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Abstract
In this paper we study the bounded perturbation resilience of the extragradient and
the subgradient extragradient methods for solving a variational inequality (VI)
problem in real Hilbert spaces. This is an important property of algorithms which
guarantees the convergence of the scheme under summable errors, meaning that an
inexact version of the methods can also be considered. Moreover, once an algorithm
is proved to be bounded perturbation resilience, superiorization can be used, and this
allows flexibility in choosing the bounded perturbations in order to obtain a superior
solution, as well explained in the paper. We also discuss some inertial extragradient
methods. Under mild and standard assumptions of monotonicity and Lipschitz
continuity of the VI’s associated mapping, convergence of the perturbed
extragradient and subgradient extragradient methods is proved. In addition we show
that the perturbed algorithms converge at the rate of O(1/t). Numerical illustrations
are given to demonstrate the performances of the algorithms.
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1 Introduction
In this paper we are concerned with the variational inequality (VI) problem of finding a
point x∗ such that

〈
F
(
x∗), x – x∗〉 ≥  for all x ∈ C, (.)

where C ⊆H is a nonempty, closed and convex set in a real Hilbert space H, 〈·, ·〉 denotes
the inner product in H, and F : H →H is a given mapping. This problem is a fundamental
problem in optimization theory, and it captures various applications such as partial dif-
ferential equations, optimal control and mathematical programming; for the theory and
application of VIs and related problems, the reader is referred, for example, to the works
of Ceng et al. [], Zegeye et al. [], the papers of Yao et al. [–] and the many references
therein.

Many algorithms for solving VI (.) are projection algorithms that employ projections
onto the feasible set C of VI (.), or onto some related set, in order to reach iteratively a
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solution. Korpelevich [] and Antipin [] proposed an algorithm for solving (.), known
as the extragradient method, see also Facchinei and Pang [, Chapter ]. In each iteration
of the algorithm, in order to get the next iterate xk+, two orthogonal projections onto C are
calculated according to the following iterative step. Given the current iterate xk , calculate

{
yk = PC(xk – γkF(xk)),
xk+ = PC(xk – γkF(yk)),

(.)

where γk ∈ (, /L), and L is the Lipschitz constant of F , or γk is updated by the following
adaptive procedure:

γk
∥∥F

(
xk) – F

(
yk)∥∥ ≤ μ

∥∥xk – yk∥∥, μ ∈ (, ). (.)

In the extragradient method there is the need to calculate twice the orthogonal projection
onto C in each iteration. In case that the set C is simple enough so that projections onto
it can be easily computed, this method is particularly useful; but if C is a general closed
and convex set, a minimal distance problem has to be solved (twice) in order to obtain the
next iterate. This might seriously affect the efficiency of the extragradient method. Hence,
Censor et al. in [–] presented a method called the subgradient extragradient method, in
which the second projection (.) onto C is replaced by a specific subgradient projection
which can be easily calculated. The iterative step has the following form:

{
yk = PC(xk – γ F(xk)),
xk+ = PTk (xk – γ F(yk)),

(.)

where Tk is the set defined as

Tk :=
{

w ∈H | 〈(xk – γ F
(
xk)) – yk , w – yk 〉 ≤ 

}
, (.)

and γ ∈ (, /L).
In this manuscript we prove that the above methods, the extragradient and the sub-

gradient extragradient methods, are bounded perturbation resilient, and the perturbed
methods have the convergence rate of O(/t). This means that that will show that an in-
exact version of the algorithms allows incorporating summable errors that also converge
to a solution of VI (.) and, moreover, their superiorized version can be introduced by
choosing the perturbations. In order to obtain a superior solution with respect to some
new objective function, for example, by choosing the norm, we can obtain a solution to
VI (.) which is closer to the origin.

Our paper is organized as follows. In Section  we present the preliminaries. In Section 
we study the convergence of the extragradient method with outer perturbations. Later, in
Section , the bounded perturbation resilience of the extragradient method as well as the
construction of the inertial extragradient methods are presented.

In the spirit of the previous sections, in Section  we study the convergence of the sub-
gradient extragradient method with outer perturbations, show its bounded perturbation
resilience and the construction of the inertial subgradient extragradient methods. Finally,
in Section  we present numerical examples in signal processing which demonstrate the
performances of the perturbed algorithms.
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2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖,
and let D be a nonempty, closed and convex subset of H. We write xk ⇀ x to indicate
that the sequence {xk}∞k= converges weakly to x and xk → x to indicate that the sequence
{xk}∞k= converges strongly to x. Given a sequence {xk}∞k=, denote by ωw(xk) its weak ω-
limit set, that is, any x ∈ ωw(xk) such that there exists a subsequence {xkj}∞j= of {xk}∞k=
which converges weakly to x.

For each point x ∈H, there exists a unique nearest point in D denoted by PD(x). That is,

∥∥x – PD(x)
∥∥ ≤ ‖x – y‖ for all y ∈ D. (.)

The mapping PD : H → D is called the metric projection of H onto D. It is well known that
PD is a nonexpansive mapping of H onto D, i.e., and even firmly nonexpansive mapping.
This is captured in the next lemma.

Lemma . For any x, y ∈H and z ∈ D, it holds
• ‖PD(x) – PD(y)‖ ≤ ‖x – y‖;
• ‖PD(x) – z‖ ≤ ‖x – z‖ – ‖PD(x) – x‖.

The characterization of the metric projection PD [, Section ] is given by the following
two properties in this lemma.

Lemma . Given x ∈H and z ∈ D. Then z = PD(x) if and only if

PD(x) ∈ D (.)

and

〈
x – PD(x), PD(x) – y

〉 ≥  for all x ∈H, y ∈ D. (.)

Definition . The normal cone of D at v ∈ D denoted by ND(v) is defined as

ND(v) :=
{

d ∈H | 〈d, y – v〉 ≤  for all y ∈ D
}

. (.)

Definition . Let B : H ⇒ H be a point-to-set operator defined on a real Hilbert
spaceH. The operator B is called amaximal monotone operator if B ismonotone,
i.e.,

〈u – v, x – y〉 ≥  for all u ∈ B(x) and v ∈ B(y), (.)

and the graph G(B) of B,

G(B) :=
{

(x, u) ∈H×H | u ∈ B(x)
}

, (.)

is not properly contained in the graph of any other monotone operator.

Based on Rockafellar [, Theorem ], a monotone mapping B is maximal if and only if,
for any (x, u) ∈H×H, if 〈u – v, x – y〉 ≥  for all (v, y) ∈ G(B), then it follows that u ∈ B(x).
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Definition . The subdifferential set of a convex function c at a point x is de-
fined as

∂c(x) :=
{
ξ ∈H | c(y) ≥ c(x) + 〈ξ , y – x〉 for all y ∈H

}
. (.)

For z ∈H, take any ξ ∈ ∂c(z) and define

T(z) :=
{

w ∈H | c(z) + 〈ξ , w – z〉 ≤ 
}

. (.)

This is a half-space, the bounding hyperplane of which separates the set D from the point
z if ξ �= ; otherwise T(z) = H; see, e.g., [, Lemma .].

Lemma . ([]) Let D be a nonempty, closed and convex subset of a Hilbert space H. Let
{xk}∞k= be a bounded sequence which satisfies the following properties:

• every limit point of {xk}∞k= lies in D;
• limn→∞ ‖xk – x‖ exists for every x ∈ D.

Then {xk}∞k= converges to a point in D.

