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Abstract
In this study, we introduce a primal-dual prediction-correction algorithm framework
for convex optimization problems with known saddle-point structure. Our unified
frame adds the proximal term with a positive definite weighting matrix. Moreover,
different proximal parameters in the frame can derive some existing well-known
algorithms and yield a class of new primal-dual schemes. We prove the convergence
of the proposed frame from the perspective of proximal point algorithm-like
contraction methods and variational inequalities approach. The convergence rate
O(1/t) in the ergodic and nonergodic senses is also given, where t denotes the
iteration number.

Keywords: primal-dual method; proximal point algorithm; convex optimization;
variational inequalities

1 Introduction
We consider the following model that arises from various signal and image processing
applications:

min
x

f(Bx) + f(x), ()

where B is a continuous linear operator, and f and f are proper convex lower-semi-
continuous functions. We can easily write problem () in its primal-dual formulation
through Fenchel duality []:

min
x∈X

max
v∈V

L(x, v) := f(x) + 〈Bx, v〉 – f ∗
 (v), ()

where X ∈ RN and V ∈ RM are two finite-dimensional vector spaces, and f ∗
 is the convex

conjugate function of f defined as

f ∗
 (v) = sup

ω∈RM
〈v,ω〉 – f(ω).

As analyzed in [, ], the saddle-point problem () can be regarded as the primal-dual
formulation, and more and more scholars have proposed some primal-dual algorithms.
Zhu and Chan [] proposed the famous primal-dual hybrid gradient (PDHG) algorithm
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with adaptive stepsize. Though the algorithm is quite fast, the convergence is not proved.
He, You, and Yuan [] showed that PDHG with constant step sizes is indeed convergent
if one of the functions of the saddle-point problem is strongly convex. Chambolle and
Pock [] gave a primal-dual algorithm with convergence rate O(/k) for the complete class
of these problems. They further showed accelerations of the proposed algorithm to yield
improved rates on problems with some degree of smoothness. In particular, they showed
that the algorithm can achieve the O(/k) convergence in problems where the primal
or the dual objective is uniformly convex, and the method can show linear convergence,
that is, O(ς k) (for some ς ∈ (, )), on smooth problems. Bonettini and Ruggiero [] es-
tablished the convergence of a general primal-dual method for nonsmooth convex opti-
mization problems and showed that the convergence of the scheme can be considered
as an ε-subgradient method on the primal formulation of the variational problem when
the steplength parameters are a priori selected sequences. He and Yuan [] did a novel
study on these primal-dual algorithms from the perspective of contraction perspective.
Their method simplified the existing convergence analysis. Cai, Han, and Xu [] proposed
a new correction strategy for some first-order primal-dual algorithms. Later, He, Desai,
and Wang [] introduced another new primal-dual prediction-correction algorithm for
solving a saddle-point optimization problem, which serves as a bridge between the algo-
rithms proposed in [] and []. Recently, Zhang, Zhu, and Wang [] proposed a simple
primal-dual method for total-variation image restoration problems and showed that their
iterative scheme has the O(/k) convergence rate in the ergodic sense. When we had fin-
ished this paper, we found the algorithm proposed in [], where convergence analysis
was similar to our proposed frame. However, the algorithm proposed in [] is actually
a particular case of our unified framework when the precondition matrix in our frame is
fixed.

More specifically, the iterative schemes of existing primal-dual algorithms for the prob-
lem () can be unified as the following procedure:

⎧
⎪⎪⎨

⎪⎪⎩

vk+ = arg minv∈RM –L(xk , v) + 
γ

‖v – vk‖
,

yk+ = vk+ + θ (vk+ – vk),

xk+ = arg minx∈RN L(x, yk+) + 
τ

‖x – xk‖
,

()

where γ , τ >  and θ ∈ R. The combination parameter θ is set to zero in the original PDHG
algorithm. When θ ∈ [, ], the primal-dual algorithm proposed in [] was recovered. He
and Yuan [] showed that the range of the combination parameter θ can be enlarged to
[–, ]. Komodakis and Pesquet [] recently wrote a wonderful overview of recent primal-
dual method for solving large-scale optimization problems. So, we refer the reader to []
for more details.

