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Abstract
In this article, we present a QR updating procedure as a solution approach for linear
least squares problem with equality constraints. We reduce the constrained problem
to unconstrained linear least squares and partition it into a small subproblem. The QR
factorization of the subproblem is calculated and then we apply updating techniques
to its upper triangular factor R to obtain its solution. We carry out the error analysis of
the proposed algorithm to show that it is backward stable. We also illustrate the
implementation and accuracy of the proposed algorithm by providing some
numerical experiments with particular emphasis on dense problems.
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1 Introduction
We consider the linear least squares problem with equality constraints (LSE)

min
x

‖Ax – b‖, subject to Bx = d, ()

where A ∈ Rm×n, b ∈ Rm, B ∈ Rp×n, d ∈ Rp, x ∈ Rn with m + p ≥ n ≥ p and ‖ · ‖ denotes the
Euclidean norm. It arises in important applications of science and engineering such as in
beam-forming in signal processing, curve fitting, solutions of inequality constrained least
squares problems, penalty function methods in nonlinear optimization, electromagnetic
data processing and in the analysis of large scale structure [–]. The assumptions

rank(B) = p and null(A) ∩ null(B) = {} ()

ensure the existence and uniqueness of solution for problem ().
The solution of LSE problem () can be obtained using direct elimination, the nullspace

method and method of weighting. In direct elimination and nullspace methods, the LSE
problem is first transformed into unconstrained linear least squares (LLS) problem and
then it is solved via normal equations or QR factorization methods. In the method of
weighting, a large suitable weighted factor γ is selected such that the weighted residual
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γ (d – Bx) remains of the same size as that of the residual b – Ax and the constraints
is satisfied effectively. Then the solution of the LSE problem is approximated by solv-
ing the weighted LLS problem. In [], the author studied the method of weighting for
LSE problem and provided a natural criterion of selecting the weighted factor γ such that
γ ≥ ‖A‖/‖B‖εM , where εM is the rounding unit. For further details as regards methods
of solution for LSE problem (), we refer to [, , , –].

Updating is a process which allow us to approximate the solution of the original problem
without solving it afresh. It is useful in applications such as in solving a sequence of mod-
ified related problems by adding or removing data from the original problem. Stable and
efficient methods of updating are required in various fields of science and engineering such
as in optimization and signal processing [], statistics [], network and structural anal-
ysis [, ] and discretization of differential equations []. Various updating techniques
based on matrix factorization for different kinds of problems exist in the literature [, ,
, –]. Hammarling and Lucas [] discussed updating the QR factorization with ap-
plications to LLS problem and presented updating algorithms which exploited LEVEL 
BLAS. Yousaf [] studied repeated updating based on QR factorization as a solution tool
for LLS problem. Parallel implementation on GPUs of the updating QR factorization algo-
rithms presented in [] is performed by Andrew and Dingle []. Zhdanov and Gogoleva
[] studied augmented regularized normal equations for solving LSE problems. Zeb and
Yousaf [] presented an updating algorithm by repeatedly updating both factors of the
QR factorization for the solutions of LSE problems.

In this article, we consider the LSE problem () in the following form:

min
x(γ )

∥
∥
∥
∥
∥

(

γ B
A

)

x –

(

γ d
b

)∥
∥
∥
∥
∥



, ()

which is an unconstrained weighted LLS problem where γ ≥ ‖A‖/‖B‖εM given in []
and approximated its solution by updating Householder QR factorization. It is well known
that Householder QR factorization is backward stable [, , , ]. The conditions given
in () ensure that problem () is a full rank LLS problem. Hence, there exist a unique so-
lution x(γ ) of problem () which approximated the solution xLSE of the LSE problem ()
such that limγ→∞ x(γ ) = xLSE. In our proposed technique, we reduced problem () to a
small subproblem using a suitable partitioning strategy by removing blocks of rows and
columns. The QR factorization of the subproblem is calculated and its R factor is then
updated by appending the removed block of columns and rows, respectively, to approxi-
mate the solution of problem (). The presented approach is suitable for solution of dense
problems and also applicable for those applications where we are adding new data to the
original problem and QR factorization of the problem matrix is already available.

