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Abstract
In this paper, we consider a nonsmooth multiobjective semi-infinite programming
problem with vanishing constraints (MOSIPVC). We introduce stationary conditions
for the MOSIPVCs and establish the strong Karush-Kuhn-Tucker type sufficient
optimality conditions for the MOSIPVC under generalized convexity assumptions.
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1 Introduction
Multiobjective semi-infinite programming problems (MOSIPs) arise when more than one
objective function is to be optimized over the feasible region described by an infinite num-
ber of constraints. If there is only one objective function in a MOSIP, then it is known as
semi-infinite programming problem (SIP). SIPs have played an important role in several
areas of modern research, such as transportation theory [], engineering design [], robot
trajectory planning [] and control of air pollution []. We refer to the books [, ] for
more details as regards SIPs and their applications and to some recent papers [–] for
details as regards MOSIPs.

Achtziger and Kanzow [] introduced the mathematical programs with vanishing con-
straints (MPVCs) and showed that many problems from structural topology optimization
can be reformulated as MPVCs. Hoheisel and Kanzow [] defined stationary concepts for
MPVCs and derived first order sufficient and second order necessary and sufficient opti-
mality conditions for MPVCs. Hoheisel and Kanzow [] established optimality conditions
for weak constraint qualification. Mishra et al. [] obtained various constraint qualifica-
tions and established Karush-Kuhn-Tucker (KKT) type necessary optimality conditions
for multiobjective MPVCs. We refer to [–] and references therein for more details as
regards MPVCs.

Recently, the idea of a strong KKT has been used to avoid the case where some of the
Lagrange multipliers associated with the components of multiobjective functions vanish.
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Golestani and Nobakhtian [] derived the strong KKT optimality conditions for non-
smooth multiobjective optimization. Kanzi [] established strong KKT optimality con-
ditions for MOSIPs. Pandey and Mishra [] established the strong KKT type sufficient
conditions for nonsmooth MOSIPs with equilibrium constraints.

Motivated by Achtziger and Kanzow [], Golestani and Nobakhtian [] and Pandey
and Mishra [], we extend the concept of the strong KKT optimality conditions for the
MOSIPs with vanishing constraints (MOSIPVCs) that do not involve any constraint qual-
ification. The paper is organized as follows. In Section , we present some known defini-
tions and results which will be used in the sequel. In Section , we define stationary points
and establish strong KKT type optimality for MOSIPVC. In Section , we conclude the
results of the paper.

2 Definitions and preliminaries
In this paper, we consider the following MOSIPVC:

MOSIPVC min f (x) :=
(
f(x), f(x), . . . , fm(x)

)
,

subject to gt(x) ≤ , t ∈ T ,
Hi(x) ≥ , i = , . . . , l,
Gi(x)Hi(x) ≤ , i = , . . . , l,

where fi : Rn → R, gt : Rn → R ∪ {+∞}, Gi : Rn → R, Hi : Rn → R are given locally Lips-
chitz functions and the index set T is arbitrary (possibly infinite). Let M := {x ∈R

n : gt(x) ≤
, t ∈ T , Hi(x) ≥ , Gi(x)Hi(x) ≤ , i = , . . . , l}, denote the feasible set of the MOSIPVC.
A point x̄ ∈ M is said to be a weakly efficient solution for the MOSIPVC if there exists no
x ∈ M such that

fi(x) < fi(x̄), ∀i = , , . . . , m.

Let x̄ ∈ M. The following index sets will be used in the sequel.

T(x̄) :=
{

t ∈ T : gt(x̄) = 
}

,

I+(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) > 
}

,

I(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) = 
}

.

Furthermore, the index set I+(x̄) can be divided as follows:

I+(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) > , Gi(x) = 
}

,

I+–(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) > , Gi(x) < 
}

.