In some imaging applications, for example, partially parallel magnetic resonance imag-
ing [], the primal subproblem in () may not be easy to solve. Because of this difficulty, it
is advisable to use inner iterations to get approximate solutions of the subproblems. In the
recent work, several completely decoupled schemes are proposed to avoid subproblem
solving, such as primal-dual fixed point algorithm [–] and the Uzawa method [].
Hence, motivated by the works [, , ], we reconsider the popular iterative scheme ()
and give a primal-dual algorithm framework such that it can be well adopted in different
imaging applications.
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The organization of this paper is as follows. In Section , we propose the primal-dual-
based contraction algorithm framework in prediction-correction fashion. In Section ,
we present convergence analysis. The iteration complexity in the ergodic and nonergodic
senses is established in Sections  and . In Section , connections with well-known meth-
ods, and some new schemes are discussed. Finally, a conclusion is given.

2 Proposed frame
Problem () can be reformulated as the following monotone variational inequality (VI):
Find (x∗, v∗) ∈ X × V such that

(
v – v∗

x – x∗

)T (
∂f ∗

 (v∗) – Bx∗

∂f(x∗) + BT v∗

)

≥ , ∀(x, v) ∈ X × V , ()

where ∂ denotes the subdifferential operator of a convex function. By denoting

u =

(
v
x

)

, F(u) =

(
∂f ∗

 (v) – Bx
∂f(x) + BT v

)

, 	 = X × V ,

the VI () can be written as follows (denoted VI(	, F)):

(
u – u∗)T F

(
u∗) ≥ , 	 = X × V .

Note that the monotonicity of the variational inequality is guaranteed by the convexity of
the function ∂f ∗

 and ∂f.
Recall that the primal-dual algorithm for () presented in [] (θ = ) is

⎧
⎪⎪⎨

⎪⎪⎩

vk+ = arg minv∈RM –L(xk , v) + 
γ

‖v – vk‖
,

yk+ = vk+ – vk ,

xk+ = arg minx∈RN L(x, yk+) + 
τ

‖x – xk‖
.

()

We can easily verify that the iteration (vk+, xk+) generated by () can be characterized as
follows:

(
v – vk+

x – xk+

)T {(
∂f ∗

 (vk+) – Bxk+

∂f(xk+) + BT vk+

)

+

(

γ

I B
BT 

τ
I

)(
vk+ – vk

xk+ – xk

)}

≥ . ()

The convergence of iteration () was proved in [] with the condition on the stepsize
γ τ‖BT B‖ < . Motivated by the idea in [], the scheme () can be considered as a pre-
diction step. So, in the following, we propose a primal-dual-based contraction method
for problem (). To present new methods in the prediction-correction fashion, we denote
the iteration ũk = (ṽk , x̃k) generated by the following primal-dual procedure (), where the
prediction step can be redescribed as

⎧
⎪⎪⎨

⎪⎪⎩

ṽk = arg minv∈RM –L(xk , v) + 
γ

‖v – vk‖
,

ỹk = ṽk – vk ,

x̃k = arg minx∈RN L(x, ỹk) + 
τ

‖x – xk‖
P ,

()
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where P is a positive definite matrix to be selected properly in different applications. Then,
the new iteration is yielded by correcting ũk via

uk+ = uk – ρ(uk – ũk), ()

where  < ρ < . Similarly to (), the predictor scheme () can also be written in the VI
form as follows:

(
v – ṽk

x – x̃k

)T {(
∂f ∗

 (ṽk) – Bx̃k

∂f(x̃k) + BT ṽk

)

+

(

γ

I B
BT 

τ
P

)(
ṽk – vk

x̃k – xk

)}

≥ . ()

Setting

Q =

(

γ

I B
BT 

τ
P

)

()

and using the notation in (), we have the following compact form of ():

(u – ũk)T{
F(ũk) + Q(ũk – uk)

} ≥ , ∀u ∈ 	. ()

So, we can prove the convergence of the proposed algorithm in the form of proximal point
algorithm [, ]. Next, we use this idea to prove that the scheme ()-() converges.

