ v̂ = x̂ ◦ ŝ = ŵ = Qx̂/ ŝ. ()

In what follows, we give some fundamental lemmas. Firstly, by the proof procedure of
Lemma . and Lemma  in [, ], we have the following lemma.

Lemma . Let x̃ ∈ intK, s̃ ∈ intK, x̃, s̃ operator commute, then
(i) For q̃ ∈K, then ‖Qx̃/ q̃‖F ≤ 〈x̃, q̃〉;

(ii) λmax((Lx̃Ls̃)–) ≤ /λmin(w̃),
where w̃ = Qx̃/ s̃.

Lemma . ([, Lemma .]) For x, y ∈ J , then ‖x ◦ y‖F ≤ ‖x‖F‖y‖F .

Lemma . ([, Lemma .]) If x ◦ s ∈ intK, then det(x) �= .

Lemma . ([, Lemma ]) Let (x, s) ∈ intK× intK, w = Qx/ s, then we have ‖w–μe‖F ≤
‖x ◦ s – μe‖F , and with equality holding if x and s operator commute.

4.1 Technical results
In order to achieve the iteration complexity bounds for the proposed Algorithm , we need
some technical results.

Lemma . Let (x̃, s̃) ∈NF (γ ) and ( ˙̃x, ˙̃s) be the solution of (). Then

∥∥( ˙̃x, ˙̃s)
∥∥

 ≤ √
μr + ( +

√
)ζ ,

where ζ := min{‖(ǔ, v̌)‖ : Ãǔ = r̃p, Ã∗ř + v̌ = r̃d}, ‖(ǔ, v̌)‖ :=
√

‖ǔ‖
F + ‖v̌‖

F .

Proof Let (ǔ, ř, v̌) ∈ J ×R
m ×J satisfy equations Ãǔ = r̃p and Ã∗ř + v̌ = r̃d . Using system

() and v = x̃ = s̃, we have

Ã( ˙̃x – ǔ) = ,

Ã∗(ẏ – ř) + (˙̃s – v̌) = ,

Lv( ˙̃x – ǔ) + Lv(˙̃s – v̌) = v – (Lvǔ + Lvv̌).

Multiplying the last equation by L–
v , we obtain

( ˙̃x – ǔ) + (˙̃s – v̌) = v – (ǔ + v̌). ()

Using the definition of ‖(ǔ, v̌)‖ :=
√

‖ǔ‖
F + ‖v̌‖

F , we have

‖ǔ‖F + ‖v̌‖F ≤ √

∥∥(ǔ, v̌)

∥∥
. ()

Using (), () and the fact 〈˙̃x – ǔ, ˙̃s – v̌〉 = , we have

∥∥( ˙̃x, ˙̃s)
∥∥

 ≤ ∥∥( ˙̃x – ǔ, ˙̃s – v̌)
∥∥

 +
∥∥(ǔ, v̌)

∥∥


≤ ∥∥v – (ǔ + v̌)
∥∥

F +
∥∥(ǔ, v̌)

∥∥
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≤ ‖v‖F + ‖ǔ‖F + ‖v̌‖F +
∥∥(ǔ, v̌)

∥∥


≤ √
μr + ( +

√
)

∥∥(ǔ, v̌)
∥∥



=
√

μr + ( +
√

)ζ ,

where the last inequality uses the result

‖v‖F = ‖√x̃ ◦ s̃‖F ≤
√‖x̃ ◦ s̃‖F ≤

√〈x̃, s̃〉 ≤ √
μr.

The proof is completed. �

Using Remark  and the proof techniques of Lemma A. in [], we have the following
lemma, which gives the upper bound on ζ .

Lemma . Let (ǔ, ř, v̌), (x, y, s) satisfy (), () and (ǔ, ř, v̌) satisfy the conditions
in Lemma ., then ζ ≤ ( + �)r√μ/

√
β .

Lemma . Let (x̃, s̃) ∈NF (γ ), β =  – γ , then

‖˙̃x‖F‖˙̃s‖F ≤ 

ωμr,

where ω =  + ( +
√

)( + �)/
√

β ≥ .