We organized this article as follows. Section  contains preliminaries related to our main
results. In Section , we present the QR updating procedure and algorithm for solution of
LSE problem (). The error analysis of the proposed algorithm is provided in Section .
Numerical experiments and comparison of solutions is given in Section , while our con-
clusion is given in Section .

2 Preliminaries
This section contains important concepts which will be used in the forthcoming sections.
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2.1 The method of weighting
This method is based on the observations that while solving LSE problem () we are inter-
ested that some equations are to be exactly satisfied. This can be achieved by multiplying
large weighted factor γ to those equations. Then we can solve the resulting weighted LLS
problem (). The method of weighting is useful as it allows for the use of subroutines for
LLS problems to approximate the solution of LSE problem. However, the use of the large
weighted factor γ can compromise the conditioning of the constrained matrix. In partic-
ular, the method of normal equations when applied to problem () fails for large values of
γ in general. For details, see [, –].

2.2 QR factorization and householder reflection
Let

X = QR ()

be the QR factorization of a matrix X ∈ Rm×n where Q ∈ Rm×m and R ∈ Rm×n. This fac-
torization can be obtained using Householder reflections, Givens rotations and the classi-
cal/modified Gram-Schmidt orthogonalization. The Householder and Givens QR factor-
ization methods are backward stable. For details as regards QR factorization, we refer to
[, ].

Here, we briefly discuss the Householder reflection method due to our requirements.
For a non-zero Householder vector v ∈Rn, we define the matrix H ∈Rn×n as

H = In – τvvT , τ =


vT v
, ()

which is called the Householder reflection or Householder matrix. Householder matrices
are symmetric and orthogonal. For a non-zero vector u, the Householder vector v is simply
defined as

v = u ± ‖u‖ek ,

such that

Hu = u – τvvT u = ∓αek , ()

where α = ‖u‖ and ek denotes the kth unit vector in Rn in the following form:

ek(i) =

⎧

⎨

⎩

 if i = k,

 otherwise.

In our present work given in next section, we will use the following algorithm for compu-
tation of Householder vector v. This computation is based on Parlett’s formula []:

v = u – ‖u‖ =
u

 – ‖u‖


x + ‖u‖
=

–‖u‖


u + ‖u‖
,

where u >  is the first element of the vector u ∈Rn. Then we compute the Householder
vector v as follows (Algorithm ).
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Algorithm  Computation of parameter τ and Householder vector v []
Input: u, u
Output: v, τ

: α = ‖u‖


: v = u, v() = 
: if (α = ) then
: τ = 
: else
: β =

√

u
 + α

: end if
: if u ≤  then
: v() = u – β

: else
: v() = –α/(u + β)
: end if
: τ = v()/(α + v())
: v = v/v()

3 Updating QR factorization procedure for solution of LSE problem
Let

E =

(

γ B
A

)

∈ R(m+p)×n and f =

(

γ d
b

)

∈ Rm+p.

Then we can write problem () as

min
x(γ )

‖Ex – f ‖. ()

Here, we will reduce problem () to a small incomplete subproblem using suitable parti-
tion process. In partition process, we remove blocks of rows and columns from the prob-
lem matrix E considered in () and from its corresponding right-hand side (RHS) without
involving any arithmetics. That is, we consider

E =

⎛

⎜
⎝

E( : j – ,  : n)
E(j : j + r,  : n)

E(j + r +  : m + p,  : n)

⎞

⎟
⎠ and f =

⎛

⎜
⎝

f ( : j – )
f (j : j + r)

f (j + r +  : m + p)

