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Abstract
We provide the monotonicity and convexity properties and sharp bounds for the
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1 Introduction
For real numbers a, b, and c with c �= , –, –, . . . , the Gaussian hypergeometric function
is defined by

F(a, b; c; x) = F(a, b; c; x) =
∞∑

n=

(a, n)(b, n)
(c, n)

xn

n!
(.)

for x ∈ (–, ), where (a, n) denotes the shifted factorial function (a, n) ≡ a(a + ) · · · (a +
n – ), n = , , . . . , and (a, ) =  for a �= . It is well known that the function F(a, b; c; x) has
many important applications in geometric function theory, theory of mean values, and
several other contexts, and many classes of elementary functions and special functions in
mathematical physics are particular or limiting cases of this function [–].

In what follows, we suppose r ∈ (, ), a ∈ (, ), and r′ =
√

 – r. The generalized elliptic
integrals of the first and second kinds are defined as

Ka(r) =
π


F
(
a,  – a; ; r), K ′

a(r) = Ka
(
r′), (.)

Ea(r) =
π


F
(
a – ,  – a; ; r), E ′

a(r) = Ea
(
r′). (.)

In the particular case a = /, the generalized elliptic integrals Ka(r) and Ea(r) reduce to
the complete elliptic integrals K(r) and E (r), respectively. Recently, the Gaussian hyper-
geometric function and generalized elliptic integrals have been the subject of intensive
research [, , , , –].
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Anderson, Qiu, and Vamanamurthy [] considered the monotonicity and convexity of
the function

f (r) =
E (r) – r′K(r)

r · r′

E ′(r) – rK ′(r)
.

One of the main results of [] is the following theorem.

Theorem . The function f (r) is increasing and convex from (, ) onto (π/, /π ). In
particular,

π


< f (r) <

π


+

(

π

–
π



)
r (.)

for r ∈ (, ). Both inequalities given in (.) are sharp as r → , whereas the second in-
equality is also sharp as r → .

Alzer and Richards [] studied the corresponding properties of the additive counter-
part

�(r) =
E (r) – r′K(r)

r –
E ′(r) – rK ′(r)

r′

and obtained the following theorem.

Theorem . The function �(r) is strictly increasing and strictly convex from (, ) onto
(π/ – ,  – π/). Moreover, for all r ∈ (, ), we have

π


–  + αr < �(r) <

π


–  + βr (.)

with the best constants α =  and β =  – π
 .

It is natural to extend Theorems . and . to the generalized elliptic integrals Ka(r)
and Ea(r). In this paper, we show the monotonicity and convexity of the functions

fa(r) =
Ea(r) – r′Ka(r)

r · r′

E ′a(r) – rK ′a(r)
(.)

and

ga(r) =
Ea(r) – r′Ka(r)

r –
E ′

a(r) – rK ′
a(r)

r′ . (.)

Moreover, we obtain sharp inequalities for them. If a = /, then our results return to
Theorems . and ., which are contained in [] and [].

2 Preliminaries and lemmas
In this section, we give several formulas and lemmas to establish our main results stated
in Section . First, let us recall some known results for F(a, b; c; x).
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The following formulas for the hypergeometric function can be found in the literature
[–]:

F(a, b; a + b + ; x) = ( – x)F(a + , b + ; a + b + ; x), (.)

the differential formula

dF(a, b; c; x)
dx

=
ab
c

F(a + , b + ; c + ; x), (.)

the asymptotic limit

lim
x→–

F(a, b; c; x) =
�(c)�(c – a – b)
�(c – a)�(c – b)

, c > a + b, (.)

and the contiguous relation

(σ – ρ)F(α,ρ;σ + ; z) = σF(α,ρ;σ ; z) – ρF(α,ρ + ;σ + ; z), (.)

where �(x) is the Euler gamma function.

Lemma . ([], Lemma .) Let a ∈ (, ]. Then the function [Ea(r) – r′Ka(r)]/r is in-
creasing and convex from (, ) onto (πa/, [sin(πa)]/[( – a)]).

The following formulas were presented in []:

dKa(r)
dr

=
( – a)(Ea(r) – r′Ka(r))

rr′ ,
dEa(r)

dr
=

( – a)(Ka(r) – Ea(r))
r

, (.)

d(Ea(r) – r′Ka(r))
dr

= arKa(r),
d(Ka(r) – Ea(r))

dr
=

( – a)rEa(r)
r′ . (.)

Lemma . ([], Lemma .) Let I ⊂ R be an interval, and let f , g : I → (,∞). If both f ,
g are convex and increasing (decreasing), then the product f · g is convex.

The following lemma follows from Theorem . in [].

Lemma . For all a, b ∈ (,∞), the function

I(x) = ( – x)F(a, b; a + b; x) (.)

is a strictly decreasing automorphism of (, ) if and only if ab ≤ a + b.

