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Abstract
Let φ be a real-valued plurisubharmonic function on C

n whose complex Hessian has
uniformly comparable eigenvalues, and let Fp(φ) be the Fock space induced by φ . In
this paper, we conclude that the Bergman projection is bounded from the pth
Lebesgue space Lp(φ) to Fp(φ) for 1≤ p ≤ ∞. As a remark, we claim that Bergman
projections are also well defined and bounded on Fock spaces Fp(φ) with 0 < p < 1.
We also obtain the estimates for the distance induced by φ and the Lp(φ)-norm of
Bergman kernel for F2(φ).
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1 Introduction
The symbol dv denotes the Lebesgue volume measure on C

n, and

B(z, r) =
{

w ∈ C
n : |w – z| < r

}
for z ∈C

n and r > .

Suppose φ : Cn → R is a C plurisubharmonic function. We say that φ belongs to the
weight class W if φ satisfies the following statements:

(I) There exists c >  such that for z ∈C
n

inf
z∈Cn

sup
w∈B(z,c)

�φ(w) > ; ()

(II) �φ satisfies the reverse-Hölder inequality

‖�φ‖L∞(B(z,r)) ≤ Cr–n
∫

B(z,r)
�φ dv, ∀z ∈C

n, r >  ()

for some  < C < +∞;
(III) The eigenvalues of Hφ are comparable, i.e., there exists δ >  such that

(
Hφ(z)u, u

) ≥ δ�φ(z)|u|, ∀z, u ∈ C
n,

where

Hφ =
(

∂φ

∂zj ∂zk

)

j,k
.
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Suppose  < p < ∞, φ ∈ W. The space Lp(φ) consists of all Lebesgue measurable func-
tions f on C

n for which

‖f ‖p,φ =
(∫

Cn

∣∣f (z)
∣∣pe–pφ(z) dv(z)

) 
p

< ∞.

L∞(φ) is the set of all Lebesgue measurable functions f on C
n with

‖f ‖∞,φ = sup
z∈Cn

∣∣f (z)
∣∣e–φ(z) < ∞.

Let H(Cn) be the family of all holomorphic functions on C
n. The weighted Fock space is

defined as

Fp(φ) = Lp(φ) ∩ H
(
C

n)

with the same norm ‖ · ‖p,φ . It is easy to check that Fp(φ) is a Banach space under ‖ · ‖p,φ

if  ≤ p < ∞, and Fp(φ) is a Fréchet space with the metric �(f , g) = ‖f – g‖p
p,φ whenever

 < p < . Taking φ(z) = 
 |z|, Fp(φ) is the classical Fock space which has been studied by

many authors, see [–] and the references therein. Notice that the weight function ϕ on
C

n with the restriction that ddcϕ 
 ddc|z| in [] and [] belongs to W.
In the one-dimensional case, an important contribution to weighted Fock spaces was

given by Christ [] (but see also [, ]). They work under the assumption that φ is subhar-
monic and that �φ dA is a doubling measure, where dA is the area measure on C. Notice
that the hypotheses on �φ dA are a sort of finite-type assumption and are automatically
verified when φ is a subharmonic non-harmonic polynomial.

The result of Christ was extended by Delin to several complex variables under the as-
sumption of strict plurisubharmonicity of the weight in []. Dall’Ara [] tried to extend
Christ’s approach to n ≥ . Given φ ∈ W, let K(·, ·) be the weighted Bergman kernel for
F(φ). In particular, Theorem  of [] proves that there is a constant C, ε >  such that

∣∣K(z, w)
∣∣ ≤ Ceφ(z)+φ(w) e–εd(z,w)

ρφ(z)nρφ(w)n ()

for z, w ∈C
n, where d(·, ·), ρφ(·) described in Section .

In the setting of Bergman spaces, the Bergman projection is bounded on p-Bergman
spaces for  < p < ∞, it also maps L∞ into Bloch spaces, see [] for details. With the
Bergman kernel K(·, ·) for F(φ), the Bergman projection P can be represented as

Pf (z) =
∫

Cn
K(z, w)f (w)e–φ(w) dv(w), z ∈ C

n.

