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Abstract
Low-rank matrix recovery is an active topic drawing the attention of many
researchers. It addresses the problem of approximating the observed data matrix by
an unknown low-rank matrix. Suppose that A is a low-rank matrix approximation of D,
where D and A arem× nmatrices. Based on a useful decomposition of D† – A†, for
the unitarily invariant norm ‖ · ‖, when ‖D‖ ≥ ‖A‖ and ‖D‖ ≤ ‖A‖, two sharp lower
bounds of D – A are derived respectively. The presented simulations and applications
demonstrate our results when the approximation matrix A is low-rank and the
perturbation matrix is sparse.
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1 Introduction
In mathematics, low-rank approximation is a minimization problem, in which the cost
function measures the fit between a given matrix (the data) and an approximating matrix
(the optimization variable), subject to a constraint that the approximating matrix has re-
duced rank. The problem is used for mathematical modeling and data compression. The
rank constraint is related to a constraint on the complexity of a model that fits the data.

Low-rank approximation of a linear operator is ubiquitous in applied mathematics, sci-
entific computing, numerical analysis, and a number of other areas. For example, a low-
rank matrix could correspond to a low-degree statistical model for a random process (e.g.,
factor analysis), a low-order realization of a linear system [], or a low-dimensional em-
bedding of data in the Euclidean space [], the image and computer vision [–], bioin-
formatics, background modeling and face recognition [], latent semantic indexing [, ],
machine learning [–] and control [] etc. These data may have thousands or even bil-
lions of dimensions, and a large number of samples may have the same or similar structure.
As we know, the important information lies in some low-dimensional subspace or low-
dimensional manifold, but interfered with some perturbative components (sometimes in-
terfered by the sparse component).

Let D ∈R
m×n be an observed data matrix which is combined as

D = A + E, ()
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where A ∈ R
m×n is the low-rank component and E ∈ R

m×n is the perturbation compo-
nent of D. The singular value decomposition (SVD []) is a method for dealing with
such high-dimensional data. If the matrix E is small, the classical principal components
analysis (PCA [–]) can seek the best rank-r estimation of A by solving the following
constrained optimization via SVD of D and then projecting the columns of D onto the
subspace spanned by the r principal left singular vectors of D:

min
E

‖E‖F

s.t. Rank(A) ≤ r,

‖D – A‖F ≤ ε,

()

where r � min(m, n) is the target dimension of the subspace, ε is an upper bound on the
perturbative component ‖E‖F and ‖ · ‖F is the Frobenius norm.

Despite its many advantages, the traditional PCA suffers from the fact that the estima-
tion Â obtained by classical PCA can be arbitrarily far from the true A, when E is suffi-
ciently sparse (relative to the rank of A). The reason for this poor performance is precisely
that the traditional PCA makes sense for Gaussian noise and not for sparse noise. Re-
cently, robust PCA (RPCA []) is a family of methods that aims to make PCA robust to
large errors and outliers. That is, RPCA is an upgrade of PCA.

There are some reasons for the study of lower bound of a low-rank matrix approximation
problem. Firstly, as far as we know, there is no literature to consider the lower bound of
the low-rank matrix approximation problem. In our paper, we first put forward the lower
bound. Secondly, for the low-rank approximation, when a perturbation E exists, there is
an approximation error which cannot be avoided, that is, the approximation error cannot
equal , but tends to . Thirdly, from our main results, we can clearly find the influence
of the spectral norm (‖ · ‖) on the low-rank matrix approximation. For example, for our
main result of Case II, when the maximum eigenvalue of the matrix D is larger, the ap-
proximation error of (D – A) is smaller. In addition, the lower bound can verify whether
the solution obtained by algorithms is optimal. For details, please refer to the experiments
Section  of our paper. Therefore, it is necessary and significant to study the lower bound
of the low-rank matrix approximation problem.