3 Convergence analysis
In this section, we show the convergence of the proposed frame. Convergence results easily
follow from proximal point algorithm-like contraction methods [] and VI approach [].

Lemma  Let B be the given operator, let γ , τ > , and let Q be defined by (). Then Q is
positive definite if

γ τ
∥
∥BT B

∥
∥ < p,

where p >  is the minimal eigenvalue of P.

Proof For any nonzero vectors s and t, we have

(
sT , tT)

(

γ

I B
BT 

τ
P

)(
s
t

)

=
‖s‖

γ
+

‖t‖
P

τ
+ sT Bt

≥ ‖s‖

γ
+

p‖t‖

τ
– 

√∥
∥BT B

∥
∥‖s‖‖t‖

≥ 
(√

p
γ τ

–
√∥

∥BT B
∥
∥

)

‖s‖‖t‖,

where we used the Cauchy-Schwarz inequality. The proof is completed. �

In the following, we give an important inequality for the output of the scheme ()-().
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Lemma  For iteration sequences {uk} and {ũk}, we have

(
uk – u∗)T Q(uk – ũk) ≥ (uk – ũk)T Q(uk – ũk), ∀u∗ ∈ 	. ()

Proof Since () holds for any u ∈ 	, we set u = u∗, where u∗ is an arbitrary solution, and
obtain

(
u∗ – ũk

)T{
F(ũk) + Q(ũk – uk)

} ≥ . ()

Thus () leads to

(
u∗ – ũk

)T Q(ũk – uk) ≥ (
ũk – u∗)T F(ũk). ()

Note that the mapping F(u) is monotone. We thus have

(
ũk – u∗)T(

F(ũk) – F
(
u∗)) ≥  ()

and also

(
ũk – u∗)T F(ũk) ≥ (

ũk – u∗)T F
(
u∗) ≥ .

Replacing u∗ – ũk by (u∗ – uk) + (uk – ũk) in () and using (), we get the assertion. �

Lemma  The sequence {uk} generated by the proposed scheme ()-() satisfies

∥
∥uk+ – u∗∥∥

Q ≤ ∥
∥uk – u∗∥∥

Q – ρ( – ρ)‖uk – ũk‖
Q, ∀u∗ ∈ 	. ()

Proof Using () and (), by a simple manipulation we obtain

∥
∥uk+ – u∗∥∥

Q =
∥
∥uk – u∗ – ρ(uk – ũk)

∥
∥

=
∥
∥uk – u∗∥∥

Q – ρ
(
uk – u∗)T Q(uk – ũk) + ρ‖uk – ũk‖

Q

≤ ∥
∥uk – u∗∥∥

Q – ρ‖uk – ũk‖
Q + ρ‖uk – ũk‖

Q

=
∥
∥uk – u∗∥∥

Q – ρ( – ρ)‖uk – ũk‖
Q.

The assertion is proved. �

The following theorem states that the proposed iterative scheme converges to an optimal
primal-dual solution.

Theorem  If Q in () is positive definite, then any sequence generated by the scheme
()-() converges to a solution of the minimax problem ().

Proof From () we know that the norm ‖uk – u∗‖Q is nonincreasing. We also can get that
uk is bounded and ‖uk – ũk‖Q → . Inequality () implies that the sequence {uk} has at
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least one cluster point. We denote it by u∞. Let {ukj} be a subsequence converging to u∞.
Thus we have

lim
j→∞‖ukj – ũkj‖ = . ()

Due to the facts () and (), we have

lim
j→∞

(
u – ukj

)T F(ukj ) ≥ , ∀u ∈ 	.