Similarly, the index set I(x̄) can be partitioned as follows:

I+(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) = , Gi(x̄) > 
}

,

I(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) = , Gi(x̄) = 
}

,

I–(x̄) :=
{

i ∈ {, . . . , l} : Hi(x̄) = , Gi(x̄) < 
}

.
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The Clarke directional derivative of a locally Lipschitz function f : Rn → R around x̄ in
the direction v ∈ R

n and the Clarke subdifferential of f at x̄ are, respectively, given by

f (x̄; v) := lim
x→x̄

sup
t↓

f (x + tv) – f (x)
t

,

∂cf (x̄) :=
{
ξ ∈R

n : f (x̄; v) ≥ 〈ξ , v〉,∀v ∈ R
n}.

We recall the following results from [].

Theorem . Let f and g be locally Lipschitz from R
n to R around x̄. Then the following

properties hold:
. f (x̄; v) = max{〈ξ , v〉 : ξ ∈ ∂cf (x̄),∀v ∈R

n},
. ∂c(λf )(x̄) = λ∂cf (x̄), ∀λ ∈R,
. ∂c(f + g)(x̄) ⊆ ∂cf (x̄) + ∂cg(x̄).

The following definitions and lemma from Kanzi and Nobakhtian [] will be used in the
sequel.

Definition . Let f : Rn →R be a locally Lipschitz function around x̄. Then
. f is said to be generalized convex at x̄ if, for each x ∈R

n and any ξ ∈ ∂cf (x̄),

f (x) – f (x̄) ≥ 〈ξ , x – x̄〉,

. f is said to be strictly generalized convex at x̄ if, for each x ∈R
n, x = x̄ and any

ξ ∈ ∂cf (x̄),

f (x) – f (x̄) > 〈ξ , x – x̄〉,

. f is said to be generalized quasiconvex at x̄ if, for each x ∈ R
n and any ξ ∈ ∂cf (x̄),

f (x) ≤ f (x̄) ⇒ 〈ξ , x – x̄〉 ≤ ,

. f is said to be strictly generalized quasiconvex at x̄ if, for each x ∈R
n and any

ξ ∈ ∂cf (x̄),

f (x) ≤ f (x̄) ⇒ 〈ξ , x – x̄〉 < .

Lemma . Let f be strictly generalized convex and f, f, . . . , fs be generalized convex func-
tion at x. If λ >  and λl ≥  for l = , . . . , s, then

∑s
l= λlfl is strictly generalized convex at x.

3 Strong KKT type sufficient optimality conditions
We extend Definitions . and . of Hoheisel and Kanzow [] to the case of the
MOSIPVC.

Definition . (MOSIPVC S-stationary point) A feasible point x̄ of the MOSIPVC is
called a MOSIPVC strong (S-)stationary point if there exist Lagrange multipliers λi > ,
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i = , . . . , m, and μt ≥ , t ∈ T(x̄), with μt =  for at most finitely many indices and
ηH

i ,ηG
i ∈ R, i = , . . . , l such that the following conditions hold:

 ∈
m∑

i=

λi∂cfi(x̄) +
∑

t∈T(x̄)

μt∂cgt(x̄) –
l∑

i=

ηH
i ∂cHi(x̄) +

l∑

i=

ηG
i ∂cGi(x̄),

ηH
i = , i ∈ I+(x̄), ηH

i ≥ , i ∈ I–(x̄) ∪ I(x̄), ηH
i ∈R, i ∈ I+(x̄),

ηG
i = , i ∈ I+–(x̄) ∪ I(x̄) ∪ I+(x̄), ηG

i ≥ , i ∈ I+(x̄).

Definition . (MOSIPVC M-stationary point) A feasible point x̄ of the MOSIPVC is
called a MOSIPVC Mordukhovich (M-)stationary point if there exist Lagrange multipliers
λi > , i = , . . . , m, and μt ≥ , t ∈ T(x̄), with μt =  for at most finitely many indices and
ηH

i , ηG
i ∈R, i = , . . . , l, such that the following conditions hold:

 ∈
m∑

i=

λi∂cfi(x̄) +
∑

t∈T(x̄)

μt∂cgt(x̄) –
l∑

i=

ηH
i ∂cHi(x̄) +

l∑

i=

ηG
i ∂cGi(x̄),

ηH
i = , i ∈ I+(x̄), ηH

i ≥ , i ∈ I–(x̄), ηH
i ∈R, i ∈ I+(x̄),

ηG
i = , i ∈ I+–(x̄) ∪ I–(x̄) ∪ I+(x̄), ηG

i ≥ , i ∈ I+(x̄) ∪ I(x̄),

ηG
i · ηH

i = , i ∈ I(x̄).