Lemma . Assume that {ak}∞k= is a sequence of nonnegative real numbers such that

ak+ ≤ ( + γk)ak + δk , ∀k ≥ , (.)

where the nonnegative sequences {γk}∞k= and {δk}∞k= satisfy
∑∞

k= γk < +∞ and
∑∞

k= δk <
+∞, respectively. Then limk→∞ ak exists.

3 The extragradient method with outer perturbations
In order to discuss the convergence of the extragradient method with outer perturbations,
we make the following assumptions.

Condition . The solution set of (.), denoted by SOL(C, F), is nonempty.

Condition . The mapping F is monotone on C, i.e.,

〈
F(x) – F(y), x – y

〉 ≥ , ∀x, y ∈ C. (.)

Condition . The mapping F is Lipschitz continuous on C with the Lipschitz constant
L > , i.e.,

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C. (.)

Observe that while Censor et al. in [, Theorem .] showed the weak convergence
of the extragradient method (.) in Hilbert spaces for a fixed step size γk = γ ∈ (, /L),
this can be easily improved in case that the adaptive rule (.) is used. The next theorem
shows this, and its proof can easily be derived by following similar lines of the proof of [,
Theorem .].
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Theorem . Assume that Conditions .-. hold. Then any sequence {xk}∞k= generated
by the extragradient method (.) with the adaptive rule (.) weakly converges to a solution
of the variational inequality (.).

Denote ek
i := ei(xk), i = , . The sequences of perturbations {ek

i }∞k=, i = , , are assumed
to be summable, i.e.,

∞∑

k=

∥∥ek
i
∥∥ < +∞, i = , . (.)

Now we consider the extragradient method with outer perturbations.

Algorithm . The extragradient method with outer perturbations:
Step : Select a starting point x ∈ C and set k = .
Step : Given the current iterate xk , compute

yk = PC
(
xk – γkF

(
xk) + e

(
xk)), (.)

where γk = σρmk , σ > , ρ ∈ (, ) and mk is the smallest nonnegative integer such that (see
[])

γk
∥∥F

(
xk) – F

(
yk)∥∥ ≤ μ

∥∥xk – yk∥∥, μ ∈ (, ). (.)

Calculate the next iterate

xk+ = PC
(
xk – γkF

(
yk) + e

(
xk)). (.)

Step : If xk = yk , then stop. Otherwise, set k ← (k + ) and return to Step .

3.1 Convergence analysis
Lemma . ([]) The Armijo-like search rule (.) is well defined. Besides, γ ≤ γk ≤ σ ,
where γ = min{σ , μρ

L }.

Theorem . Assume that Conditions .-. hold. Then the sequence {xk}∞k= generated
by Algorithm . converges weakly to a solution of the variational inequality (.).

Proof Take x∗ ∈ SOL(C, F). From (.) and Lemma .(ii), we have

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – γkF
(
yk) + ek

 – x∗∥∥ –
∥∥xk – γkF

(
yk) + ek

 – xk+∥∥

=
∥∥xk – x∗∥∥ –

∥∥xk – xk+∥∥ + γk
〈
F
(
yk), x∗ – xk+〉

– 
〈
ek

, x∗ – xk+〉. (.)

From the Cauchy-Schwarz inequality and the mean value inequality, it follows

–
〈
ek

, x∗ – xk+〉 ≤ 
∥∥ek


∥∥∥∥xk+ – x∗∥∥

≤ ∥∥ek

∥∥ +

∥∥ek

∥∥∥∥xk+ – x∗∥∥. (.)
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Using x∗ ∈ SOL(C, F) and the monotone property of F , we have 〈yk – x∗, F(yk)〉 ≥  and,
consequently, we get

γk
〈
F
(
yk), x∗ – xk+〉 ≤ γk

〈
F
(
yk), yk – xk+〉. (.)

Thus, we have

–
∥∥xk – xk+∥∥ + γk

〈
F
(
yk), x∗ – xk+〉

≤ –
∥∥xk – xk+∥∥ + γk

〈
F
(
yk), yk – xk+〉

= –
∥∥xk – yk∥∥ –

∥∥yk – xk+∥∥

+ 
〈
xk – γkF

(
yk) – yk , xk+ – yk 〉, (.)

where the equality comes from

–
∥∥xk – xk+∥∥ = –

∥∥xk – yk∥∥ –
∥∥yk – xk+∥∥ – 

〈
xk – yk , yk – xk+〉. (.)

Using xk+ ∈ C, the definition of yk and Lemma ., we have

〈
yk – xk + γkF

(
xk) – ek

 , xk+ – yk 〉 ≥ . (.)

So, we obtain


〈
xk – γkF

(
yk) – yk , xk+ – yk 〉

≤ γk
〈
F
(
xk) – F

(
yk), xk+ – yk 〉 – 

〈
ek

 , xk+ – yk 〉

≤ γk
∥∥F

(
xk) – F

(
yk)∥∥∥∥xk+ – yk∥∥ + 

∥∥ek

∥∥∥∥xk+ – yk∥∥

≤ μ
∥∥xk – yk∥∥∥∥xk+ – yk∥∥ +

∥∥ek

∥∥ +

∥∥ek

∥∥∥∥xk+ – yk∥∥

≤ μ
∥∥xk – yk∥∥ + μ

∥∥xk+ – yk∥∥ +
∥∥ek


∥∥ +

∥∥ek

∥∥∥∥xk+ – yk∥∥

= μ
∥∥xk – yk∥∥ +

(
μ +

∥∥ek

∥∥)∥∥xk+ – yk∥∥ +

∥∥ek

∥∥. (.)

From (.), it follows

lim
k→∞

∥∥ek
i
∥∥ = , i = , . (.)

Therefor, we assume ‖ek
‖ ∈ [,  – μ – ν) and ‖ek

‖ ∈ [, /), k ≥ , where ν ∈ (,  – μ).
So, using (.), we get


〈
xk – γkF

(
yk) – yk , xk+ – yk 〉 ≤ μ

∥∥xk – yk∥∥ + ( – ν)
∥∥xk+ – yk∥∥ +

∥∥ek

∥∥. (.)

Combining (.)-(.) and (.), we obtain

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥ – ( – μ)
∥∥xk – yk∥∥ – ν

∥∥xk+ – yk∥∥

+
∥∥ek∥∥ +

∥∥ek

∥∥∥∥xk+ – x∗∥∥, (.)
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where

∥∥ek∥∥ :=
∥∥ek


∥∥ +

∥∥ek

∥∥. (.)

From (.), it follows

∥∥xk+ – x∗∥∥ ≤ 
 – ‖ek

‖
∥∥xk – x∗∥∥ –

 – μ

 – ‖ek
‖

∥∥xk – yk∥∥

–
ν

 – ‖ek
‖

∥∥xk+ – yk∥∥ +
‖ek‖

 – ‖ek
‖

. (.)

Since ‖ek
‖ ∈ [, /), k ≥ , we get

 ≤ 
 – ‖ek

‖
≤  + 

∥∥ek

∥∥ < . (.)

So, from (.), we have

∥∥xk+ – x∗∥∥ ≤ (
 + 

∥∥ek

∥∥)∥∥xk – x∗∥∥ – ( – μ)

∥∥xk – yk∥∥

– ν
∥∥xk+ – yk∥∥ + 

∥∥ek∥∥

≤ (
 + 

∥∥ek

∥∥)∥∥xk – x∗∥∥ + 

∥∥ek∥∥. (.)