Because {ukj} converges to u∞, this inequality becomes

(
u – u∞)T F

(
u∞) ≥ , ∀u ∈ 	.

Thus, the cluster point u∞ satisfies the optimality condition of (). Note that inequality
() is true for all solution points of VI(	, F). Hence we have

∥
∥uk+ – u∞∥

∥ ≤ ∥
∥uk – u∞∥

∥,

and thus the sequence uk converges to u∞. This proof is completed. �

4 Convergence rate in an ergodic sense
In the following, using proximal point algorithm-like contraction methods for convex op-
timization [], the convergence rate in the ergodic and nonergodic senses is given. First,
we prove a lemma, which is the base for the proofs of the convergence rate in the ergodic
sense.

Lemma  The sequence {uk} is generated by the proposed scheme ()-(). Then we have

(u – ũk)T F(u) +


ρ
‖u – uk‖

Q ≥ 
ρ

‖u – uk+‖
Q, ∀u ∈ 	. ()

Proof Using (), the right-hand side of () can be written as

ρ(u – ũk)T F(ũk) ≥ (u – ũk)T Q(uk – uk+), ∀u ∈ 	. ()

For the right-hand side of (), taking

a = u, b = ũk , c = uk , d = uk+,

and applying the identity

(a – b)T Q(c – d) =


{‖a – d‖

Q – ‖a – c‖
Q
}

+


{‖c – b‖

Q – ‖d – b‖
Q
}

,

we obtain

(u – ũk)T Q(uk – uk+) =


{‖u – uk+‖

Q – ‖u – uk‖
Q
}

+


{‖uk – ũk‖

Q – ‖uk+ – ũk‖
Q
}

. ()
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For the last term of the right-hand side of (), we have

‖uk – ũk‖
Q – ‖uk+ – ũk‖

Q

= ‖uk – ũk‖
Q –

∥
∥uk – ũk – (uk – uk+)

∥
∥

Q

= ‖uk – ũk‖
Q –

∥
∥( – ρ)(uk – ũk)

∥
∥

Q

= ρ( – ρ)‖uk – ũk‖
Q. ()

Substituting () and () into (), we get

ρ(u – ũk)T F(ũk) ≥ 

(‖u – uk+‖

Q – ‖u – uk‖
Q
)

+
ρ( – ρ)


‖uk – ũk‖

Q. ()

Using the property of the mapping F , we have

(u – ũk)T F(u) ≥ (u – ũk)T F(ũk).

Substituting it into (), the lemma is proved. �

Theorem  Let {uk} be the sequence generated by the scheme ()-(), and let ũt be defined
by

ũt =


t + 

t∑

k=

ũk . ()

Then, for any integer t > , we have that ũt ∈ 	 and

(ũt – u)T F(u) ≤ 
ρ(t + )

‖u – u‖
Q, ∀u ∈ 	. ()

Proof By the convexity of 	 it is clear that ũt ∈ 	. Summing () over k = , , . . . , t, we
have

(

(t + )u –
t∑

k=

ũk

)T

F(u) +


ρ
‖u – u‖

Q ≥ , ∀u ∈ 	.

By the definition of ũt , the assertion of the theorem directly follows. �

5 Convergence rate in a nonergodic sense
In this section, we show that a worst-case O(/t) convergence rate in a nonergodic sense
can also be established for the proposed algorithm frame. We first prove the following
lemma.

Lemma  Let the sequence {uk} be generated by the proposed scheme ()-(). Then we have

(uk – ũk)T Q
{

uk – ũk – (uk+ – ũk+)
} ≥ 

ρ

∥
∥uk – ũk – (uk+ – ũk+)

∥
∥

QT +Q. ()
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Proof Setting u = ũk+ in (), we get

(ũk+ – ũk)T F(ũk) ≥ (ũk+ – ũk)T Q(uk – ũk). ()

Note that () is also true for k := k + , and we have

(u – ũk+)T F(ũk+) ≥ (u – ũk+)T Q(uk+ – ũk+), ∀u ∈ 	.