Lemma . The function

J(r) =
( – r)(Ea(r) – ((a – )r + )Ka(r))

a( – a)r (.)

is increasing from (, ) onto (–∞, ).
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Proof Let

f(x) = ( – x)
(
F(a – ,  – a; ; x) –

(
(a – )x + 

)
F(a,  – a; ; x)

)
.

By the series expansion for F(a, b; c; x) we have

f(x) = ( – x)

( ∞∑

n=

(a – , n)( – a, n)
n!

· xn

n!
–

(
(a – )x + 

) ∞∑

n=

(a, n)( – a, n)
n!

· xn

n!

)

= ( – x)

( ∞∑

n=

(
(a – , n)( – a, n)

n!
–

(a, n)( – a, n)
n!

)
· xn

n!

–
∞∑

n=

(a – )(a, n)( – a, n)
n!

· xn+

n!

)

= ( – x)
∞∑

n=

(a, n – )( – a, n – )
n!n!

(
–an + an

)
xn

=
∞∑

n=

(a, n – )( – a, n – )
n!n!

(
–an + an

)
xn

–
∞∑

n=

(a, n – )( – a, n – )
n!n!

(
–an + an

)
xn+

= –ax

+
∞∑

n=

(a, n – )( – a, n – )
n!n!

an
((

n + a – a – 
)
n + a +  – a)xn. (.)

By the definition of the generalized elliptic integrals of the first and second kinds (.) we
have

J(r) =
π
 f(r)

a( – a)r

=
π

a( – a)

(
–

a
r

+
∞∑

n=

(a, n – )( – a, n – )
n!n!

an
((

n + a – a – 
)
n + a +  – a)rn–

)
.

Since  < a < , n ≥ , we have (n + a – a – )n + a +  – a > , and hence J(r) is an
increasing function on (, ). From this formula it is easy to see that limr→+ J(r) = –∞. By
Lemma . we have that limr→– J(r) = . �

Lemma . ([], Lemma .) For –∞ < a < b < ∞, let f , g : [a, b] → R be continuous on
[a, b] and differentiable on (a, b). Let g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing (decreas-
ing) on (a, b), then so are

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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3 Main results and proofs
In this section, we present and prove two main theorems.

Theorem . The function fa(r) in (.) is increasing and convex from (, ) onto ( πa(–a)
sin(πa) ,

sin(πa)
πa(–a) ). In particular,

πa( – a)
sin(πa)

+ αr < fa(r) <
πa( – a)
sin(πa)

+
(

sin(πa)
πa( – a)

–
πa( – a)
sin(πa)

)
r (.)

for r ∈ (, ) with the best constant α = , β = sin(πa)
πa(–a) – πa(–a)

sin(πa) . These two inequalities are
sharp as r → , whereas the second inequality is sharp as r → .

Proof Let

f 
a (r) =

Ea(r) – r′Ka(r)
r .

Then

fa(r) =
Ea(r) – r′Ka(r)

r · r′

E ′a(r) – rK ′a(r)
= f 

a (r) · 
f 
a (r′)

.

By Lemma ., f 
a (r), /f 

a (r′) are positive increasing functions on (, ), and hence fa(r) is
also an increasing function on (, ). Since f 

a (r) is a convex function by Lemma ., the
desired convexity of fa(r) will follow from Lemma . if we prove that /f 

a (r′) is a convex
function on (, ).

According to (.), we have

(


f 
a (r)

)′
=

(
r

Ea(r) – r′Ka(r)

)′
=

g(r)
g(r)

,

where

g(r) = 
(
Ea(r) – Ka(r) + ( – a)rKa(r)

)
, g(r) =

(Ea(r) – r′Ka(r))

r
.

Obviously, g(+) = . By Lemma . we get g(+) = . Moreover,

g ′
(r)

g ′
(r)

=
a( – a)r

( – r)(Ea(r) – ((a – )r + )Ka(r))
=


J(r)

,

where J(r) is defined by (.). Hence, by Lemma . and Lemma ., (/f 
a (r))′ is decreasing,

so that (/f 
a (r′))′ is increasing, and /f 

a (r′) is convex on (, ). �

Theorem . The function ga(r) in (.) is strictly increasing and strictly convex from (, )
onto ( πa

 – sin(πa)
(–a) , sin(πa)

(–a) – πa
 ). Moreover, for all r ∈ (, ), we have

πa


–
sin(πa)
( – a)

+ αr < ga(r) <
πa


–
sin(πa)
( – a)

+ βr (.)

with the best constants α =  and β = sin(πa)
–a – πa. These two inequalities are sharp as

r → , whereas the second inequality is sharp as r → .
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Proof Let

Ma(r) =
π

r

(
F
(
a – ,  – a; ; r) – r′F

(
a,  – a; ; r)).