Using (.) and Lemma ., we get the existence of limk→∞ ‖xk – x∗‖ and then the bound-
edness of {xk}∞k=. From (.), it follows

( –μ)
∥∥xk – yk∥∥ +ν

∥∥xk+ – yk∥∥ ≤ (
 + 

∥∥ek

∥∥)∥∥xk – x∗∥∥ –

∥∥xk+ – x∗∥∥ + 
∥∥ek∥∥, (.)

which means that

∞∑

k=

∥∥xk – yk∥∥ < +∞ and
∞∑

k=

∥∥xk+ – yk∥∥ < +∞. (.)

Thus, we obtain

lim
k→∞

∥∥xk – yk∥∥ =  and lim
k→∞

∥∥xk+ – yk∥∥ = , (.)

and consequently,

lim
k→∞

∥∥xk+ – xk∥∥ = . (.)

Now, we are to show ωw(xk) ⊆ SOL(C, F). Due to the boundedness of {xk}∞k=, it has at
least one weak accumulation point. Let x̂ ∈ ωw(xk). Then there exists a subsequence {xki}∞i=

of {xk}∞k= which converges weakly to x̂. From (.), it follows that {yki}∞i= also converges
weakly to x̂.
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We will show that x̂ is a solution of the variational inequality (.). Let

A(v) =

{
F(v) + NC(v), v ∈ C,
∅, v /∈ C,

(.)

where NC(v) is the normal cone of C at v ∈ C. It is known that A is a maximal monotone
operator and A–() = SOL(C, F). If (v, w) ∈ G(A), then we have w – F(v) ∈ NC(v) since
w ∈ A(v) = F(v) + NC(v). Thus it follows that

〈
w – F(v), v – y

〉 ≥ , y ∈ C. (.)

Since yki ∈ C, we have

〈
w – F(v), v – yki

〉 ≥ . (.)

On the other hand, by the definition of yk and Lemma ., it follows that

〈
xk – γkF

(
xk) + ek

 – yk , yk – v
〉 ≥ , (.)

and consequently,

〈
yk – xk

γk
+ F

(
xk), v – yk

〉
–


γk

〈
ek

 , v – yk 〉 ≥ . (.)

Hence we have

〈
w, v – yki

〉 ≥ 〈
F(v), v – yki

〉

≥ 〈
F(v), v – yki

〉
–

〈
yki – xki

γki

+ F
(
xki

)
, v – yki

〉
+


γki

〈
eki

 , v – yki
〉

=
〈
F(v) – F

(
yki

)
, v – yki

〉
+

〈
F
(
yki

)
– F

(
xki

)
, v – yki

〉

–
〈

yki – xki

γki

, v – yki

〉
+


γki

〈
eki

 , v – yki
〉

≥ 〈
F
(
yki

)
– F

(
xki

)
, v – yki

〉
–

〈
yki – xki

γki

, v – yki

〉
+


γki

〈
eki

 , v – yki
〉
, (.)

which implies

〈
w, v – yki

〉 ≥ 〈
F
(
yki

)
– F

(
xki

)
, v – yki

〉
–

〈
yki – xki

γki

, v – yki

〉
+


γki

〈
eki

 , v – yki
〉
. (.)

Taking the limit as i → ∞ in the above inequality and using Lemma ., we obtain

〈w, v – x̂〉 ≥ . (.)

Since A is a maximal monotone operator, it follows that x̂ ∈ A–() = SOL(C, F). So,
ωw(xk) ⊆ SOL(C, F).
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Since limk→∞ ‖xk – x∗‖ exists and ωw(xk) ⊆ SOL(C, F), using Lemma ., we conclude
that {xk}∞k= weakly converges to a solution of the variational inequality (.). This com-
pletes the proof. �

3.2 Convergence rate
Nemirovski [] and Tseng [] proved the O(/t) convergence rate of the extragradient
method. In this subsection, we present the convergence rate of Algorithm ..

Theorem . Assume that Conditions .-. hold. Let the sequences {xk}∞k= and {yk}∞k=

be generated by Algorithm .. For any integer t > , we have yt ∈ C which satisfies

〈
F(x), yt – x

〉 ≤ 
ϒt

(∥∥x – x∥∥ + M(x)
)
, ∀x ∈ C, (.)

where

yt =

ϒt

t∑

k=

γkyk , ϒt =
t∑

k=

γk (.)

and

M(x) = sup
k

{
max

{∥∥xk+ – yk∥∥,
∥∥xk+ – x

∥∥}} ∞∑

k=

∥∥ek∥∥. (.)

Proof Take arbitrarily x ∈ C. From Conditions . and ., we have

–
∥∥xk – xk+∥∥ + γk

〈
F
(
yk), x – xk+〉

= –
∥∥xk – xk+∥∥ + γk

[〈
F
(
yk) – F(x), x – yk 〉 +

〈
F(x), x – yk 〉

+
〈
F
(
yk), yk – xk+〉]

≤ –
∥∥xk – xk+∥∥ + γk

[〈
F(x), x – yk 〉 +

〈
F
(
yk), yk – xk+〉]

= –
∥∥xk – yk∥∥ –

∥∥yk – xk+∥∥ + γk
〈
F(x), x – yk 〉

+ 
〈
xk – γkF

(
yk) – yk , xk+ – yk 〉. (.)

By (.) and Lemma ., we get


〈
xk – γkF

(
yk) – yk , xk+ – yk 〉

= 
〈
xk – γkF

(
xk) + ek

 – yk , xk+ – yk 〉 – 
〈
ek

 , xk+ – yk 〉

+ γk
〈
F
(
xk) – F

(
yk), xk+ – yk 〉

≤ –
〈
ek

 , xk+ – yk 〉 + γk
〈
F
(
xk) – F

(
yk), xk+ – yk 〉

≤ 
∥∥ek


∥∥∥∥xk+ – yk∥∥ + μ

∥∥xk – yk∥∥∥∥xk+ – yk∥∥

≤ 
∥∥ek


∥∥∥∥xk+ – yk∥∥ + μ∥∥xk – yk∥∥ +

∥∥xk+ – yk∥∥. (.)
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Identifying x∗ with x in (.) and (.), and combining (.) and (.), we get

∥∥xk+ – x
∥∥

≤ ∥∥xk – x
∥∥ + 

∥∥ek

∥∥∥∥xk+ – yk∥∥ –

(
 – μ)∥∥xk – yk∥∥

+ 
∥∥ek


∥∥∥∥xk+ – x

∥∥ + γk
〈
F(x), x – yk 〉

≤ ∥∥xk – x
∥∥ + 

∥∥ek

∥∥∥∥xk+ – yk∥∥ + 

∥∥ek

∥∥∥∥xk+ – x

∥∥

+ γk
〈
F(x), x – yk 〉. (.)

Thus, we have

γk
〈
F(x), yk – x

〉

≤ 

(∥∥xk – x

∥∥ –
∥∥xk+ – x

∥∥) +
∥∥ek


∥∥∥∥xk+ – yk∥∥ +

∥∥ek

∥∥∥∥xk+ – x

∥∥

≤ 

(∥∥xk – x

∥∥ –
∥∥xk+ – x

∥∥) + M′(x)
∥∥ek∥∥, (.)

where M′(x) = supk{max{‖xk+ – yk‖,‖xk+ – x‖}} < +∞. Summing inequality (.) over
k = , . . . , t, we obtain

〈

F(x),
t∑

k=

γkyk –

( t∑

k=

γk

)

x

〉

≤ 

∥∥x – x

∥∥ +
M′(x)



t∑

k=

∥∥ek∥∥

=


∥∥x – x

∥∥ +



M(x). (.)