Remark . The difference between MOSIPVC M-stationary points and MOSIPVC S-
stationary points occurs only for the index set I. For MOSIPVC M-stationary points,
ηG

i ≥  and ηH
i · ηG

i =  for i ∈ I, whereas for MOSIPVC S-stationary points, ηH
i ≥  and

ηG
i =  for i ∈ I.

In the following theorem, we establish the strong KKT type sufficient optimality result
for the MOSIPVC under generalized convexity assumptions.

Theorem . Let x̄ be a MOSIPVC M-stationary point. Suppose that fi, i = , . . . , m, gt ,
t ∈ T(x̄), –Hi, Gi, i = , . . . , l, are generalized convex at x̄ on M and at least one of them is
strictly generalized convex at x̄ on M. Then x̄ is a weakly efficient solution for the MOSIPVC.

Proof Since x̄ is a MOSIPVC M-stationary point, there exist ξ̄
f
i ∈ ∂cfi(x̄), i = , . . . , m, ξ̄

g
t ∈

∂cgt(x̄), t ∈ T(x̄), and ξ̄H
i ∈ ∂cHi(x̄), ξ̄G

i ∈ ∂cGi(x̄), i = , . . . , l, such that

m∑

i=

λiξ̄
f
i +

∑

t∈T(x̄)

μt ξ̄
g
t –

l∑

i=

ηH
i ξ̄H

i +
l∑

i=

ηG
i ξ̄G

i = . (.)

Suppose on the contrary that x̄ is not a weakly efficient solution for the MOSIPVC, that
is, there exists x̃ ∈ M, such that

fi(x̃) < fi(x̄) for all i = , . . . , m.
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From the MOSIPVC M-stationary point, we have λi >  for i = , . . . , m. Thus, we get

m∑

i=

λifi(x̃) <
m∑

i=

λifi(x̄). (.)

Since x̄ is a MOSIPVC M-stationary point and x̃ is a feasible point of the MOSIPVC, we
have

gt(x̃) < , μt ≥ , t ∈ T(x̄),

–Hi(x̃) < , ηH
i ≥ , i ∈ I–(x̄) ∪ I+(x̄),

–Hi(x̃) = , ηH ∈R, i ∈ I+(x̄),

Gi(x̃) > , ηG = , i ∈ I+–(x̄) ∪ I–(x̄) ∪ I+(x̄),

Gi(x̃) ≤ , ηG > , i ∈ I(x̄) ∪ I+(x̄),

which implies that

∑

t∈T(x̄)

μtgt(x̃) –
l∑

i=

ηH
i Hi(x̃) +

l∑

i=

ηG
i Gi(x̃)

≤
∑

t∈T(x̄)

μtgt(x̄) –
l∑

i=

ηH
i Hi(x̄) +

l∑

i=

ηG
i Gi(x̄). (.)

From (.) and (.), we have

m∑

i=

λifi(x̃) +
∑

t∈T(x̄)

μtgt(x̃) –
l∑

i=

ηH
i Hi(x̃) +

l∑

i=

ηG
i Gi(x̃)

<
m∑

i=

λifi(x̄) +
∑

t∈T(x̄)

μtgt(x̄) –
l∑

i=

ηH
i Hi(x̄) +

l∑

i=

ηG
i Gi(x̄). (.)

It follows from Lemma . that
∑m

i= λifi(x) +
∑

t∈T(x̄) μtgt(x) –
∑l

i= ηH
i Hi(x) +

∑l
i= ηG

i Gi(x)
is a strictly generalized convex function at x̄ on M. Hence,

 =
m∑

i=

λiξ̄
f
i +

∑

t∈T(x̄)

μt ξ̄
g
t –

l∑

i=

ηH
i ξ̄H

i

+
l∑

i=

ηG
i ξ̄G

i ∈ ∂c

( m∑

i=

λifi(x̄) +
∑

t∈T(x̄)

μtgt(x̄) –
l∑

i=

ηH
i Hi(x̄) +

l∑

i=

ηG
i Gi(x̄)

)

. (.)