By the series expansion for F(a, b; c; x) we obtain

Ma(r) =
aπ


F
(
a,  – a; ; r). (.)

Then

ga(r) = Ma(r) – Ma
(
r′) =

aπ


(
F
(
a,  – a; ; r) – F

(
a,  – a; ;  – r)). (.)

Using the differentiation formula (.), we have

g ′
a(r) =

a( – a)π


r
(
F
(
a + ,  – a; ; r) + F

(
a + ,  – a; ;  – r)), (.)

g ′′
a (r) =

a( – a)π


(
F
(
a + ,  – a; ; r) + F

(
a + ,  – a; ;  – r)

+
(a + )( – a)


r(F

(
a + ,  – a; ; r) – F

(
a + ,  – a; ;  – r))

)
. (.)

By formula (.),we get

F
(
a + ,  – a; ;  – r) =


r F

(
a + ,  – a; ;  – r). (.)

Using the contiguous relation (.), we take α = a + , ρ =  – a, σ = , and z =  – r and
obtain

(a + )F
(
a + ,  – a; ;  – r)

= F
(
a + ,  – a; ;  – r) – ( – a)F

(
a + ,  – a; ;  – r).

Hence, it follows from (.), (.), and the last formula that


a( – a)π

g ′′
a (r)

= F
(
a + ,  – a; ; r) + F

(
a + ,  – a; ;  – r)

+
(a + )( – a)


r

(
F
(
a + ,  – a; ; r) –

F(a + ,  – a; ;  – r)
r

)

= F
(
a + ,  – a; ; r) +

(a + )( – a)r


F
(
a + ,  – a; ; r)

+ (a – )F
(
a + ,  – a; ;  – r) +

( – a)


F
(
a + ,  – a; ;  – r)

>  + (a – )F
(
a + ,  – a; ;  – r) +

( – a)


F
(
a + ,  – a; ;  – r).
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By the series expansion for F(a, b; c; x) we have

(a – )F
(
a + ,  – a; ;  – r) +

( – a)


F
(
a + ,  – a; ;  – r)

=
∞∑

n=

(
(a + , n)( – a, n)( – a)

(, n + )
+

(a + , n)( – a, n)(a – )
(, n)

)
( – r)n

n!

=
∞∑

n=

( – a, n)(n + a – a – )(a + , n)
(, n + )

( – r)n

n!

>
a – a – 


+

a( – a)(a – )


(
 – r). (.)

Hence


a( – a)π

g ′′
a (r) >  +

a – a – 


+
a( – a)(a – )


(
 – r). (.)

Through direct calculation we have

 +
a – a – 


+

a( – a)(a – )


=
–a + a + a – a + 


> , ∀a ∈ (, ). (.)

Then we get g ′′
a (r) > . Thus ga(r) is strictly convex on (, ). According to (.) and (.),

we have

Ma() =
aπ


, M′

a() = , lim
r→–

Ma(r) =
sin(πa)
( – a)

. (.)

Applying Lemma . and (.), we have

g ′
a() = lim

r→

Ma(r) – Ma()
r

–
Ma(r′) – Ma()

r
= lim

x→

x′

x

((
 – x)Ka(x) – Ea(x)

)
= .

Because of g ′′
a (r) > , g ′

a(r) is increasing on (, ), and g ′
a() = . Then the monotonicity of

ga(r) on (, ) is obtained. It follows from the convexity of ga(r) that, for x ∈ (, ),

πa


–
sin(πa)
( – a)

< ga(r) <
πa


–
sin(πa)
( – a)

+
(

sin(πa)
 – a

– πa
)

r. (.)
�

Corollary . Let

La(p, q) = ga(pq) – ga(p) – ga(q). (.)

Then we have

πa


–
sin(πa)
( – a)

< La(p, q) <
sin(πa)
( – a)

–
aπ


(.)

for all p, q ∈ (, ).
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Proof By direct calculation we obtain

∂

∂p
La(p, q) = sg ′

a(pq) – g ′
a(p),

∂

∂p ∂q
La(p, q) = g ′

a(pq) + pqg ′′
a (pq).

Considering the positivity of g ′
a and g ′′

a on (, ), we have

∂

∂p ∂q
La(p, q) > ,

This means that ∂
∂p La(p, q) is strictly increasing with respect to q. So we have

∂

∂p
La(p, q) <

∂

∂p
La(p, q)

∣∣∣∣
q=

= . (.)

Then the monotonicity of La(p, q) with respect to p is obtained, which leads to

πa


–
sin(πa)
( – a)

< La(p, q) <
sin(πa)
( – a)

–
aπ


. �

Remark . Taking a = / in Theorems . and ., we get Theorems . and ..
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