Using the notations of ϒt and yt in the above inequality, we derive

〈
F(x), yt – x

〉 ≤ 
ϒt

(∥∥x – x∥∥ + M(x)
)
, ∀x ∈ C. (.)

The proof is complete. �

Remark . From Lemma ., it follows

ϒt ≥ (t + )γ , (.)

thus Algorithm . has O(/t) convergence rate. In fact, for any bounded subset D ⊂ C
and given accuracy ε > , our algorithm achieves

〈
F(x), yt – x

〉 ≤ ε, ∀x ∈ D (.)

in at most

t =
[

m
γ ε

]
(.)

iterations, where yt is defined by (.) and m = sup{‖x – x‖ + M(x) | x ∈ D}.
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4 The bounded perturbation resilience of the extragradient method
In this section, we prove the bounded perturbation resilience (BPR) of the extragradient
method. This property is fundamental for the application of the superiorization method-
ology (SM) to them.

The superiorization methodology of [–], which originates in the papers by But-
nariu, Reich and Zaslavski [–], is intended for constrained minimization (CM) prob-
lems of the form

min
{
φ(x) | x ∈ �

}
, (.)

where φ : H → R is an objective function and � ⊆ H is the solution set of another prob-
lem. Here, we assume � �= ∅ throughout this paper. Assume that the set � is a closed
convex subset of a Hilbert space H , the minimization problem (.) becomes a standard
CM problem. Here, we are interested in the case wherein � is the solution set of another
CM of the form

min
{

f (x) | x ∈ �
}

, (.)

i.e., we wish to look at

� :=
{

x∗ ∈ � | f
(
x∗) ≤ f (x) | for all x ∈ �

}
(.)

provided that � is nonempty. If f is differentiable, and let F = ∇f , then CM (.) equals
the following variational inequality: to find a point x∗ ∈ C such that

〈
F
(
x∗), x – x∗〉 ≥ , ∀x ∈ C. (.)

The superiorization methodology (SM) strives not to solve (.) but rather the task is to
find a point in � which is superior, i.e., has a lower, but not necessarily minimal, value of
the objective function φ. This is done in the SM by first investigating the bounded pertur-
bation resilience of an algorithm designed to solve (.) and then proactively using such
permitted perturbations in order to steer the iterates of such an algorithm toward lower
values of the φ objective function while not loosing the overall convergence to a point
in � .

In this paper, we do not investigate superiorization of the extragradient method. We
prepare for such an application by proving the bounded perturbation resilience that is
needed in order to do superiorization.

Algorithm . The basic algorithm:
Initialization: x ∈ � is arbitrary;
Iterative step: Given the current iterate vector xk , calculate the next iterate xk+ via

xk+ = A�

(
xk). (.)

The bounded perturbation resilience (henceforth abbreviated to BPR) of such a basic
algorithm is defined next.
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Definition . An algorithmic operator A� : H → � is said to be bounded pertur-

bations resilient if the following is true. If Algorithm . generates sequences
{xk}∞k= with x ∈ � that converge to points in � , then any sequence {yk}∞k= starting from
any y ∈ �, generated by

yk+ = A�

(
yk + λkvk) for all k ≥ , (.)

also converges to a point in � , provided that (i) the sequence {vk}∞k= is bounded, and
(ii) the scalars {λk}∞k= are such that λk ≥  for all k ≥ , and

∑∞
k= λk < +∞, and

(iii) yk + λkvk ∈ � for all k ≥ .

Definition . is nontrivial only if � �= H, in which condition (iii) is enforced in the su-
periorized version of the basic algorithm, see step (xiv) in the ‘Superiorized Version of
Algorithm P’ in ([], p.) and step () in ‘Superiorized Version of the ML-EM Algo-
rithm’ in ([], Subsection II.B). This will be the case in the present work.

Treating the extragradient method as the Basic Algorithm A� , our strategy is to first
prove convergence of the iterative step (.) with bounded perturbations. We show next
how the convergence of this yields BPR according to Definition ..

A superiorized version of any Basic Algorithm employs the perturbed version of the Ba-
sic Algorithm as in (.). A certificate to do so in the superiorization method, see [], is
gained by showing that the Basic Algorithm is BPR. Therefore, proving the BPR of an al-
gorithm is the first step toward superiorizing it. This is done for the extragradient method
in the next subsection.

4.1 The BPR of the extragradient method
In this subsection, we investigate the bounded perturbation resilience of the extragradient
method whose iterative step is given by (.).

To this end, we treat the right-hand side of (.) as the algorithmic operator A� of Def-
inition ., namely, we define, for all k ≥ ,

A�

(
xk) = PC

(
xk – γkF

(
PC

(
xk – γkF

(
xk)))) (.)

and identify the solution set � with the solution set of the variational inequality (.) and
identify the additional set � with C.

According to Definition ., we need to show the convergence of the sequence {xk}∞k=
that, starting from any x ∈ C, is generated by

xk+ = PC
((

xk + λkvk) – γkF
(
PC

((
xk + λkvk) – γkF

(
xk + λkvk)))), (.)

which can be rewritten as
{

yk = PC((xk + λkvk) – γkF(xk + λkvk)),
xk+ = PC((xk + λkvk) – γkF(yk)),

(.)

where γk = σρmk , σ > , ρ ∈ (, ) and mk is the smallest nonnegative integer such that

γk
∥∥F

(
xk + λkvk) – F

(
yk)∥∥ ≤ μ

(∥∥xk – yk∥∥ + λk
∥∥vk∥∥)

, μ ∈ (, ). (.)
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The sequences {vk}∞k= and {λk}∞k= obey conditions (i) and (ii) in Definition ., respec-
tively, and also (iii) in Definition . is satisfied.

The next theorem establishes the bounded perturbation resilience of the extragradient
method. The proof idea is to build a relationship between BPR and the convergence of the
iterative step (.).

Theorem . Assume that Conditions .-. hold. Assume the sequence {vk}∞k= is
bounded, and the scalars {λk}∞k= are such that λk ≥  for all k ≥ , and

∑∞
k= λk < +∞.

Then the sequence {xk}∞k= generated by (.) and (.) converges weakly to a solution of
the variational inequality (.).

Proof Take x∗ ∈ SOL(C, F). From
∑∞

k= λk < +∞ and that {vk}∞k= is bounded, we have

∞∑

k=

λk
∥∥vk∥∥ < +∞, (.)

which means

lim
k→∞

λk
∥∥vk∥∥ = . (.)

So, we assume λk‖vk‖ ∈ [, ( – μ – ν)/), where ν ∈ [,  – μ). Identifying ek
 with λkvk in

(.) and (.) and using (.), we get

∥∥xk+ – x∗∥∥ =
∥∥xk – x∗∥∥ + λk

∥∥vk∥∥ + λk
∥∥vk∥∥∥∥xk+ – x∗∥∥ –

∥∥xk – yk∥∥

–
∥∥yk – xk+∥∥ + 

〈
xk – γkF

(
yk) – yk , xk+ – yk 〉. (.)

From xk+ ∈ C, the definition of yk and Lemma ., we have

〈
yk – xk – λkvk + γkF

(
xk + λkvk), xk+ – yk 〉 ≥ .

So, we obtain


〈
xk – γkF

(
yk) – yk , xk+ – yk 〉

≤ γk
〈
F
(
xk + λkvk) – F

(
yk), xk+ – yk 〉 – λk

〈
vk , xk+ – yk 〉. (.)