It is well known that P(f ) = f for f ∈ F(φ). The purpose of this work is to discuss the
boundedness of Bergman projection acting on Fp(φ) for general p. Section  is devoted
to some basic estimates, including the distance d(·, ·) and the Lp(φ)-norm of the Bergman
kernel. In Section , we will discuss the boundedness of Bergman projections from Lp(φ)
to Fp(φ) with  ≤ p ≤ ∞. We also show that the Bergman projection is well defined and
bounded on Fp(φ) for p < .
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In what follows, we always suppose φ ∈ W and use C to denote positive constants whose
values may change from line to line but do not depend on the functions being considered.
Two quantities A and B are called equivalent, denoted by ‘A 
 B’, if there exists some C
such that C–A ≤ B ≤ CA.

2 Some basic estimates
In this section, we are going to give some estimates, which will be useful in the following
section. At the beginning, we will give some notations.

For z ∈ C
n, set

ρφ(z) = sup
{

r >  : sup
w∈B(z,r)

�φ(w) ≤ r–
}

. ()

By (), there exist c, s >  such that for z ∈Cn

sup
w∈B(z,c)

�φ(w) ≥ s.

We then have some M >  such that

sup
z∈Cn

ρφ(z) ≤ M.

Moreover, there are some positive constants C, M and M such that for all z, w ∈ C
n, we

have

C–θ–Mρφ(w) ≤ ρφ(z) ≤ CθMρφ(w), ()

where θ = max(, |z–w|
ρφ (w) ). We can see this in Proposition  of [].

Given r > , write

Br(z) = B
(
z, rρφ(z)

)
and B(z) = B(z).

Then () implies that there is some C such that for z ∈C
n

C–ρφ(w) ≤ ρφ(z) ≤ Cρφ(w) for w ∈ B(z). ()

By () and the triangle inequality, we have m, m >  such that

B(z) ⊆ Bm (w), B(w) ⊆ Bm (z) whenever w ∈ B(z). ()

Given a sequence {ak}∞k= in C
n, we say that {ak}∞k= is a lattice if {B(ak)}∞k= covers C

n

and the balls of {B 
 (ak)}∞k= are pairwise disjoint. This lattice exists by a standard covering

lemma, see Theorem . in [], or Proposition  in [] as well. Moreover, for the lattice
{ak}k and any m > , there exists some integer N such that each z ∈ C

n can be in at most
N balls of {Bm(ak)}k . Equivalently,

∞∑

k=

χBm(ak )(z) ≤ N for z ∈ C
n. ()
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To the radius function ρφ defined as (), we associate the Riemannian metric
ρφ(z)– dz ⊗ dz. In fact, we are interested only in the associated Riemannian distance,
which we describe explicitly. If γ : [, ] →C

n is piecewise C curves, we define

Lρφ
(γ ) =

∫ 



|γ ′(t)|
ρφ(γ (t))

dt.

Given z, w ∈C
n, we put

d(z, w) = inf
γ

Lρφ
(γ ),

where the inf is taken as γ varies over the collection of curves with γ () = z and γ () = w.
We then have the estimate for this distance as follows.

Lemma  There exist α,β , C >  such that for z, w ∈C
n


C

( |z – w|
ρφ(z)

)α

≤ d(z, w) ≤ C
( |z – w|

ρφ(z)

)β

.

Proof First, we claim that there is some C >  such that

d(z, w) ≥ C
( |z – w|

ρφ(z)

)α

. ()

In fact, set μ to be

μ
(
B(z, r)

)
= r‖�φ‖L∞(B(z,r)), z ∈C

n, r > . ()

By (), it is easy to check that there is some M >  such that

μ
(
B(z, r)

) ≤ Mμ
(
B(z, r)

)
. ()

Moreover,

μ
(
B
(
z,ρφ(z)

))
=  ()

because of (). Given any r ≤ R, it is easy to check that

μ
(
B(z, r)

) ≤
(

r
R

)

μ
(
B(z, R)

) ≤ μ
(
B(z, R)

)
()

for z ∈ C
n because of (). Also, there is a positive integer m such that m–r < R ≤ mr.