Remark . PCA and RPCA are methods for the low-rank approximation problem when
perturbation item exists. Our aim is to prove that no matter what method is used, the
lower bound of error always exists and it cannot be avoided with the perturbation item E.
Considering the existence of error, this paper focuses on the specific situation of this lower
bound.

1.1 Notations
For a matrix A ∈R

m×n, let ‖A‖ and ‖A‖∗ denote the spectral norm and the nuclear norm
(i.e., the sum of its singular values), respectively. Let ‖ ·‖ be a unitarily invariant norm. The
pseudo-inverse and the conjugate transpose of A are denoted by A† and AH , respectively.
We consider the singular value decomposition (SVD) of a matrix A of rank r

A = USV H , S = diag
({σi}

)
,  ≤ i ≤ r,
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where U and V are m × r and n × r matrices with orthonormal columns, respectively,
and σi is the positive singular values. We always assume that the SVD of a matrix is given
in the reduced form above. Furthermore, 〈A, B〉 = trace(AHB) denotes the standard inner
product, then the Frobenius norm is

‖A‖F =
√〈A, A〉 =

√
tr
(
AHA

)
=

( m∑

i=

n∑

j=

A
ij

) 


=

( r∑

i=

σ 
i

) 


.

1.2 Organization
In this paper, we study a perturbation theory for low-rank matrix approximation. When
‖D‖ ≥ ‖A‖ or ‖D‖ ≤ ‖A‖, two sharp lower bounds of D – A are derived for a unitarily
invariant norm respectively. This work is organized as follows. In Section , we provide
a review of relevant linear algebra and some preliminary results. In Section , under dif-
ferent norms, two sharp lower bounds of D – A are given for the low-rank approximation
problem and some proofs of Theorem . are presented. In Section , example and appli-
cations are given to verify the provided lower bounds. Finally, we conclude the paper with
a short discussion.

2 Preliminaries
In order to prove our main results, we mention the following results for our further dis-
cussions.

2.1 Unitarily invariant norm
An important property of a Euclidean space is that shapes and distance do not change
under rotation. In particular, for any vector x and for any unitary matrices U , we have

‖Ux‖ = ‖x‖.

An analogous property is shared by the spectral and Frobenius norms: namely, for any
unitary matrices U and V , the product UAV H is defined by

∥
∥UAV H∥

∥
p = ‖A‖p, p = , F .

These examples suggest the following definition.

Definition . ([]) A norm ‖ · ‖ on C
m×n is unitarily invariant if it satisfies

∥∥UAV H∥∥ = ‖A‖

for any unitary matrices U and V . It is normalized if

‖A‖ = ‖A‖

whenever A is of rank one.
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Remark . Let � = UAV H be the singular value decomposition of the matrix A with
order n. Let ‖ · ‖ be a unitarily invariant norm. Since U and V are unitary,

‖A‖ = ‖�‖.

Thus ‖A‖ is a function of the singular values of A.

The -norm plays a special role in the theory of unitarily invariant norms as the following
theorem shows.

Theorem . ([]) Let ‖ · ‖ be a family of unitarily invariant norm. Then

‖AB‖ ≤ ‖A‖‖B‖ ()

and

‖AB‖ ≤ ‖A‖‖B‖. ()

Moreover, if Rank(A) = , then

‖A‖ = ‖A‖.

We have observed that the spectral and Frobenius norms are unitarily invariant. How-
ever, not all norms are unitarily invariant as the following example shows.

Example . Let

A =

(
 
 

)

,

obviously, ‖A‖∞ = , but for a unitary matrix

U =

(
√


√


– √


√


)

,

we have

‖UA‖∞ =

∥∥
∥∥
∥

(
√


√


 

)∥∥
∥∥
∥∞

=
√


.

Remark . It is easy to verify that the nuclear norm ‖ · ‖∗ is a unitarily invariant norm.