Setting u = ũk in this inequality, we obtain

(ũk – ũk+)T F(ũk+) ≥ (ũk – ũk+)T Q(uk+ – ũk+). ()

Adding () and () and using the monotonicity of F , we obtain

(ũk – ũk+)T Q
{

(uk – ũk) – (uk+ – ũk+)
} ≥ . ()

Adding the term

{
(uk – ũk) – (uk+ – ũk+)

}T Q
{

(uk – ũk) – (uk+ – ũk+)
}

to both sides of (), we have

(uk – uk+)T Q
{

(uk – ũk) – (uk+ – ũk+)
} ≥ 


∥
∥uk – ũk – (uk+ – ũk+)

∥
∥

QT +Q.

Substituting uk – uk+ = ρ(uk – ũk) into the left-hand side of the inequality, we obtain the
lemma. �

Next, we are ready to prove the key inequality of this section.

Lemma  Let the sequence {uk} be generated by the proposed scheme ()-(). Then we have

‖uk+ – ũk+‖
Q ≤ ‖uk – ũk‖

Q. ()

Proof Taking a = uk – ũk , b = uk+ – ũk+ in the identity

‖a‖
Q – ‖b‖

Q = aT Q(a – b) – ‖a – b‖
Q,

we have

‖uk – ũk‖
Q – ‖uk+ – ũk+‖

Q

= (uk – ũk)T Q
(
(uk – ũk) – (uk+ – ũk+)

)
–

∥
∥(uk – ũk) – (uk+ – ũk+)

∥
∥

Q.

Since inequality () holds, we obtain

‖uk – ũk‖
Q – ‖uk+ – ũk+‖

Q

≥  – ρ

ρ

∥
∥(uk – ũk) – (uk+ – ũk+)

∥
∥

Q ≥ .

The assertion directly follows from this inequality. �
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Now, we establish a worst-case O(/t) convergence rate in a nonergodic sense.

Theorem  Let {uk} be the sequence generated by the scheme ()-(). Then, for any integer
t > , we have

‖ut – ũt‖
Q ≤ 

ρ( – ρ)(t + )
∥
∥u – u∗∥∥

Q, ∀u ∈ 	. ()

Proof It follows from () that

∞∑

k=

ρ( – ρ)‖uk – ũk‖
Q ≤ ∥

∥u – u∗∥∥
Q, ∀u∗ ∈ 	. ()

By Lemma  the sequence {‖uk – ũk‖
Q} is nonincreasing. So, we obtain

(t + )‖uk – ũk‖
Q ≤

t∑

k=

‖uk – ũk‖
Q. ()

Assertion () immediately follows from () and (). �

6 Connections with existing methods
In this section, we focus on a specific version of problem (),

min
x

f(Bx) +


‖Ax – b‖, ()

which arises in imaging processing, where f(x) = 
‖Ax – b‖ is quadratic. For discrete

total-variation regularization, B is the gradient operator, and A is a possibly large and
ill-conditioned matrix representing a linear transform. If A is the identity matrix, then
problem () is the well-known Rudin-Osher-Fatemi denoising model []. Because total-
variation regularization can preserve sharp discontinuities in an image for removing noise,
the above problem has received a lot of attention by most scholars in image processing,
including computerized tomography [] and parallel magnetic resonance imaging [].