We have

γk
〈
F
(
xk + λkvk) – F

(
yk), xk+ – yk 〉

≤ γk
∥∥F

(
xk + λkvk) – F

(
yk)∥∥∥∥xk+ – yk∥∥

≤ μ
∥∥xk + λkvk – yk∥∥∥∥xk+ – yk∥∥

≤ μ
(∥∥xk – yk∥∥ + λk

∥∥vk∥∥)∥∥xk+ – yk∥∥

≤ μ
∥∥xk – yk∥∥∥∥xk+ – yk∥∥ + μλk

∥∥vk∥∥∥∥xk+ – yk∥∥

≤ μ
∥∥xk – yk∥∥ +

(
μ + λk

∥∥vk∥∥)∥∥xk+ – yk∥∥ + μλk
∥∥vk∥∥. (.)
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Similar to (.), we can show

–λk
〈
vk , xk+ – yk 〉 ≤ λk

∥∥vk∥∥ + λk
∥∥vk∥∥∥∥xk+ – yk∥∥. (.)

Combining (.)-(.), we get


〈
xk – γkF

(
yk) – yk , xk+ – yk 〉

≤ μ
∥∥xk – yk∥∥ +

(
μ + λk

∥∥vk∥∥)∥∥xk+ – yk∥∥ +
(
 + μ)λk

∥∥vk∥∥

≤ μ
∥∥xk – yk∥∥ + ( – ν)

∥∥xk+ – yk∥∥ + λk
∥∥vk∥∥, (.)

where the last inequality comes from λk‖vk‖ < ( – μ)/ and μ < . Substituting (.) into
(.), we get

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥ – ( – μ)
∥∥xk – yk∥∥ – ν

∥∥xk+ – yk∥∥ + λk
∥∥vk∥∥

+
∥∥xk+ – x∗∥∥. (.)

Following the proof line of Theorem ., we get {xk}∞k= weakly converges to a solution of
the variational equality (.). �

By using Theorems . and ., we obtain the convergence rate of the extragradient
method with BP.

Theorem . Assume that Conditions .-. hold. Assume the sequence {vk}∞k= is
bounded, and the scalars {λk}∞k= are such that λk ≥  for all k ≥ , and

∑∞
k= λk < +∞.

Let the sequences {xk}∞k= and {yk}∞k= be generated by (.) and (.). For any integer t > ,
we have yt ∈ C which satisfies

〈
F(x), yt – x

〉 ≤ 
ϒt

(∥∥x – x∥∥ + M(x)
)
, ∀x ∈ C, (.)

where

yt =

ϒt

t∑

k=

γkyk , ϒt =
t∑

k=

γk , (.)

and

M(x) = sup
k

{
max

{∥∥xk+ – yk∥∥, 
∥∥xk+ – x

∥∥}}
∞∑

k=

λk
∥∥vk∥∥. (.)

4.2 Construction of the inertial extragradient methods by BPR
In this subsection, we construct two classes of inertial extragradient methods by using
BPR, i.e., identifying ek

i , k = , , and λk , vk with special values.
Polyak [, ] first introduced the inertial-type algorithms by using the heavy ball

method of the second-order dynamical systems in time. Since the inertial-type algorithms
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speed up the original algorithms without the inertial effects, recently there has been in-
creasing interest in studying inertial-type algorithms (see, e.g., [–]). The authors []
introduced an inertial extragradient method as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wk = xk + αk
(
xk – xk–),

yk = PC
(
wk – γ F

(
wk)),

xk+ = ( – λk)wk + λkPC
(
wk – γ F

(
yk))

(.)

for each k ≥ , where γ ∈ (, /L), {αk} is nondecreasing with α =  and  ≤ αk ≤ α <  for
each k ≥  and λ,σ , δ >  are such that

δ >
α[( + γ L)α( + α) + ( – γ L)ασ + σ ( + γ L)]

 – γ L (.)

and

 < λ ≤ λk ≤ δ( – γ L) – α[( + γ L)α( + α) + ( – γ L)ασ + σ ( + γ L)]
δ[( + γ L)α( + α) + ( – γ L)ασ + σ ( + γ L)]

,

where L is the Lipschitz constant of F .
Based on the iterative step (.), we construct the following inertial extragradient

method:

{
yk = PC(xk – γkF(xk) + α

()
k (xk – xk–)),

xk+ = PC(xk – γkF(yk) + α
()
k (xk – xk–)),

(.)

where

α
(i)
k =

⎧
⎨

⎩

β
(i)
k

‖xk –xk–‖ , if ‖xk – xk–‖ > , i = , ,
β

(i)
k , if ‖xk – xk–‖ ≤ .

(.)

Theorem . Assume that Conditions .-. hold. Assume that the sequences {β (i)
k }∞k=,

i = , , satisfy
∑∞

k= β
(i)
k < ∞, i = , . Then the sequence {xk}∞k= generated by the inertial ex-

tragradient method (.) converges weakly to a solution of the variational inequality (.).

Proof Let ek
i = β

(i)
k vk , i = , , where

vk =

{
xk –xk–

‖xk –xk–‖ , if ‖xk – xk–‖ > , i = , ,
xk – xk–, if ‖xk – xk–‖ ≤ .

(.)

It is obvious that ‖vk‖ ≤ . So, it follows that {ek
i }, i = , , satisfy (.) from the condition

on {β (i)
k }. Using Theorem ., we complete the proof. �

Remark . From (.), we have ‖xk – xk–‖ ≤  for big enough k, that is, α(i)
k = β

(i)
k .
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Using the extragradient method with bounded perturbations (.), we construct the
following inertial extragradient method:

{
yk = PC(xk + αk(xk – xk–) – γkF(xk + αk(xk – xk–))),
xk+ = PC(xk + αk(xk – xk–) – γkF(yk)),

(.)

where

αk =

{
βk

‖xk –xk–‖ , if ‖xk – xk–‖ > , i = , ,
βk , if ‖xk – xk–‖ ≤ .

(.)

We extend Theorem . to the convergence of the inertial extragradient method (.).

Theorem . Assume that Conditions .-. hold. Assume that the sequence {βk}∞k=
satisfies

∑∞
k= βk < ∞. Then the sequence {xk}∞k= generated by the inertial extragradient

method (.) converges weakly to a solution of the variational inequality (.).

Remark . The inertial parameter αk in the inertial extragradient method (.) is
bigger than that of the inertial extragradient method (.). The inertial extragradient
method (.) becomes the inertial extragradient method (.) when λk = .

5 The extension to the subgradient extragradient method
In this section, we generalize the results of extragradient method proposed in the previous
sections to the subgradient extragradient method.

Censor et al. [] presented the subgradient extragradient method (.). In their method
the step size is fixed γ ∈ (, /L), where L is a Lipschitz constant of F . So, in order to
determine the stepsize γk , one needs first calculate (or estimate) L, which might be difficult
or even impossible in general. So, in order to overcome this, the Armijo-like search rule
can be used:

γk
∥∥F

(
xk) – F

(
yk)∥∥ ≤ μ

∥∥xk – yk∥∥, μ ∈ (, ). (.)

To discuss the convergence of the subgradient extragradient method, we make the fol-
lowing assumptions.

Condition . The mapping F is monotone on H, i.e.,

〈
f (x) – f (y), x – y

〉 ≥ , ∀x, y ∈H. (.)

Condition . The mapping F is Lipschitz continuous on H with the Lipschitz constant
L > , i.e.,

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈H. (.)