Proof Using Lemmas . and ., we have

‖˙̃x‖F‖˙̃s‖F ≤ 

[‖˙̃x‖

F + ‖˙̃s‖
F
]

=


∥∥( ˙̃x, ˙̃s)

∥∥


≤ 

[√

μr + ( +
√

)ζ
]

≤ 

[√

μr + ( +
√

)( + �)r
√

μ/
√

β
]

≤ 

[√

/r + ( +
√

)( + �)/
√

β
]

μr ≤ 

ωμr,

which completes the proof. �

Lemma . Let (x̃, s̃) ∈NF (γ ), ω̃ = Qx̃/ s̃, β =  – γ , then
(i) ‖( ¨̃x, ¨̃s)‖

 ≤ ωμr/β ,
(ii) ‖¨̃x‖F‖¨̃s‖F ≤ ωμr/(β).

Proof Multiplying the equation of () by L–
v and taking norm-squared on both sides, we

have

‖¨̃x + ¨̃s‖
F =

∥∥L–
v (– ¨̃x ◦ ¨̃s)

∥∥
F =

∥∥(Lx̃Ls̃)–/(– ¨̃x ◦ ¨̃s)
∥∥

F

≤ λmax
(
(Lx̃Ls̃)–)‖ ¨̃x ◦ ¨̃s‖

F ≤ 
λmin(ω̃)

‖¨̃x ◦ ¨̃s‖
F

≤ 
βμ

[‖¨̃x‖F‖¨̃s‖F
] ≤ 

βμ

[


ωμr

]

=

β

ωμr, ()
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where the second equality uses (), the first two inequalities follow from Lemma ., the
last two inequalities are due to Lemmas . and ..

Using the fact 〈¨̃x, ¨̃s〉 =  and (), we have

‖¨̃x‖F‖¨̃s‖F ≤ 

[‖¨̃x‖ + ‖¨̃s‖

F
]

=


‖¨̃x + ¨̃s‖

F ≤ 
β

ωμr.

Therefore, the proof of the lemma is completed. �

The next result follows from Lemmas . and ..

Lemma . Let (x̃, s̃) ∈NF (γ ), β =  – γ , then
(a) ‖˙̃x‖F‖¨̃s‖F ≤ ωμr/

√
β ,

(b) ‖˙̃s‖F‖¨̃x‖F ≤ ωμr/
√

β .

4.2 The lower bounds on θ̄

In this subsection, we will find a lower bounds of θ̄ to satisfy () and (). They will play
a key role in complexity analysis. Let θ̄ = arg sin( βγ

ωr ). If we can prove that () and ()
hold for all θ ∈ (, θ̄], then θ̄ is one of the lower bounds on θ̄ . For this purpose, we first
give an important lemma.

Lemma . Let (x̃, s̃) ∈NF (γ ), β =  – γ and μ(θ ) = ( – sin(θ ))μ be defined in (), then,
for all θ ∈ (, θ̄],

∥∥x̃(θ ) ◦ s̃(θ ) – μ(θ )e
∥∥

F ≤ γμ(θ ).

Proof In order to express convenience, we give some notations as follows:

f(θ ) =
(
 – sin(θ )

)
(x̃ ◦ s̃ – μe), f(θ ) = g(θ ) ˙̃x ◦ ˙̃s,

f(θ ) = g(θ ) sin(θ )ξ , f(θ ) = g(θ ) ¨̃x ◦ ¨̃s.

Using (), Lemma ., Lemmas ., ., ., we have

∥∥f(θ )
∥∥

F ≤ (
 – sin(θ )

)‖x̃ ◦ s̃ – μe‖F ≤ (
 – sin(θ )

)
γμ,

∥∥f(θ )
∥∥

F =
∥∥g(θ ) ˙̃x ◦ ˙̃s∥∥ ≤ g(θ )‖˙̃x‖F‖˙̃s‖F ≤ 


sin(θ )ωμr := a,

∥∥f(θ )
∥∥

F ≤ g(θ ) sin(θ )‖ξ‖F ≤ √
β

sin(θ )ωμr := a,

∥∥f(θ )
∥∥

F ≤ g(θ )‖¨̃x ◦ ¨̃s‖F ≤ 
β

sin(θ )ωμr := a,

where we use g(θ ) =  – cos(θ ) ≤ sin(θ ) and the fact

‖ξ‖F = ‖˙̃x ◦ ¨̃s + ˙̃s ◦ ¨̃x‖F ≤ ‖˙̃x‖F‖¨̃s‖F + ‖˙̃s‖F‖¨̃x‖F .