Hence, () and () tell us

μ
(
B(z, R)

) ≤ μ
(
B
(
z, mr

)) ≤ Mμ
(
B
(
z, m–r

)) ≤ · · · ≤ Mmμ
(
B(z, r)

)
.

Since Mm– = (m–) log M ≤ ( R
r )log M , we get

μ
(
B(z, R)

) ≤ M
(

R
r

)log M

μ
(
B(z, r)

)
. ()
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For z, w ∈C
n, notice that B(w, |w – z|) ⊂ B(z, |w – z|). If |w – z| < ρφ(z), take any piecewise

C curve γ : [, ] → C
n connecting z and w, and let T be the minimum time such that

|z – γ (T)| = ρφ(z). By (), ρφ(γ (t)) 
 ρφ(z) for t ∈ [, T). This implies

∫ 



|γ ′(t)|
ρφ(γ (t))

dt ≥ C
ρφ(z)

∫ T



∣∣γ ′(t)
∣∣dt ≥ C

|z – w|
ρφ(z)

.

If |z – w| ≥ ρφ(w), then (), (), () and () give

μ

(
B
(

z,



|z – w|
))

≥ Cμ
(
B
(
z, |z – w|)) ≥ Cμ

(
B
(
w, |z – w|))

≥ C
( |z – w|

ρφ(w)

)

μ
(
B
(
w,ρφ(w)

))

= C
( |z – w|

ρφ(w)

)

.

On the other hand, for ζ ∈ B(z, 
 |z – w|), there are

B
(

ζ ,



|z – w|
)

⊂ B
(

z,


|z – w|

)

and

B
(

z,



|z – w|
)

⊂ B
(

ζ ,


|z – w|

)
.

Combining the above with (), we know

μ

(
B
(

z,



|z – w|
))


 μ

(
B
(

ζ ,


|z – w|

))
.

By the fact log M > , (), () and (), there exists t >  such that

μ

(
B
(

z,



|z – w|
))


 μ

(
B
(

ζ ,


|z – w|

))

≤ C
( |z – w|

ρφ(ζ )

)t

μ
(
B
(
ζ ,ρφ(ζ )

))



( |z – w|

ρφ(ζ )

)t

.

Hence, ( |z–w|
ρφ (w) ) ≤ C( |z–w|

ρφ (ζ ) )t . This implies

ρφ(ζ ) ≤ C|z – w|
( |z – w|

ρφ(w)

)–α

, ζ ∈ B
(

z,



|z – w|
)

,
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where α = 
t > . For any piecewise C curves �, defined as γ : [, ] → C

n with γ () = z
and γ () = w, we have

∫

�

|γ ′(t)|
ρφ(γ (t))

dt ≥
∫

�∩B(z, 
 |z–w|)

|γ ′(t)|
ρφ(γ (t))

dt

≥ 
|z – w|( |z–w|

ρφ (w) )–α

∫

�∩B(z, 
 |z–w|)

∣∣γ ′(t)
∣∣dt

≥ C
( |z – w|

ρφ(w)

)α

.

This yields () is true. Now, we are going to prove the other direction. For z, w ∈ C
n, take

γ (t) = z + t(w – z) and γ (t) ∈ ∂B(z) (set t =  if w ∈ B(z)). Then () gives

d(z, w) ≤ |w – z|
∫ 



dt
ρφ(γ (t))

≤ C|w – z|
(∫ t


+

∫ 

t

)
dt

ρφ(γ (t))

≤ C
|w – z|
ρφ(z)

∫ 


dt + C

( |w – z|
ρφ(z)

)+M ∫ 


tM dt

≤ C
( |w – z|

ρφ(z)

)β

,

where β > . The proof is completed. �

Now, we can estimate the following integral.

Lemma  Given p >  and k ∈R, we have

∫

Cn
ρφ(ζ )ke–pd(z,ζ ) dv(ζ ) ≤ Cρφ(z)k+n,

where C >  is a constant depending only on n, p and k.