As before, Censor et al.’s subgradient extragradient method [, Theorem .] can be
easily generalized by using some adaptive step rule, for example, (.). This result is cap-
tured in the next theorem.
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Theorem . Assume that Conditions ., . and . hold. Then the sequence {xk}∞k=
generated by the subgradient extragradient methods (.) and (.) weakly converges to a
solution of the variational inequality (.).

5.1 The subgradient extragradient method with outer perturbations
In this subsection, we present the subgradient extragradient method with outer perturba-
tions.

Algorithm . The subgradient extragradient method with outer perturbations:
Step : Select a starting point x ∈H and set k = .
Step : Given the current iterate xk , compute

yk = PC
(
xk – γkF

(
xk) + e

(
xk)), (.)

where γk = σρmk , σ > , ρ ∈ (, ) and mk is the smallest nonnegative integer such that (see
[])

γk
∥∥F

(
xk) – F

(
yk)∥∥ ≤ μ

∥∥xk – yk∥∥, μ ∈ (, ). (.)

Construct the set

Tk :=
{

w ∈H | 〈(xk – γkF
(
xk) + e

(
xk)) – yk , w – yk 〉 ≤ 

}
, (.)

and calculate

xk+ = PTk

(
xk – γkF

(
yk) + e

(
xk)). (.)

Step : If xk = yk , then stop. Otherwise, set k ← (k + ) and return to Step .

Denote ek
i := ei(xk), i = , . The sequences of perturbations {ek

i }∞k=, i = , , are assumed
to be summable, i.e.,

∞∑

k=

∥∥ek
i
∥∥ < +∞, i = , . (.)

Following the proof of Theorems . and ., we get the convergence analysis and con-
vergence rate of Algorithm ..

Theorem . Assume that Conditions ., . and . hold. Then the sequence {xk}∞k=
generated by Algorithm . converges weakly to a solution of the variational inequality
(.).

Theorem . Assume that Conditions ., . and . hold. Let the sequences {xk}∞k= and
{yk}∞k= be generated by Algorithm .. For any integer t > , we have yt ∈ C which satisfies

〈
F(x), yt – x

〉 ≤ 
ϒt

(∥∥x – x∥∥ + M(x)
)
, ∀x ∈ C, (.)
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where

yt =

ϒt

t∑

k=

γkyk , ϒt =
t∑

k=

γk , (.)

and

M(x) = sup
k

{
max

{∥∥xk+ – yk∥∥,
∥∥xk+ – x

∥∥}} ∞∑

k=

∥∥ek∥∥. (.)

5.2 The BPR of the subgradient extragradient method
In this subsection, we investigate the bounded perturbation resilience of the subgradient
extragradient method (.).

To this end, we treat the right-hand side of (.) as the algorithmic operator A� of Def-
inition ., namely, we define, for all k ≥ ,

A�

(
xk) = PT(xk )

(
xk – γkF

(
PC

(
xk – γkF

(
xk)))), (.)

where γk satisfies (.) and

T
(
xk) =

{
w ∈H | 〈(xk – γkF

(
xk)) – yk , w – yk 〉 ≤ 

}
. (.)

Identify the solution set � with the solution set of the variational inequality (.) and iden-
tify the additional set � with C.

According to Definition ., we need to show the convergence of the sequence {xk}∞k=
that, starting from any x ∈H, is generated by

xk+ = PT(xk +λk vk )
((

xk + λkvk) – γkF
(
PC

((
xk + λkvk) – γkF

(
xk + λkvk)))), (.)

which can be rewritten as
⎧
⎪⎨

⎪⎩

yk = PC((xk + λkvk) – γkF((xk + λkvk)),
T(xk + λkvk) = {w ∈H | 〈((xk + λkvk) – γkF(xk + λkvk)) – yk , w – yk〉 ≤ },
xk+ = PT(xk +λk vk )((xk + λkvk) – γkF(yk)),

(.)

where γk = σρmk , σ > , ρ ∈ (, ) and mk is the smallest nonnegative integer such that

γk
∥∥F

(
xk + λkvk) – F

(
yk)∥∥ ≤ μ

(∥∥xk – yk∥∥ + λk
∥∥vk∥∥)

, μ ∈ (, ). (.)

The sequences {vk}∞k= and {λk}∞k= obey conditions (i) and (ii) in Definition ., respec-
tively, and also (iii) in Definition . is satisfied.

The next theorem establishes the bounded perturbation resilience of the subgradient
extragradient method. Since its proof is similar to that of Theorem ., we omit it.

Theorem . Assume that Conditions ., . and . hold. Assume the sequence {vk}∞k=
is bounded, and the scalars {λk}∞k= are such that λk ≥  for all k ≥ , and

∑∞
k= λk < +∞.

Then the sequence {xk}∞k= generated by (.) and (.) converges weakly to a solution of
the variational inequality (.).
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We also get the convergence rate of the subgradient extragradient methods with BP
(.) and (.).

Theorem . Assume that Conditions ., . and . hold. Assume the sequence {vk}∞k=

is bounded, and the scalars {λk}∞k= are such that λk ≥  for all k ≥ , and
∑∞

k= λk < +∞.
Let the sequences {xk}∞k= and {yk}∞k= be generated by (.) and (.). For any integer t > ,
we have yt ∈ C which satisfies

〈
F(x), yt – x

〉 ≤ 
ϒt

(∥∥x – x∥∥ + M(x)
)
, ∀x ∈ C, (.)

where

yt =

ϒt

t∑

k=

γkyk , ϒt =
t∑

k=

γk , (.)

and

M(x) = sup
k

{
max

{∥∥xk+ – yk∥∥, 
∥∥xk+ – x

∥∥}}
∞∑

k=

λk
∥∥vk∥∥. (.)

5.3 Construction of the inertial subgradient extragradient methods by BPR
In this subsection, we construct two classes of inertial subgradient extragradient methods
by using BPR, i.e., identifying ek

i , k = , , and λk , vk with special values.
Based on Algorithm ., we construct the following inertial subgradient extragradient

method:

⎧
⎪⎨

⎪⎩

yk = PC(xk – γkF(xk) + α
()
k (xk – xk–))),

Tk := {w ∈H | 〈(xk – γkF(xk) + α
()
k (xk – xk–)) – yk , w – yk〉 ≤ },

xk+ = PTk (xk – γkF(yk) + α
()
k (xk – xk–)),

(.)

where γk satisfies (.) and

α
(i)
k =

⎧
⎨

⎩

β
(i)
k

‖xk –xk–‖ , if ‖xk – xk–‖ > , i = , ,
β

(i)
k , if ‖xk – xk–‖ ≤ .

(.)

Similar to the proof of Theorem ., we get the convergence of the inertial subgradient
extragradient method (.).

Theorem . Assume that Conditions ., . and . hold. Assume that the sequences
{β (i)

k }∞k=, i = , , satisfy
∑∞

k= β
(i)
k < ∞, i = , . Then the sequence {xk}∞k= generated by the

inertial subgradient extragradient method (.) converges weakly to a solution of the vari-
ational inequality (.).
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Using the subgradient extragradient method with bounded perturbations (.), we con-
struct the following inertial subgradient extragradient method:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wk = xk + αk(xk – xk–),
yk = PC(wk – γkF(wk)),
Tk := {w ∈H | 〈(wk – γkF(wk)) – yk , w – yk〉 ≤ },
xk+ = PTk (wk – γkF(yk)),

(.)

where γk = σρmk , σ > , ρ ∈ (, ) and mk is the smallest nonnegative integer such that

γk
∥∥F

(
wk) – F

(
yk)∥∥ ≤ μ

∥∥wk – yk∥∥, μ ∈ (, ), (.)

and

αk =

{
βk

‖xk –xk–‖ , if ‖xk – xk–‖ > , i = , ,
βk , if ‖xk – xk–‖ ≤ .