⎞

⎟
⎠ , ()

and removing blocks of rows from both E and f in equation () as

Gr = E(j : j + r,  : n) ∈Rr×n and fr = f (j : j + r), ()

we get

E =

(

E( : j – ,  : n)
E(j + r +  : m + p,  : n)

)

, f =

(

f ( : j – )
f (j + r +  : m + p)

)

. ()
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Algorithm  Calculating the QR factorization and computing matrix Uc

Input: E ∈Rm×n , f ∈Rm , Gc ∈Rm×c

Output: R ∈Rm×n, g ∈Rm , Uc ∈Rm×c

: R ←− E

: for k =  to min(m, n) do
: [v, τ , E(k, k)] = house(E(k, k), E(k +  : m, k))
: V = E(k, k +  : n) + vT E(k +  : m, k +  : n)
: R(k, k +  : n) = E(k, k +  : n) – τV
: if k < n then
: R(k +  : m, k +  : n) = E(k +  : m, k +  : n) – τvV
: end if
: g(j : m) = f(k : m) – τ

( 
v

)(

 vT
)

f(k : m)
: Uc(k : m, k : end) = Gc(k : m, k : end) – τ

( 
v

)(

 vT
)

Uc(k : m, k : end)
: end for

Hence, we obtain the following problem:

min
x

‖Ex – f‖, E ∈Rm×n , f ∈Rm , x ∈Rn , ()

where m = m + p – r, n = n, and fr ∈ Rr . Furthermore, by removing block of columns
Gc = E(:, j : j + c) from the jth position by considering the partition of E in the incomplete
problem () as

E =
(

E(:,  : j – ) E(:, j : j + c) E(:, j + c +  : n)
)

, ()

we obtain the following reduced subproblem:

min
x

‖Ex – f‖, E ∈Rm×n , f ∈Rm , x ∈Rn , ()

where E = [E(:,  : j – ), E(:, j +  : n)], n = n – c, m = m, and f = f.
Now, we calculated the QR factorization of the incomplete subproblem () is order to

reduce it to the upper triangular matrix R using the following algorithm (Algorithm ).
Here house denotes the Householder algorithm and the Householder vectors are calcu-

lated using Algorithm  and V is a self-explanatory intermediary variable.
Hence, we obtain

R = Hn · · ·HE, g = Hn · · ·Hf ()

and

Uc = Hn · · ·HGc.

Here, the QR factorization can also be obtained directly using the MATLAB built-in com-
mand qr but it is not preferable due to its excessive storage requirements for orthogonal
matrix Q and by not necessarily providing positive sign of diagonal elements in the matrix
R [].
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Algorithm  Updating R factor after appending a block of columns Gc

Input: R ∈Rm×n , Gc ∈Rm×c, g ∈Rm

Output: R ∈Rm×(n+c), g ∈Rm

: Gc( : m,  : c) ←− R( : m, n +  : n + c)
: if (m ≥ n) then
: R ←− triu(R)
: g ←− g

: else
: for k = j to min(m, n + c) do
: [v, τ , R(k, k)] = house(R(k, k), R(k +  : m, k))
: V = R(k, k +  : n + c) + vT R(k +  : m, k +  : n + c))
: R(k, k +  : n + c) = R(k, k +  : n + c) – τV

: if k < n + c then
: R(k +  : m, k +  : n + c) = R(k +  : m, k +  : n + c) – τvV
: end if
: g(k : m) = g(k : m) – τ

( 
v

)(

 vT
)

g(k : m)
: end for
: R = triu(R)
: end if

To obtain the solution of problem (), we need to update the upper triangular matrix
R. For this purpose, we append the updated block of columns Gc to the R factor in ()
at the jth position as follows:

Rc =
(

R(:,  : j – ) Gc(:, j : j + c) R(:, j + c +  : n)
)

. ()

Here, if the Rc factor in () is upper trapezoidal or in upper triangular form then no
further calculation is required, and we get R = Rc. Otherwise, we will need to reduce
equation () to the upper triangular factor R by introducing the Householder matrices
Hn+c, . . . , Hj:

R = Hn+c · · ·HjRc and g = Hn+c · · ·Hjg, ()

where R ∈Rm×n is upper trapezoidal for m < n or it is an upper triangular matrix. The
procedure for appending the block of columns and updating of the R factor in algorithmic
form is given as follows (Algorithm ).