Therefore, from (.), (.) and (.), we obtain

 >

〈 m∑

i=

λiξ̄
f
i +

∑

t∈T(x̄)

μt ξ̄
g
t –

l∑

i=

ηH
i ξ̄H

i +
l∑

i=

ηG
i ξ̄G

i , x̃ – x̄

〉

= 〈, x̃ – x̄〉.

Thus, we arrive at a contradiction and hence the result. �
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The following result is a direct consequence of Theorem ., where the MOSIPVC M-
stationary point is replaced by a MOSIPVC S-stationary point.

Corollary . Let x̄ be a MOSIPVC S-stationary point. Suppose that fi, i = , . . . , m, gt ,
t ∈ T(x̄), –Hi, Gi, i = , . . . , l, are generalized convex at x̄ on M and at least one of them is
strictly generalized convex at x̄ on M. Then x̄ is a weakly efficient solution for the MOSIPVC.

The strong KKT type sufficient condition for the MOSIPVC given in Theorem . can
be obtained under further relaxations on generalized convexity requirements.

Theorem . Let x̄ be a MOSIPVC M-stationary point. Suppose that fi, i = , . . . , m, gt ,
t ∈ T(x̄), –Hi, Gi, i = , . . . , l, are generalized quasiconvex at x̄ on M and at least one of
them is strictly generalized quasiconvex at x̄ on M. Then x̄ is a weakly efficient solution for
the MOSIPVC.

The following example satisfies the assumptions of Theorem ..

Example . Consider the following problem in R
:

min f (x) =
(
x

 , |x| + |x|
)
,

s. t. gt(x) = –tx ≤ , t ∈N,
H(x) = x ≥ ,
H(x)G(x) = x

(|x| + x
) ≤ .

(.)

Note that f(x) = |x|, f(x) = |x| + |x| and the feasible region of the MOSIPVC (.) is
given by

M =
{

(x, x) ∈R
 : –tx ≤ , t ∈ N, x ≥ , x

(|x| + x
) ≤ 

}
,

which is represented by the shaded region in Figure .
It is easy to see that x̄ = (, ) is a feasible point of the problem, T(x̄) = N and I(x̄) = {}.

The feasible point x̄ is a MOSIPVC M-stationary point with λ > , λ = , μ = , μ = 
 ,

μ = μ = · · · = , ηH = –, ηG = , ξ f = (, ) ∈ ∂cf(x̄) = {(, )}, ξ f = (, ) ∈ ∂cf(x̄) =
[–, ] × [–, ], ξ

gt
 = (–t, ) ∈ ∂cgt(x̄) = {(–t, )}, ξH = (, ) ∈ ∂cH(x̄) = {(, )} and ξG =

(, ) ∈ ∂cG(x̄) = [–, ] × {}.

Figure 1 Plot of the feasible region of MOSIPVC
(3.6).
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The strong KKT type sufficient optimality condition for the MOSIPVC can also be ob-
tained in the following way.

Theorem . Let x̄ be a MOSIPVC M-stationary point. Suppose that each fi, i = , . . . , m,
is generalized convex at x̄ on M and

∑
t∈T(x̄) μtgt(x) –

∑l
i= ηH

i Hi(x) +
∑l

i= ηG
i Gi(x) is gen-

eralized convex at x̄ on M. Then x̄ is a weakly efficient solution for the MOSIPVC.

Proof Suppose on the contrary that x̄ is not a weakly efficient solution for the MOSIPVC,
that is, there exists a feasible point x̃ such that

fi(x̃) < fi(x̄), ∀i = , . . . , m.

By strictly generalized convexity of fi, we have

〈
ξ

f
i , x̃ – x̄

〉
< , ∀ξ

f
i ∈ ∂cfi(x̄), i = , . . . , m. (.)