(.)

We extend Theorem . to the convergence of the inertial subgradient extragradient
method (.).

Theorem . Assume that Conditions ., . and . hold. Assume that the sequence
{βk}∞k= satisfies

∑∞
k= βk < ∞. Then the sequence {xk}∞k= generated by the inertial subgradi-

ent extragradient method (.) converges weakly to a solution of the variational inequality
(.).

6 Numerical experiments
In this section, we provide three examples to compare the inertial extragradient method
(.) (iEG), the inertial extragradient method (.) (iEG), the inertial extragradient
method (.) (iEG), the extragradient method (.), the inertial subgradient extragradient
method (.) (iSEG), the inertial subgradient extragradient method (.) (iSEG) and
the subgradient extragradient method (.).

In the first example, we consider a typical sparse signal recovery problem. We choose
the following set of parameters. Take σ = , ρ = . and μ = .. Set

αk = α
(i)
k =


k if

∥∥xk – xk–∥∥ ≤  (.)

in the inertial extragradient methods (.) and (.), and the inertial subgradient extra-
gradient methods (.) and (.). Choose αk = . and λk = . in the inertial extra-
gradient method (.).

Example . Let x ∈ Rn be a K-sparse signal, K � n. The sampling matrix A ∈ Rm×n

(m < n) is stimulated by the standard Gaussian distribution and a vector b = Ax + e, where
e is additive noise. When e = , it means that there is no noise to the observed data. Our
task is to recover the signal x from the data b.
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It is well known that the sparse signal x can be recovered by solving the following
LASSO problem []:

min
x∈Rn



‖Ax – b‖



s.t. ‖x‖ ≤ t, (.)

where t > . It is easy to see that the optimization problem (.) is a special case of the vari-
ational inequality problem (.), where F(x) = AT (Ax – b) and C = {x | ‖x‖ ≤ t}. We can
use the proposed iterative algorithms to solve the optimization problem (.). Although
the orthogonal projection onto the closed convex set C does not have a closed-form so-
lution, the projection operator PC can be precisely computed in a polynomial time. We
include the details of computing PC in Appendix. We conduct plenty of simulations to
compare the performances of the proposed iterative algorithms. The following inequality
was defined as the stopping criterion:

∥∥xk+ – xk∥∥ ≤ ε,

where ε >  is a given small constant. ‘Iter’ denotes the iteration numbers. ‘Obj’ represents
the objective function value and ‘Err’ is the -norm error between the recovered signal
and the true K-sparse signal. We divide the experiments into two parts. One task is to
recover the sparse signal x from noise observation vector b, and the other is to recover
the sparse signal from noiseless data b. For the noiseless case, the obtained numerical
results are reported in Table . To visually view the results, Figure  shows the recovered
signal compared with the true signal x when K = . We can see from Figure  that the

Table 1 Numerical results obtained by the proposed iterative algorithms when m = 240,
n = 1,024 in the noiseless case

K-sparse signal Methods ε = 10–4 ε = 10–6

Iter Obj Err Iter Obj Err

K = 20 EG 444 9.7346e-4 0.0080 817 9.6625e-8 7.9856e-5
SEG 444 9.7272e-4 0.0080 817 9.6555e-8 7.9827e-5
iEG 374 6.2389e-4 0.0064 675 6.3456e-8 6.4715e-5
iEG1 159 7.0799e-5 0.0021 263 7.4280e-9 2.2041e-5
iEG2 158 8.3897e-5 0.0023 273 1.0889e-8 2.6809e-5
iSEG1 415 8.9563e-4 0.0076 787 2.3571e-7 5.2470e-5
iSEG2 414 9.2167e-4 0.0077 760 9.1586e-8 7.7275e-5

K = 30 EG 1,285 0.0035 0.0281 2,583 3.4535e-7 2.8035e-4
SEG 1,285 0.0035 0.0281 2,583 3.4534e-7 2.8035e-4
iEG 1,091 0.0023 0.0227 2,144 2.2732e-7 2.2745e-4
iEG1 532 3.7493e-4 0.0092 944 3.7522e-8 9.2287e-5
iEG2 535 3.7961e-4 0.0093 956 4.3181e-8 9.3120e-5
iSEG1 1,176 0.0031 0.0266 2,351 3.1038e-7 2.6137e-4
iSEG2 1,176 0.0031 0.0266 2,346 3.1635e-7 2.6784e-4

K = 40 EG 1,729 0.0050 0.0405 3,599 5.0237e-7 4.0488e-4
SEG 1,729 0.0050 0.0405 3,599 5.0228e-7 4.0484e-4
iEG 1,473 0.0033 0.0328 2,990 3.3182e-7 3.2905e-4
iEG1 744 5.4838e-4 0.0134 1,361 5.5456e-8 1.3440e-4
iEG2 745 5.4807e-4 0.0134 1,355 6.4785e-8 1.4191e-4
iSEG1 1,570 0.0045 0.0384 3,246 4.5079e-7 3.8146e-4
iSEG2 1,572 0.0045 0.0382 3,244 4.5389e-7 3.8435e-4
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Figure 1 Comparison of the different methods for sparse signal recovery. (a1) is the true sparse signal,
(a2)-(a8) are the recovered signals vs the true signal by ‘EG’, ‘SEG’, ‘iEG’, ‘iEG1’, ‘iEG2’, ‘iSEG1’ and ‘iSEG2’,
respectively.

Figure 2 Comparison of the objective function value versus the iteration numbers of different
methods.

recovered signal is the same as the true signal. Further, Figure  presents the objective
function value versus the iteration numbers.

For the noise observation b, we assume that the vector e is corrupted by Gaussian noise
with zero mean and β variances. The system matrix A is the same as in the noiseless case,
and the sparsity level K = . We list the numerical results for different noise level β in
Table . When the noise β = ., Figure  shows the objective function value versus the
iteration numbers. Figure  shows the recovered signal vs the true signal in the noise case.
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Table 2 Numerical results for the proposed iterative algorithms with different noise value β

Variances Methods ε = 10–4 ε = 10–6

Iter Obj Err Iter Obj Err

β = 0.01 EG 1,264 0.0092 0.0317 2,192 0.0061 0.0131
SEG 1,264 0.0092 0.0317 2,192 0.0061 0.0131
iEG 1,070 0.0081 0.0272 1,812 0.0061 0.0131
iEG1 519 0.0063 0.0164 788 0.0061 0.0130
iEG2 516 0.0063 0.0166 786 0.0061 0.0130
iSEG1 1,156 0.0089 0.0305 1,995 0.0061 0.0131
iSEG2 1,157 0.0089 0.0304 1,990 0.0061 0.0131

β = 0.02 EG 1,274 0.0163 0.0387 2,086 0.0142 0.0272
SEG 1,274 0.0163 0.0387 2,086 0.0142 0.0272
iEG 1,070 0.0154 0.0356 1,728 0.0142 0.0272
iEG1 492 0.0144 0.0300 756 0.0142 0.0272
iEG2 495 0.0143 0.0300 759 0.0142 0.0272
iSEG1 1,163 0.0161 0.0378 1,899 0.0142 0.0272
iSEG2 1,161 0.0161 0.0380 1,895 0.0142 0.0272

β = 0.05 EG 1,190 0.1012 0.0749 1,869 0.0991 0.0651
SEG 1,190 0.1012 0.0749 1,869 0.0991 0.0651
iEG 996 0.1005 0.0727 1,542 0.0991 0.0650
iEG1 460 0.0993 0.0677 670 0.0991 0.0650
iEG2 461 0.0993 0.0675 665 0.0991 0.0650
iSEG1 1,084 0.1010 0.0742 1,704 0.0991 0.0651
iSEG2 1,084 0.1010 0.0742 1,704 0.0991 0.0651

Figure 3 Comparison of the objective function value versus the iteration numbers of different
methods in the noise case of β = 0.02.