In the following, we establish connections of the proposed frame to the well-known
methods for solving (). There are other types methods designed to solve problem ().
Among them, the split Bregman method proposed by Goldstein and Osher [] is very
popular for imaging applications. This method has been proved to be equivalent to the
alternating direction of multiplier method. In [], based on proximal forward-backward
splitting and Bregman iteration, a split inexact Uzawa (SIU) method is proposed to maxi-
mally decouple the iterations, so that each iteration is explicit in this algorithm. Also, the
authors gave an algorithm based on Bregman operator splitting (BOS) when A is not di-
agonalizable. Recently, Tian and Yuan [] proposed a linearized primal-dual method for
linear inverse problems with total-variation regularization and showed that this variant
yields significant computational benefits. Next, we show that different P in () can in-
duce the following well-known methods: the linearized primal-dual method, SIU, BOS,
and split Bregman methods and some new primal-dual algorithms with the correction
step ().
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6.1 Linearized primal-dual method
The linearized primal-dual method in [] can be directly induced by setting P = I – τAT A
and

Q =

(

γ

I B
BT 

τ
I – AT A

)

. ()

We can also easily show that the positive definiteness of the matrices P and Q in ()
is guaranteed if γ > ,  < τ < /‖AT A‖,  < τ < /‖AT A + γ BT B‖. In this situation, the
scheme () can be written as follows:

⎧
⎨

⎩

ṽk = (I + γ ∂f ∗
 )–(vk + γ Bxk),

x̃k = xk – τ∇f(xk) – τBT (ṽk – vk),
()

and the scheme () can be expressed as

⎧
⎨

⎩

xk+ = xk – ρ(xk – x̃k),

vk+ = vk – ρ(vk – ṽk).
()

The idea is also similar to that of [, ], which uses the symmetric positive semi-definite
matrix instead of the identity matrix in the proximal term. But their methods [, ]
do not have overrelaxation or correction step. In [, ], the authors developed first-
order splitting algorithm for solving jointly the primal and dual formulations of large-scale
convex minimization problems involving the sum of a smooth function with Lipschitzian
gradient, a nonsmooth proximable function, and linear composite functions. Actually, the
linearized primal-dual method () and () is a particular case where a nonsmooth prox-
imable function is missing in [, ].

When ρ = , we can see that there is no correction step, that is, (xk+, vk+) = (x̃k , ṽk).
In the following subsection, we focus on the scheme ()-() with different P and Q when
ρ = , that is,

⎧
⎪⎪⎨

⎪⎪⎩

vk+ = arg minv∈RM –L(xk , v) + 
γ

‖v – vk‖
,

yk+ = vk+ – vk ,

xk+ = arg minx∈RN L(x, yk+) + 
τ

‖x – xk‖
P .

()

If P = I , the the CP method is a particular case of () as discussed in []. We also find that
different P in () can induce some existing famous algorithms.

6.2 Split inexact Uzawa method
For f(x) = 

‖Ax – b‖, the explicit SIU algorithm can be described as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = xk – τAT (Axk – b) – τγ BT (Bxk – dk + vk
γ

),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+),

()
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where γ > ,  < τ < /‖AT A + γ BT B‖, and

prox 
γ

f (v) = arg min f(v) +


γ
‖v – z‖

, z ∈ V .

Let P = I – τAT A in (). Then

Q =

(

γ

I B
BT 

τ
I – AT A

)

,

where γ > ,  < τ < /‖AT A‖,  < τ < /‖AT A + γ BT B‖. So, the scheme () can be ex-
pressed as

⎧
⎪⎪⎨

⎪⎪⎩

vk+ = (I + γ ∂f ∗
 )–(vk + γ Bxk),

yk+ = vk+ – vk ,

xk+ = xk – τ∇f(xk) – τBT yk+.

()

Using the relation proxγ f ∗


= (I + γ ∂f ∗
 )– and changing the order of these equations, the

scheme () is equivalent to

⎧
⎨

⎩

xk+ = xk – τAT (Axk – b) – τBT (vk – vk–),

vk+ = proxγ f ∗


(vk + γ Bxk+).
()

By the Moreau decomposition (see equation (.) in []), for all v ∈ RM and λ > , we
have

v = proxλf (v) + λprox 
λ

f ∗ (v/λ).

Then

⎧
⎨

⎩

xk+ = xk – τAT (Axk – b) – τBT (vk – vk–),

vk+ = vk + γ Bxk+ – γ prox 
γ f (Bxk+ + vk

γ
).