2.2 Projection
Let Cm and C

n be m and n-dimensional inner product spaces over the complex field, re-
spectively, and A ∈C

m×n be a linear transformation from C
n into C

m.
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Definition . ([]) The column space (range) of A is denoted by

R(A) =
{

x ∈C
m|x = Ay, y ∈ C

n} ()

and the null space of A by

N (A) =
{

y ∈C
n|Ay = 

}
. ()

Further, we let ⊥ denote the orthogonal complement and get R = N (AH )⊥ and N (A) =
R(AH )⊥.

The following properties [] of the pseudo-inverse are easily established.

Theorem . ([]) For any matrix A, the following hold.
. If A ∈C

m×n has rank n, then A† = (AHA)–AH and A†A = I(n).
. If A ∈C

m×n has rank m, then A† = AH (AAH )– and AA† = I(m).
Here I(n) ∈ R

n×n is the identity matrix.

Theorem . ([]) For any matrix A, PA = AA† is the orthogonal projector onto R(A),
PAH = A†A is the orthogonal projector onto R(AH ), I – PAH is the orthogonal projector onto
N (A).

2.3 The decomposition of D† – A†

In this section, we focus on the decomposition of D† – A† and a general bound of the
perturbation theory for pseudo-inverses. Firstly, according to the orthogonal projection,
we can deduce the following lemma.

Lemma . For any matrix A, PA = AA† and PAH = A†A, then we have

P⊥
A A = , AP⊥

AH = , P⊥
AH AH = , A†P⊥

A = . ()

Proof Since P⊥
A = I – PA and P⊥

AH = I – PAH , then we have that

P⊥
A A = (I – PA)A = A – AA†A = A – AAH(

AAH)–A = ,

AP⊥
AH = A(I – PAH ) = A – AA†A = A – A

(
AHA

)–AHA = ,

P⊥
AH AH = AH – PAH AH = AH – A†AAH = AH –

(
AHA

)–AHAAH = ,

A†P⊥
A = A†(I – PA) = A† – A†AA† = A† –

(
AHA

)–AH AA† = .

The proof is completed. �

Using Lemma ., the decompositions of D† – A† are developed by Wedin [].

Theorem . ([]) Let D = A + E, then the difference D† – A† is given by the expressions

D† – A† = –A†ED† – A†P⊥
D + P⊥

AH D†, ()

D† – A† = –A†PAEPDH D† – A†PAP⊥
D + P⊥

AH PDH D†, ()
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Table 1 Value options for γ

‖ ·‖ Arbitrary Spectral Frobenius

γ 3 1+
√
5

2

√
2

D† – A† = –D†PDEPAH A† +
(
DHD

)†PDH EHP⊥
A

– P⊥
DH EPA

(
AAH)†. ()

By Lemma ., using PA = AA†, PAH = A†A, P⊥
A = I – PA, P⊥

AH = I – PAH , these expressions
can be verified.

In previous work [], Wedin developed a general bound of the perturbation theory for
pseudo-inverses. Theorem . is based on a useful decomposition of D† –A†, where D and
A are m × n matrices. Sharp estimates of ‖D† – A†‖ are derived for a unitarily invariant
norm. In [], Chen et al. presented some new perturbation bounds for the orthogonal
projections ‖PD – PA‖.

Theorem . ([]) Suppose D = A + E, then the error of D† – A† has the following bound:

∥∥D† – A†
∥∥ ≤ γ max

{∥∥A†
∥∥

,
∥∥D†

∥∥


}‖E‖, ()

where γ is given in Table .

Remark . For the spectral norm, by formula () we can achieve γ = +
√


 . When ‖·‖ is

the Frobenius norm, by formula (), we have γ =
√

. Similarly, for an arbitrary unitarily
invariant norm, according to formula (), we can deduce γ = .

Remark . From Theorem ., since E = D – A, in fact, if Rank(A) ≤ Rank(D), then
() gives the lower bound of the low-rank matrix approximation:

‖D – A‖ ≥ ‖D† – A†‖
γ max{‖A†‖

,‖D†‖
}

. ()

In the following section, based on Theorem ., we provide two lower error bounds of
D – A for a unitarily invariant norm.