Example . Let F : R → R
 be defined by

F(x, y) =
(
x + y + sin(x), –x + y + sin(y)

)
, ∀x, y ∈R. (.)

The authors [] proved that F is Lipschitz continuous with L =
√

 and -strongly
monotone. Therefore the variational inequality (.) has a unique solution, and (, ) is its
solution.

Let C = {x ∈ R
 | e ≤ x ≤ e}, where e = (–, –) and e = (, ). Take the initial

point x = (–, ) ∈ R
. Since (, ) is the unique solution of the variational inequality

(.), denote by Dk := ‖xk‖ ≤ – the stopping criterion.
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Figure 4 Comparison of the different methods for sparse signal recovery. (a1) is the true sparse signal,
(a2)-(a8) are the recovered signals vs the true signal by ‘EG’, ‘SEG’, ‘iEG’, ‘iEG1’, ‘iEG2’, ‘iSEG1’ and ‘iSEG2’ in the
noise case of β = 0.02, respectively.

Example . Let F : Rn → R
n defined by F(x) = Ax + b, where A = ZT Z, Z = (zij)n×n and

b = (bi) ∈R
n, where zij ∈ (, ) and bi ∈ (, ) are generated randomly.

It is easy to verify that F is L-Lipschitz continuous and η-strongly monotone with L =
max(eig(A)) and η = min(eig(A)).

Let C := {x ∈R
n | ‖x – d‖ ≤ r}, where the center

d ∈ [
(–, –, . . . , –), (, , . . . , )

] ⊂R
n (.)

and radius r ∈ (, ) are randomly chosen. Take the initial point x = (ci) ∈ R
n, where

ci ∈ [, ] is generated randomly. Set n = . Take ρ = . and other parameters are set
the same values as in Example .. Although the variational inequality (.) has a unique
solution, it is difficult to get the exact solution. So, denote by Dk := ‖xk+ – xk‖ ≤ – the
stopping criterion.

From Figures  and , we conclude: (i) the inertial-type algorithms improve the original
algorithms; (ii) the performances of the inertial extragradient methods (.) and (.)
are almost the same; (iii) the inertial subgradient extragradient method (.) performs
better than the inertial subgradient extragradient method (.) for Example ., while
they are almost the same for Example .; (iv) the (inertial) extragradient methods behave
better than the (inertial) subgradient extragradient methods since the sets C in Exam-
ples . and . are simple, and hence the computation load of the projection onto it is
small; (v) the inertial extragradient method (.) has an advantage over the inertial ex-
tragradient methods (.) and (.). The reason may be that it takes a bigger inertial
parameter αk .
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Figure 5 Comparison of the number of iterations of different methods for Example 6.2.

Figure 6 Comparison of the number of iterations of different methods for Example 6.3.

7 Conclusions
In this research article we study an important property of iterative algorithms for solving
variational inequality (VI) problems which is called bounded perturbation resilience. In
particular, we focus on extragradient-type methods. This enables us to develop inexact
versions of the methods as well as apply the superiorization methodology in order to ob-
tain a ‘superior’ solution to the original problem. In addition, some inertial extragradient
methods are also derived. All the presented methods converge at the rate of O(/t), and
three numerical examples illustrate, demonstrate and compare the performances of all the
algorithms.
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Appendix
In this part, we present the details of computing a vector y ∈ Rn onto the �-norm ball
constraint. For convenience, we consider projection onto the unit �-norm ball first. Then
we extend it to the general �-norm ball constraint.

The projection onto the unit �-norm ball is to solve the optimization problem

min
x∈Rn



‖x – y‖



s.t. ‖x‖ ≤ .

The above optimization problem is a typical constrained optimization problem, we con-
sider solving it based on the Lagrangian method. Define the Lagrangian function L(x,λ)
as

L(x,λ) =


‖x – y‖

 + λ
(‖x‖ – 

)
.

Let (x∗,λ∗) be the optimal primal and dual pair. It satisfies the KKT conditions of

 ∈ (
x∗ – y

)
+ λ∗∂

(∥∥x∗∥∥


)
,

λ∗(∥∥x∗∥∥
 – 

)
= ,

λ∗ ≥ .

It is easy to check that if ‖y‖ ≤ , then x∗ = y and λ∗ = . In the following, we assume
‖y‖ > . Based on the KKT conditions, we obtain λ∗ >  and ‖x∗‖ = . From the first
order optimality, we have x∗ = max{|y| – λ∗, } ⊗ Sign(y), where ⊗ represents element-
wise multiplication and Sign(·) denotes the symbol function, i.e., Sign(yi) =  if yi ≥ ;
otherwise Sign(yi) = –.

Define a function f (λ) = ‖x(λ)‖, where x(λ) = Sλ(y) = max{|y|–λ, }⊗Sign(y). We prove
the following lemma.

Lemma A. For the function f (λ), there must exist λ∗ >  such that f (λ∗) = .

Proof Since f () = ‖S(y)‖ = ‖y‖ > . Let λ+ = max≤i≤n{|yi|}, then f (λ+) =  < . Notice
that f (λ) is decreasing and convex. Therefore, by the intermediate value theorem, there
exists λ∗ >  such that f (λ∗) = . �

To find λ∗ such that f (λ∗) = , we follow the following steps.
Step . Define a vector y with the same element as |y|, which was sorted in descending

order. That is, y ≥ y ≥ · · · ≥ yn ≥ .
Step . For every k = , , . . . , n, solve the equation

∑k
i= yi – kλ = . Stop search until the

solution λ∗ belongs to the interval [yk+, yk].
In conclusion, the optimal x∗ can be computed by x∗ = max{|y| – λ∗, } ⊗ Sign(y). The

next lemma extends the projection onto the unit �-norm ball to the general �-norm ball
constraint.
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Lemma A. Let C = {x | ‖x‖ ≤ }. For any t > , define a general �-norm ball constraint
set C = {x | ‖x‖ ≤ t}. Then, for any vector y ∈ Rn, we have

PC(y) = tPC

(
y
t

)
.

Proof To compute the projection PC(y) is to solve the optimization problem

PC(y) = arg min
x∈Rn



‖x – y‖



s.t. ‖x‖ ≤ t.

For any x ∈ C, let x = x
t , it follows that x ∈ C. The optimal solution x∗ of the above opti-

mization problem satisfies x∗ = PC(y) = tx∗, where x∗ is the optimal solution of the opti-
mization problem of

x∗ = arg min
x∈Rn




∥∥∥∥x –
y
t

∥∥∥∥





s.t. ‖x‖ ≤ .

It is observed that x∗ is an exact projection onto the closed convex set C. That is, x∗ =
PC ( y

t ). This completes the proof. �
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