Yang and Zhang Journal of Inequalities and Applications  (2017) 2017:291 Page 11 of 15

In what follows, we will estimate upper bounds on a, a, a in the interval (, θ̄]. Using
sin(θ̄) = βγ

ωr , we have

a =



sin(θ )ωμr ≤ 


sin(θ̄)ωμr ≤ γ β

ωr μ := b,

a =
√
β

sin(θ )ωμr ≤ √
β

sin(θ̄)ωμr ≤ γ β/

 μ := b,

a =


β
sin(θ )ωμr ≤ 

β
sin(θ̄)ωμr ≤ γ β

 μ := b.

Based on the analysis, we give the desired result, which is

γμ(θ ) –
∥∥x̃(θ ) ◦ s̃(θ ) – μ(θ )e

∥∥
F

≥ γ
(
 – sin(θ )

)
μ –

[∥∥f(θ )
∥∥

F +
∥∥f(θ )

∥∥
F +

∥∥f(θ )
∥∥

F +
∥∥f(θ )

∥∥
F

]

≥ γ
(
 – sin(θ )

)
μ – [a + a + a]

≥ γ
(
 – sin(θ )

)
μ – [b + b + b]

≥ γμ

[
 –

γβ

ωr
–

γ β

ωr –
γ β/

 –
γ β



]

≥ γμ

[
 –


 –


 –


 –




]
≥ ,

where we use the result of x̃(θ ) ◦ s̃(θ ) in (). �

Lemma . Let (x̃, s̃) ∈NF (γ ), then we have x̃(θ ) ∈ intK, s̃(θ ) ∈ intK for all θ ∈ (, θ̄].

Proof Using Lemma . and γ ≤ /, we have

λmin
(
x̃(θ ) ◦ s̃(θ )

)
– μ(θ ) ≥ –γμ(θ ),

which is equivalent to

λmin
(
x̃(θ ) ◦ s̃(θ )

) ≥ ( – γ )μ(θ ) ≥ , ()

which furthermore implies x̃(θ ) ◦ s̃(θ ) ∈ intK.
From Lemma ., we have det(x̃(θ )) �=  and det(s̃(θ )) �= . Furthermore, since x̃ ∈ intK,

s̃ ∈ intK, by the continuity, it follows that both x̃(θ ) ∈ intK and s̃(θ ) ∈ intK in [, θ̄]. The
proof is completed. �

From the above analysis, we obtain the result that θ̄ is one of the lower bounds on θ̄ .

4.3 Corrector step and iteration complexity
It is well known that an important requirement for the MTY-PC algorithm is that the
new iteration point must stay in the given neighborhood, which is equivalent to proving
(x̂(θ ), ŝ(θ )) ∈NF (γ ). In what follows, we will complete this task.
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Using (x̄, s̄) = (Qp– x̃(θ̄ ), Qps̃(θ̄ )) and (x̂, ŝ) = (Qp x̄, Qp–


s̄), we have

(x̂, ŝ) = (Qp x̄, Qp–


s̄) =
(
Qp Qp– x̃(θ̄ ), Qp–


Qps̃(θ̄ )

)
,

which implies (x̂, ŝ) in interval (, θ̄] to satisfy the condition in Lemma ., Lemma ..
Thus, by Lemma ., Lemma ., we have

∥∥x̂ ◦ ŝ – μ(θ )e
∥∥

F ≤ γμ(θ ), x̂ ∈ intK, ŝ ∈ intK. ()

Lemma . Let (�x̂,�ŝ) be the solution of (), then we have

‖�x̂‖F‖�ŝ‖F ≤ γ 

( – γ )
μ(θ )

for all θ ∈ (, θ̄].