()

By introducing the variable dk+ = prox 
γ f (Bxk+ + vk

γ
), the scheme () can be further ex-

pressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = xk – τAT (Axk – b) – τBT (vk – vk–),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

Noting that vk = vk– + γ (Bxk – dk), we have

vk – vk– = vk + γ (Bxk – dk). ()
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Substituting () into the first equation of (), the scheme () is equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = xk – τAT (Axk – b) – τγ BT (Bxk – dk + vk
γ

),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

We can see that the method () is equivalent to the SIU. Obviously, the explicit SIU
method is a particular case of the proposed frame with P = I – τAT A and ρ = . If ρ = ,
then a linearized primal-dual method is presented in Section .. So, the algorithm in []
can be considered as a relaxed SIU method.

6.3 Bregman operator splitting
The BOS algorithm for solving problem () was recently introduced in [] based on the
primal dual formulation of the model. It can be described as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = ( 
τ

I + γ BT B)–( 
τ

xk – AT (Axk – b) + γ BT (dk – vk
γ

)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+),

()

where γ > ,  < τ‖AT A‖ < .
Similarly, let P = I – τAT A + τγ BT B in (). Then

Q =

(

γ

I B
BT 

τ
I – AT A + γ BT B

)

,

where γ > ,  < τ < /‖AT A‖,  < τ < /‖AT A–γ BT B‖. The scheme () can be expressed
as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = ( 
τ

I + γ BT B)–(( 
τ

I – AT A + γ BT B)xk – BT (vk – vk–) + AT b),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

Using relation (), we arrive at
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = ( 
τ

I + γ BT B)–( 
τ

xk – AT (Axk – b) + γ BT (dk – vk
γ

)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

Now, we can see that the scheme () is the method (). Clearly, the iterative scheme ()
is a particular case of the frame with P = I – τAT A + τγ BT B and ρ = . Also, when ρ = ,
we can get a new primal-dual method for solving () as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṽk = (I + γ ∂f ∗
 )–(vk + γ Bxk),

x̃k = ( 
τ

+ γ BT B)–(( 
τ

– AT A + γ BT B)xk – BT (ṽk – vk) + AT b),

xk+ = xk – ρ(xk – x̃k),

vk+ = vk – ρ(vk – ṽk).

()
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In fact, the scheme () can be considered as a relaxed BOS algorithm. If f(·) = ‖ · ‖, then
we can deduce that (I + ∂f ∗

 )–(v) = proj(v), where proj is the projection operator. If the
image satisfies periodic boundary conditions and if we use total-variation regularization,
then the matrix BT B is block circulant; hence, it can be diagonalized by the Fourier trans-
form matrix as noted in []. So, the new algorithm () can be computed efficiently and
does not need the inner iteration to solve the subproblem.

6.4 Split Bregman
In this subsection, we identify the split Bregman algorithm as a particular case of the pro-
posed algorithm. Firstly, we reformulate model () as an equivalent constrained mini-
mization problem

min
x,d

{
f(d) + f(x) : Bx – d = 

}
.

The split Bregman algorithm for solving this constrained problem is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xk+ = arg minx f(x) + 〈vk , Bx – dk〉 + γ

 ‖Bx – dk‖,

dk+ = arg mind f(d) + 〈vk , Bxk+ – d〉 + γ

 ‖Bxk+ – d‖,

vk+ = vk + γ (Bxk+ – dk+).

When f(x) = 
‖Ax – b‖, it can be also described as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = (AT A + γ BT B)–(AT b + BT (γ dk – vk)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+),

()

where γ > . The difficulty of implementing the scheme () is mainly due to that the
inverse of the matrix is not easy to obtain. Next, we show that our method can induce the
scheme ().