3 Our main results
In this section, we consider the lower bound theory for the low-rank matrix approximation
based on a useful decomposition of D† – A†. When Rank(A) ≤ Rank(D), some sharp lower
bounds of D – A are derived in terms of a unitarily invariant norm. In order to prove our
result, some lemmas are listed below.

Lemma . ([]) Let D = A + E, the projections PD and PA satisfy

PDP⊥
A =

(
D†

)H PDH EHP⊥
A =

(
P⊥

A PD
)H , ()

therefore

∥∥PDP⊥
A
∥∥ ≤ ∥∥D†

∥∥
‖E‖. ()
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If Rank(A) ≤ Rank(D), then

∥∥P⊥
D PA

∥∥ ≤ ∥∥PDP⊥
A
∥∥. ()

Lemma . ([]) Let A, D ∈ C
m×n, Rank(A) = r, Rank(D) = s, r ≤ s, then there exists a

unitary matrix Q ∈C
m×m such that

QPAQH =

⎛

⎜
⎝

I(r)  
  
  

⎞

⎟
⎠ and QPDQH =

⎛

⎜
⎝

�
r  �r�r

 I(s–r) 
�r�r  �

r

⎞

⎟
⎠ , ()

where

�r =

(
� 
 I

)

and �r =

(
� 
 

)

,

� = diag(γ, . . . ,γr ),  ≤ γ ≤ · · · ≤ γr and � = diag(σ, . . . ,σr ),  ≤ σ ≤ · · · ≤ σr . More-
over, γi and σi satisfy γ 

i + σ 
i = , i = , . . . , r.

According to Lemma ., we can easily get the following result.

Lemma . Let A, D ∈C
m×n, Rank(A) = r, Rank(D) = s, r ≤ s, then we have

∥∥P⊥
A PD

∥∥ =
∥∥PDP⊥

A
∥∥. ()

Proof Since

P⊥
A = I – PA = QH

⎛

⎜
⎝

  
 I(s–r) 
  I(m–s)

⎞

⎟
⎠Q, ()

and

PD = QH

⎛

⎜
⎝

�
r  �r�r

 I(s–r) 
�r�r  �

r

⎞

⎟
⎠Q, ()

then

P⊥
A PD = QH

⎛

⎜
⎝

  
 I(s–r) 

�r�r  �
r

⎞

⎟
⎠Q ()

and

PDP⊥
A = QH

⎛

⎜
⎝

  �r�r

 I(s–r) 
  �

r

⎞

⎟
⎠Q. ()

Therefore, they have the same singular values which yield that ‖P⊥
A PD‖ = ‖PDP⊥

A ‖. �
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This is a useful lemma that we will use in the proof of the main result. In order to prove
our main theorem, two lower bounds of D – A are required by the following lemma.

Lemma . For the unitarily invariant norm, if Rank(A) ≤ Rank(D), then the lower bound
of D – A satisfies:

Case I: For ‖D‖ ≥ ‖A‖, we have

‖D – A‖ ≥ ‖D‖ – ‖A‖ –
∥∥D† – A†

∥∥‖D‖‖A‖. ()

Case II: For ‖D‖ ≤ ‖A‖, we have

‖D – A‖ ≥ ‖A‖ – ‖D‖ –
∥
∥D† – A†

∥
∥‖D‖

. ()

Proof Case I: Since ‖D‖ ≥ ‖A‖, we have ‖D – A‖ ≥ ‖D‖ – ‖A‖. Using Theorem . and
Lemma ., we have ‖AB‖ ≤ ‖A‖‖B‖ and ‖P⊥

D PA‖ ≤ ‖PDP⊥
A ‖, respectively. By Lemma .,

we have P⊥
D D = , AP⊥

AH =  and A†P⊥
A = , this also yields

‖D – A‖ ≥ ‖D‖ – ‖A‖ = ‖D‖ –
∥∥(

PD + P⊥
D
)(

PA + P⊥
A
)
A

∥∥

= ‖D‖ –
∥∥PDPAA + P⊥

D PAA
∥∥ (by Lemma .)