Proof Multiplying the last equation in () by L–
v̂ , we obtain

�x̂ + �ŝ = L–
v̂ r̂c.

Taking norm-squared on both sides of the above equation, we have

‖�x̂ + �ŝ‖
F =

∥∥L–
v̂ r̂c

∥∥
F =

∥∥(Lx̂Lŝ)–/r̂c
∥∥

F

≤ 
λmin((Lx̂Lŝ)–)

‖rc‖
F ≤ 

λmin(ŵ)
∥∥μ(θ )e – x̂ ◦ ŝ

∥∥
F

≤ 
( – γ )μ(θ )

(
γμ(θ )

) =
γ 

( – γ )
μ(θ ),

where r̂c = ( – sin(θ̄ ))μe – x̂◦ ŝ, the second equality uses (), the second inequality follows
from Lemma ., the third inequality is due to (), ().

Using the conclusion as above and the fact 〈�x̂,�ŝ〉 = , we have

‖�x̂‖F‖�ŝ‖F ≤ 

[‖�x̂‖

F + ‖�ŝ‖
F
]

=


‖�x̂ + �ŝ‖

F ≤ γ 

( – γ )
μ(θ ),

which completes the proof. �

Lemma . Let (x̂(θ ), ŝ(θ )) be defined in (), θ ∈ (, θ̄], then we have

(
x̂(θ ), ŝ(θ )

) ∈NF (γ ).

Proof Using Lemma ., () and Lemma ., we have

∥∥ŵ(θ ) – μ(θ )e
∥∥

F ≤ ∥∥x̂(θ ) ◦ ŝ(θ ) – μ(θ )e
∥∥

F

= ‖�x̂ ◦ �ŝ‖F ≤ ‖�x̂‖F‖�ŝ‖F

≤ γ 

( – γ )
μ(θ ) ≤ γ

 – γ
γμ(θ ) ≤ γμ(θ ),

where ŵ(θ ) = Qx̂(θ )/ ŝ(θ ), the last inequality follows from γ ≤ /.



Yang and Zhang Journal of Inequalities and Applications  (2017) 2017:291 Page 13 of 15

Using the proof technique that is similar to Lemma ., we have

x̂(θ ) ∈ intK, ŝ(θ ) ∈ intK.

Taking into account the above factors, we have (x̂(θ ), ŝ(θ )) ∈NF (γ ). �

The following theorem gives an upper bound for the number of iterations in which Al-
gorithm  stops with an ε-approximate solution.

Theorem . Let rk
p , rk

d , μk be defined in Remark , then Algorithm  will terminate in
O(r log ε–) iterations such that

∥∥rk
p
∥∥ ≤ ε

∥∥r
p
∥∥,

∥∥rk
d
∥∥ ≤ ε

∥∥r
d
∥∥, μk ≤ εμ.

Proof By using θ̄ = arg sin( βγ

ωr ) ≤ θ̄ , we have

φk =
k–∏

i=

(
 – sin

(
θ̄ i)) ≤

k–∏

i=

(
 – sin

(
θ̄)) ≤ (

 – sin
(
θ̄))k ≤ ε,

which implies

k ≥ 
sin(θ̄)

log ε– ≥ ω

βγ
r log ε–,

where we use the identity log( + t) ≤ t for all t > –.
Therefore, Algorithm  terminates after at most O(r log ε–) steps. Meanwhile, by using

Remark , we have

φk =
‖rk

p‖F

‖r
p‖F

=
‖rk

d‖F

‖r
d‖F

=
μk

μ ≤ ε.

This completes the proof. �

5 Conclusion
For the SO problem, we have proposed an MTY-PC infeasible-IPM, which requires two
matrix factorizations and at most three back-solves for each iteration. In order to improve
the iteration complexity, we adopt the arc-search strategy that was proposed by Yang [–
]. Moreover, the proposed algorithm can ensure that the duality gap and the infeasibility
have the same rate of decline. Finally, by applying the EJA tool to our analysis, we estab-
lished the iteration complexity O(r log ε–) for the NT-direction.
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