Let

Q =

(

γ

I B
BT γ BT B

)

,

where τ = , γ > . We see that the matrix is not positive. But the scheme () with this Q
can induce the famous split Bregman algorithm. In this situation, the scheme () can be
expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = (AT A + γ BT B)–(AT b – BT (vk – vk–) + γ BT Bxk),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

Using the relation

vk – vk– = vk + γ (Bxk – dk),
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the scheme () can be further expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = (AT A + γ BT B)–(AT b + BT (γ dk – vk)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

The method () is the split Bregman scheme (). So, the split Bregman algorithm can be
identified as a particular case of our proposed algorithm framework with P = γ BT B and
ρ = . If ρ = , then, for P = γ BT B and τ = , a new primal-dual scheme can be described
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṽk = (I + γ ∂f ∗
 )–(vk + γ Bxk),

x̃k = (AT A + γ BT B)–(γ BT Bxk – BT (ṽk – vk–) + AT b),

xk+ = xk – ρ(xk – x̃k),

vk+ = vk – ρ(vk – ṽk).

()

Because the matrix Q is not positive definite, the split Bregman method may be not
convergent. This case was also discussed in [] with the same result. Based on Lemma ,
it suffices to replace the matrix Q by its perturbation in positive definite style. Similarly to
[], we modified the matrix Q as

Q =

(

γ

I B
BT γ θBT B + α( – θ )I

)

, ()

where α is a positive number, and θ is a number between  and . Using a similar derivation
as before, the modified split Bregman algorithm is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+ = (AT A + γ θBT B + α( – θ )I)–(( – θ )(α – γ BT B)xk

+ AT b + BT (γ dk – vk)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

Checking the convergence condition of the theorem, if α
γ

> ‖B‖
, α > , and θ ∈ [, ), we

can easily get that the sequence xk generated from () converges to a solution of problem
(). We remark that when θ = , the scheme () reduces to the split Bregman method
(). When θ = , the scheme () is the preconditioned alternating method of multipliers
as discussed in [, ]. Also, when Q is defined by () and ρ = , the new primal-dual
method can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽk = (I + γ ∂f ∗
 )–(vk + γ Bxk),

x̃k = (AT A + γ θBT B + α( – θ )I)–((γ θBT B + α( – θ )I)xk

– BT (ṽk – vk) + AT b),

xk+ = xk – ρ(xk – x̃k),

vk+ = vk – ρ(vk – ṽk).

()
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The other positive definite matrix Q may be chosen as

Q =

(

γ

I B
BT 

τ
I + γ BT B

)

. ()

By a simple manipulation we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+ = (AT A + γ BT B + 
τ

I)–( 
τ

xk + AT b + BT (γ dk – vk)),

dk+ = prox 
γ f (Bxk+ + vk

γ
),

vk+ = vk + γ (Bxk+ – dk+).

()

According to [], the eigenvalues of the matrix BT B all lie in the interval [, ). So, to
guarantee the positive definite of Q, we should set γ τ > . In fact, the scheme () is the
third case of Algorithm  in []. Finally, similarly to the previous subsection, we can also
get a new relaxed splitting Bregman algorithm when ρ =  and Q is given by (). Then,
the new primal-dual algorithm can be reformulated as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṽk = (I + γ ∂f ∗
 )–(vk + γ Bxk),

x̃k = (AT A + γ BT B + 
τ

I)–(( 
τ

I + γ BT B)xk – BT (ṽk – vk) + AT b),

xk+ = xk – ρ(xk – x̃k),

vk+ = vk – ρ(vk – ṽk).

()

7 Conclusions
We proposed a primal-dual-based contraction framework in the prediction-correction
fashion. The convergence and convergence rate of the proposed framework are also given.
Some well-known algorithms, for example, the linearized primal-dual method, SIU, Breg-
man operator splitting method, and split Bregman method can be considered as particular
cases of our algorithm framework. Some new primal-dual schemes such as (), (), (),
and () are induced. Finally, how to choose the adaptive parameter ρ is an interesting
problem, which will be discussed in a forthcoming work.
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