From the M-stationary condition, we have λi > , i = , . . . , m. Thus, we get

〈 m∑

i=

λiξ
f
i , x̃ – x̄

〉

< . (.)

Since x̄ is a MOSIPVC M-stationary point, from (.) and (.), we have

〈
∑

t∈T(x̄)

μt ξ̄
g
t –

l∑

i=

ηH
i ξ̄H

i +
l∑

i=

ηG
i ξ̄G

i , x̃ – x̄

〉

> . (.)

From (.), we have

∑

t∈T(x̄)

μtgt(x̃) –
l∑

i=

ηH
i Hi(x̃) +

l∑

i=

ηG
i Gi(x̃)

≤
∑

t∈T(x̄)

μtgt(x̄) –
l∑

i=

ηH
i Hi(x̄) +

l∑

i=

ηG
i Gi(x̄). (.)

From the generalized convexity of
∑

t∈T(x̄) μtgt(x) –
∑l

i= ηH
i Hi(x) +

∑l
i= ηG

i Gi(x), at x̄ on
M, we get

〈
∑

t∈T(x̄)

μt ξ̄
g
t –

l∑

i=

ηH
i ξ̄H

i +
l∑

i=

ηG
i ξ̄G

i , x̃ – x̄

〉

≤ , (.)

which contradicts (.). Hence, x̄ is a weakly efficient solution of the MOSIPVC and the
proof is complete.

The following result is a direct consequence of Theorem ., where the MOSIPVC M-
stationary point is replaced by a MOSIPVC S-stationary point.

Corollary . Let x̄ be a MOSIPVC S-stationary point. Suppose that each fi, i = , . . . , m is
generalized convex and

∑
t∈T(x̄) μtgt(x)–

∑l
i= ηH

i Hi(x)+
∑l

i= ηG
i Gi(x) is generalized convex

at x̄ on M. Then x̄ is a weakly efficient solution for the MOSIPVC.
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Figure 2 Plot of the feasible region of MOSIPVC
(3.12).

The following example satisfies the assumptions of Theorem ..

Example . Consider the following problem in R
:

min f (x) =
(|x|, |x|

)
,

s.t. gt(x) = –tx
 ≤ , t ∈N,

H(x) = x
 + x ≥ ,

G(x)H(x) = |x|
(
x

 + x
) ≤ .

(.)

Note that f(x) = |x|, f(x) = |x| and the feasible region of the MOSIPVC (.) is given by

M =
{

(x, x) ∈R
 : –tx

 ≤ , t ∈N, x
 + x ≥ , |x|

(
x

 + x
) ≤ 

}
,

which is represented by the shaded region in Figure .
It is easy to see that x̄ = (, ) is a feasible point of the problem, T(x̄) = N and I(x̄) = {}.

The feasible point x̄ is a MOSIPVC M-stationary point with λ > , λ = , μ = , μ =
μ = · · · = , ηH

 = –, ηG
 = , ξ f = (, ) ∈ ∂cf(x̄) = [–, ] × {}, ξ f = (, –) ∈ ∂cf(x̄) =

{} × [–, ], ξ
gt
 = (, ) ∈ ∂cgt(x̄) = {(, )}, ξH = (, ) ∈ ∂cH(x̄) = {(, )} and ξG = (, ) ∈

∂cG(x̄) = [–, ] × {}. Also, μg(x) + μg(x) + · · · – ηH
 H(x) + ηG

 G(x) = –x
 + x

 + x – .
|x| = x is generalized convex at x̄ on M.

4 Results and discussion
In this paper, we consider a MOSIPVC. We introduce stationary conditions for the
MOSIPVC and establish the strong KKT type sufficient optimality conditions for the
MOSIPVC under generalized convexity assumptions. We extend the concept of the strong
KKT optimality conditions for the MOSIPVC that do not involve any constraint qualifica-
tion. Furthermore, the results of this paper may be extended to strong KKT type necessary
optimality conditions for the MOSIPVC involving constraint qualification.
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