= ‖D‖ – ‖PDPAA‖ –
∥∥P⊥

D PAA
∥∥ (

by PD⊥P⊥
D
)

≥ ‖D‖ – ‖A‖ –
∥∥P⊥

D PA
∥∥‖A‖ (by Lemma .)

≥ ‖D‖ – ‖A‖ –
∥∥PDP⊥

A
∥∥‖A‖

= ‖D‖ – ‖A‖ –
∥∥D

(
D† – A†

)
P⊥

A
∥∥‖A‖

≥ ‖D‖ – ‖A‖ –
∥∥D† – A†

∥∥‖D‖‖A‖ (by Theorem .).

Case II: Since ‖D‖ ≤ ‖A‖, we have ‖D – A‖ ≥ ‖A‖ – ‖D‖. Similarly, by Lemma ., using
‖P⊥

A PD‖ = ‖PDP⊥
A ‖, we have

‖D – A‖ ≥ ‖A‖ – ‖D‖ = ‖A‖ –
∥∥(

PA + P⊥
A
)(

PD + P⊥
D
)
D

∥∥

= ‖A‖ –
∥∥PAPDD + P⊥

A PDD
∥∥ (by Lemma .)

= ‖A‖ – ‖PAPDD‖ –
∥∥P⊥

A PDD
∥∥ (

by PA⊥P⊥
A
)

≥ ‖A‖ – ‖D‖ –
∥∥P⊥

A PD
∥∥‖D‖

≥ ‖A‖ – ‖D‖ –
∥∥PDP⊥

A
∥∥‖D‖ (by Lemma .)

= ‖A‖ – ‖D‖ –
∥∥D

(
D† – A†

)
P⊥

A
∥∥‖D‖

≥ ‖A‖ – ‖D‖ –
∥∥D† – A†

∥∥‖D‖
 (by Theorem .).

We complete the proof of Lemma .. �

Our main results can be described as the following theorem.

Theorem . Suppose that D = A + E, Rank(A) ≤ Rank(D), for the unitarily invariant
norm ‖ · ‖, the error of D – A has the following bounds.



Li et al. Journal of Inequalities and Applications  (2017) 2017:288 Page 9 of 14

Case I: For ‖D‖ ≥ ‖A‖, we have

‖D – A‖ ≥ ‖D‖ – ‖A‖
 + γ max{‖A†‖

,‖D†‖
}‖D‖‖A‖

. ()

Case II: For ‖D‖ ≤ ‖A‖, we have

‖D – A‖ ≥ ‖A‖ – ‖D‖
 + γ max{‖A†‖

,‖D†‖
}‖D‖


, ()

where the value options for γ are the same as in Table .

Proof Case I: For ‖D‖ ≥ ‖A‖, by Theorem . and Lemma . (), we can deduce

‖D‖ – ‖A‖ ≤ ‖D – A‖ +
∥∥D† – A†

∥∥‖D‖‖A‖

≤ ‖D – A‖ + γ max
{∥∥A†

∥∥
,

∥∥D†
∥∥



}‖D – A‖‖D‖‖A‖,

this yields

‖D – A‖ ≥ ‖D‖ – ‖A‖
 + γ max{‖A†‖

,‖D†‖
}‖D‖‖A‖

. ()