Proof By (), it is easy to check that

∫

B(z)
ρφ(ζ )ke–pd(z,ζ ) dv(ζ ) ≤

∫

B(z)
ρφ(ζ )k dv(ζ ) ≤ Cρφ(z)k+n.

Estimate () gives

∫

Cn\B(z)
ρφ(ζ )ke–pd(z,ζ ) dv(ζ ) ≤

∫

Cn\B(z)
ρφ(ζ )ke

–pC( |z–ζ |
ρφ (z) )α

dv(ζ )

≤
∫

Cn\B(z)
ρφ(ζ )k

∫ ∞

pC( |z–ζ |
ρφ (z) )α

e–s ds dv(ζ )

≤
∫ ∞

pC

e–s
∫

B
( s

pC
)


α

(z)
ρφ(ζ )k dv(ζ ) ds.
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By (), the inequality above is no more than

∫ ∞

pC

sup

ζ∈B
( s

pC
)


α

(z)

ρφ(ζ )kv
(
B( s

pC
)


α (z)

)
e–s ds

≤ Cρφ(z)k+n
∫ ∞

pC

s
n+max{kM,–kM}

α e–s ds = Cρφ(z)k+n.

Therefore,
∫

Cn
ρφ(w)ke–pd(z,w) dv(w) ≤ Cρφ(z)k+n.

The proof is completed. �

Next, we will give the Lp(φ)-norm of the Bergman kernel K(·, ·) for F(φ).

Proposition  For  < p < ∞, we have

∥∥K(·, z)
∥∥

p,φ ≤ Ceφ(z)ρφ(z)n( 
p –), z ∈C

n.

Proof By () and Lemma , we obtain

∫

Cn

∣∣K(w, z)
∣∣pe–pφ(w) dv(w) ≤ C

epφ(z)

ρφ(z)pn

∫

Cn
ρφ(w)–pne–pεd(z,w) dv(w)

≤ Cepφ(z)ρφ(z)n(–p).

The proof is completed. �

Lemma  For  < p < ∞, there is a constant C >  such that for all r ∈ (, ], f ∈ H(Cn)
and z ∈Cn, we have

∣∣f (z)
∣∣e–φ(z) ≤ C

r
n
p ρφ(z)

n
p

(∫

Br(z)

∣∣f (w)e–φ(w)∣∣p dv(w)
) 

p
. ()

Proof If p = , () is just Lemma  in []. For p �= , we borrow the idea in Lemma  of
[] and Lemma  in []. The details are omitted. �

3 Boundedness of Bergman projections
Recall that the Bergman projection P on Lp(φ) is defined as

Pf (z) =
∫

Cn
K(z, w)f (w)e–φ(w) dv(w), z ∈ C

n.

In this section, we focus on the boundedness of Bergman projections P from Lp(φ) to
Fp(φ) for  ≤ p ≤ ∞.

Theorem  Let  ≤ p ≤ ∞. Then the Bergman projection P is bounded as a map from
Lp(φ) to Fp(φ).
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Proof By the definition of P, we can conclude Pf is holomorphic on C
n. Fubini’s theorem

and Proposition  yield

‖Pf ‖,φ ≤
∫

Cn
e–φ(z) dv(z)

∫

Cn

∣∣K(z, w)f (w)
∣∣e–φ(w) dv(w)

=
∫

Cn

∣∣f (w)
∣∣e–φ(w) dv(w)

∫

Cn

∣∣K(z, w)
∣∣e–φ(z) dv(z)

≤ C‖f ‖,φ

for f ∈ L(φ). Given f ∈ L∞(φ), we obtain

‖Pf ‖∞,φ ≤ sup
z∈Cn

e–φ(z)
∫

Cn

∣∣K(z, w)f (w)
∣∣e–φ(w) dv(w)

≤ ‖f ‖∞,φ sup
z∈Cn

e–φ(z)
∫

Cn

∣∣K(z, w)
∣∣e–φ(w) dv(w)

≤ C‖f ‖∞,φ .