Case II: Similarly, for ‖D‖ ≤ ‖A‖, by Theorem . and Lemma . (), we can deduce

‖A‖ – ‖D‖ ≤ ‖D – A‖ +
∥∥D† – A†

∥∥‖D‖


≤ ‖D – A‖ + γ max
{∥∥A†

∥∥
,

∥∥D†
∥∥



}‖D – A‖‖D‖
,

this yields

‖D – A‖ ≥ ‖A‖ – ‖D‖
 + γ max{‖A†‖

,‖D†‖
}‖D‖


, ()

where the value options for γ are the same as in Table . In summary, we prove the lower
bounds of Theorem .. �

Remark . From the main theorem, we can see that if ‖D‖ = ‖A‖, then ‖D – A‖ = .
However, in the problem of low-rank matrix approximation, ‖D‖ is not necessarily equal
to ‖A‖, so the approximation error is present. Furthermore, when ‖D‖ is close to ‖A‖,
simulations demonstrate that the error has a very small magnitude (see Section ).

In this section, we discuss the error bounds under different conditions for the uni-
tarily invariant norm. Based on a useful decomposition of D† – A†, for ‖D‖ ≥ ‖A‖
and ‖D‖ ≤ ‖A‖, we have bounds () and (), respectively. The two error bounds are
useful in low-rank matrix approximation. The following experiments illustrate our re-
sults when the approximation matrix A is low-rank and the perturbation matrix E is
sparse.
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4 Experiments
4.1 The singular value thresholding algorithm
Our results are obtained by a singular value thresholding (SVT []) algorithm. This algo-
rithm is easy to implement and surprisingly effective both in terms of computational cost
and storage requirement when the minimum nuclear norm solution is also the lowest-rank
solution. The specific algorithm is described as follows.

For the low-rank matrix approximation problem which is contaminated with perturba-
tion item E, we observe that the data matrix D = A + E. To approximate D, we can solve
the convex optimization problem

min‖A‖∗

s.t. ‖D – A‖F ≤ ε,
()

where ‖ · ‖∗ denotes the nuclear norm of a matrix (i.e., the sum of its singular values).
For solving (), we introduce the soft-thresholding operator Dτ [] which is defined

as

Dτ (A) := UDτ (S)V ∗, Dτ (S) = diag
({

(σi – τ )+
})

,

where (σi – τ )+ = max {,σi – τ }. In general, this operator can effectively shrink some sin-
gular values toward zero. The following theorem is with respect to the shrinkage operators
[–], which will be used at each iteration of the proposed algorithms.

Theorem . ([]) For each τ >  and W ∈ R
m×n, the singular value shrinkage operator

Dτ (·) obeys

Dτ (W ) = arg min
A

τ‖A‖∗ +


‖A – W‖

F ,

where Dτ (W ) := UDτ (S)V ∗.

By introducing a Lagrange multiplier Y to remove the inequality constraint, one has the
augmented Lagrangian function of ()

L(A, Y ) = ‖A‖∗ – 〈Y , A – D〉 +
τ


‖A – D‖

F .

The iterative scheme of the classical augmented Lagrangian multipliers method is

{
Ak+ ∈ arg minA L(A, Y k),
Y k+ = Y k – τ (D – Ak+).

()

Based on the optimality conditions, () is equivalent to

{
 ∈ 

τ
∂(‖Ak+‖∗) + Ak+ – (D + 

τ
Y k),

Y k+ = Y k – τ (D – Ak+),
()
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Algorithm  SVT
Task: Approximate the solution of ().
Input: Observation matrix D = A + E, weight τ . Y  = zeros(m, n)

while the termination criterion is not met, do
Ak+ = D/τ (D + 

τ
Y k),

Y k+ = Y k – τ (D – Ak+),
k ← k + .

end while
Output: A ← Ak+.

Table 2 Lower bound comparison results

Bound (24) Bound (25) Bound (12)
m = n ‖ ·‖2 ‖ ·‖F ‖ ·‖2 ‖ ·‖F ‖ ·‖2 ‖ ·‖F

100 8.13e-7 1.89e-7 1.54e-7 3.31e-7 1.01e-4 1.27e-4
500 5.11e-8 3.71e-8 4.22e-8 4.62e-8 4.23e-4 5.22e-4

1, 000 3.76e-8 2.14e-8 1.01e-8 1.19e-8 5.57e-4 7.48e-4

where ∂(·) denotes the subgradient operator of a convex function. Then, by Theorem .
above, we have the iterative solution

{
Ak+ = D/τ (D + 

τ
Y k),

Y k+ = Y k – τ (D – Ak+).
()

The SVT approach works as described in Algorithm .

4.2 Simulations
In this section, we use the SVT algorithm for the low-rank matrix approximation prob-
lem. Let D = A + E ∈ R

m×n be the available data. Simply, we restrict our examples to square
matrices (m = n). We draw A according to the independent random matrices and gener-
ate the perturbation matrix E to be sparse, which satisfies the i.i.d. Gaussian distribution.
Specially, the rank of the matrix A and the sparse entries of the perturbation matrix E are
selected to be %m and %m, respectively.

Table  reports the results obtained by lower bounds (), () and (), respectively.
Bounds () and () are our new result, bound () is the previous result. Then, com-
paring the bounds with each other by numerical experiments, we find that lower bounds
(), () are smaller than lower bound ().

4.3 Applications
In this section, we use the SVT algorithm for the low-rank image approximation. From
Figures  and , comparing with the original image (a), the low-rank image (b) loses some
details. We can hardly get any detailed information from incomplete image (c). However,
the output image (d) = Ak , which is obtained by the SVT algorithm, can recover the details
of the low-rank image (b). If we denote image (b) to be a low-rank matrix A, then image
(c) is the observed data matrix D which is perturbed by a sparse matrix E, that is,

image (c) = image (b) + E.
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Figure 1 Cameraman. (a) Original 256× 256
image with full rank. (b) Original image truncated to
be rank 50. (c) 50% randomly masked of (b).
(d) Recovered image from (c).

Figure 2 Barbara. (a) Original 512× 512 image
with full rank. (b) Original image truncated to be
rank 100. (c) 50% randomly masked of (b).
(d) Recovered image from (c).

Table 3 Lower bound comparison results of low-rank image approximation

Cameraman Barbara

‖E‖F 8.71e-2 7.23e-2
Bound (25) 2.59e-5 1.09e-5
Iters 200 200

Using the SVT algorithm for the low-rank image approximation problem, the lower
bound comparison results are shown in Table . We calculate ‖E‖F = ‖D – A‖F are .e-
and .e- for images Cameraman and Barbara, respectively. But for F-norm of our lower
bound (), we can see that they are .e- and .e- for images Cameraman and Bar-
bara, respectively. That is to say, our error bounds can verify that the SVT algorithm still
can be improved.
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5 Conclusion
Low-rank matrix approximation problem is a field which arises in a number of applications
in model selection, system identification, complexity theory, and optics. Based on a useful
decomposition of D† – A†, this paper reviewed the previous work and provided two sharp
lower bounds for the low-rank matrices recovery problem with a unitarily invariant norm.

From our main Theorem ., we can see that if ‖D‖ = ‖A‖, then ‖D – A‖ = . However,
in the problem of low-rank matrix approximation, ‖D‖ is not necessarily equal to ‖A‖,
so the approximation error is present. Furthermore, from the main results, we can clearly
find the influence of the spectral norm (‖ · ‖) on the low-rank matrix approximation. For
example, in Case II, when the maximum eigenvalue of the matrix D is larger, the error of
D – A is smaller.

Finally, we use the SVT algorithm for the low-rank matrix approximation problem. Ta-
ble  shows that our lower bounds (), () are smaller than lower bound (). Simulation
results demonstrate that the lower bounds have a very small magnitude. In applications
section, we use the SVT algorithm for the low-rank image approximation problem, the
lower bounds comparison results are shown in Table . From the comparison results, we
find that our lower bounds can verify whether the SVT algorithm can be improved.
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