If  < p < ∞, Hölder’s inequality and Fubini’s theorem give

‖Pf ‖p
p,φ

≤
∫

Cn
e–pφ(z) dv(z)

(∫

Cn

∣∣K(z, w)f (w)
∣∣e–φ(w) dv(w)

)p

≤
∫

Cn

∫

Cn

∣∣f (w)
∣∣pe–pφ(w)∣∣K(z, w)

∣∣e–φ(w) dv(w)
∥∥K(z, ·)∥∥p–

,φ e–pφ(z) dv(z)

≤ C
∫

Cn
e–φ(z) dv(z)

∫

Cn

∣∣f (w)
∣∣pe–pφ(w)∣∣K(z, w)

∣∣e–φ(w) dv(w)

≤ C
∫

Cn

∣∣f (w)
∣∣pe–pφ(w)e–φ(w) dv(w)

∫

Cn

∣∣K(z, w)
∣∣e–φ(z) dv(z)

≤ C‖f ‖p
p,φ

for f ∈ Lp(φ). Thus, P is bounded from Lp(φ) toFp(φ) for  ≤ p ≤ ∞. The proof is ended.�

In addition, we observe that the Bergman projection is also well defined and bounded
on the weighted Fock space Fp(φ) with p < .

Remark  For p < , the Bergman projection P is bounded on Fp(φ).

Proof First, we claim that P is well defined on Fp(φ). In fact, given any f ∈ Fp(φ), by (),
() and Lemma , we obtain

∫

Cn

∣∣K(z, w)f (w)
∣∣e–φ(w) dv(w)

≤ C‖f ‖p,φ

∫

Cn
ρφ(w)– n

p
∣
∣K(z, w)

∣
∣e–φ(w) dv(w)
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≤ Ceφ(z)ρφ(z)–n
∫

Cn
ρφ(w)– n

p –ne–εd(z,w) dv(w)

≤ Ceφ(z)ρφ(z)– n
p < ∞.

Now, we deal with the boundedness of P. In fact, let {ak}k be the lattice. For f ∈Fp(φ), we
get

∣∣Pf (z)
∣∣p ≤

( ∞∑

k=

∫

B(ak )

∣∣f (w)K(w, z)
∣∣e–φ(w) dv(w)

)p

≤
∞∑

k=

(∫

B(ak )

∣∣f (w)K(w, z)
∣∣e–φ(w) dv(w)

)p

≤
∞∑

k=

v
(
B(ak)

)p
(

sup
w∈B(ak )

∣∣f (w)K(w, z)
∣∣e–φ(w)

)p
.

Notice that the associated function ρφ =
√


 ρφ , which follows from (). Applying

Lemma  with weight φ instead of φ, there then is some constant C >  such that |Pf (z)|p
is no more than C times

∞∑

k=

ρφ(ak)np–n sup
w∈B(ak )

∫

B(w)

∣∣f (u)
∣∣p∣∣K(u, z)

∣∣pe–pφ(u) dv(u).

Combining () with (), we obtain

∣∣Pf (z)
∣∣p ≤ C

∞∑

k=

∫

Bm (ak )
ρφ(u)np–n∣∣f (u)

∣∣p∣∣K(u, z)
∣∣pe–pφ(u) dv(u)

≤ CN
∫

Cn
ρφ(u)np–n∣∣f (u)

∣∣p∣∣K(u, z)
∣∣pe–pφ(u) dv(u).

Therefore, applying Fubini’s theorem and Proposition , we get

∫

Cn

∣∣Pf (z)
∣∣pe–pφ(z) dv(z)

≤ C
∫

Cn

∫

Cn

∣∣K(u, z)
∣∣pe–pφ(z) dv(z)ρφ(u)np–n∣∣f (u)

∣∣pe–pφ(u) dv(u)

≤ C
∫

Cn

∣∣f (u)
∣∣pe–pφ(u) dv(u).

This means that P is bounded on Fp(φ). The proof is ended. �

4 Conclusion
In this paper, we show the boundedness of Bergman projection from the pth Lebesgue
space Lp(φ) to the weighted Fock space Fp(φ) for  ≤ p ≤ ∞. We also remak that the
Bergman projection is bounded on Fp(φ) with p < . Meanwhile, we get the estimates for
the distance induced by φ and the Lp(φ)-norm of Bergman kernel for F(φ).
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