Here the term triu denotes the upper triangular part of the concerned matrix and V is
the intermediary variable.

Now, we append a block of rows Gr to the R factor and fr to its corresponding RHS at
the jth position in the following manner.

Rr =

⎛

⎜
⎝

R( : j – , :)
Gr( : r, :)

R(j : m, :)

⎞

⎟
⎠ , gr =

⎛

⎜
⎝

g( : j – )
fr( : r)

g(j : m)

⎞

⎟
⎠ .
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Algorithm  Updating R factor after appending a block of rows Gr

Input: R ∈Rm×n, Gr ∈Rr×n, g ∈Rm , fr ∈Rm

Output: R̃ ∈R(m+r)×n, g̃ ∈Rm+r

: for k =  to min(m, n) do
: [v, τ , R(k, k)] = house(R(k, k), Gr( : r, k))
: V = R(k, k +  : n) + vT Gr( : r, k +  : n)
: R̃(k, k +  : n) = R(k, k +  : n) – τV
: if k < n then
: Gr( : r, k +  : n) = Gr( : r, k +  : n) – τvV
: end if
: gk = g(k)
: g(k) ≡ ( – τ )g(k) – τvT fr( : r)

: fr( : r) ≡ fr( : r) – τvgk – τvvT fr( : r)
: end for
: if m < n then
: [Qr , Rr] = qr(Gr(:, (m +  : n)))
: Rr(m +  : m + r, m +  : n) ←− R̃r

: fr ≡ QT
r fr

: end if
: R̃ ←− ( R



)

: g̃ ←− ( g
fr

)

We use the permutation matrix P in order to bring the block of rows Gr and fr at the
bottom position if required. Then

PRr =

(

R

Gr

)

, Pgr =

(

g

fr

)

. ()

The equation () is reduced to upper triangular form by constructing the matrices
H, . . . , Hn using Algorithm  as given by

R̃ = HnHn– · · ·H

(

R

Gr

)

and

g̃ = HnHn– · · ·H

(

g

fr

)

.

The procedure is performed in algorithmic form as follows (Algorithm ).
Here qr is the MATLAB command of QR factorization and V is a self-explanatory in-

termediary variable.
The solution of problem () can then be obtained by applying the MATLAB built-in

command backsub for a back-substitution procedure.
The description of QR updating algorithm in compact form is given as follows (Algo-

rithm ).
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Algorithm  Updating QR algorithm for solution of LSE problem
Input: A ∈Rm×n, b ∈Rm, B ∈Rp×n, d ∈Rp

Output: xLSE ∈Rn

: E =
(

γ B
A

)

and f =
(

γ d
b

)

: [E, f, Gr , E, Gc, fr] ←− partition(E, f )
: [R, g, Uc] ←− QR factorization of subproblem (E, f, Gc)
: [R, g] ←− appendbcols(R, g, Uc)
: [R̃, g̃] ←− appendbrows(R, Gr , g, fr)
: xLSE ←− backsub(R̃( : n,  : n), g̃( : n))

Here, Algorithm  for a solution of LSE problem () calls upon the partition process,
Algorithms , ,  and MATLAB command backsub for back-substitution procedure, re-
spectively.

4 Error analysis
In this section, we will study the backward stability of our proposed Algorithm . The
mainstay in our presented algorithm for the solution of LSE problem is the updating pro-
cedure. Therefore, our main concern is to study the error analysis of the updating steps.
For others, such as the effect of using the weighting factor, finding the QR factorization
and for the back-substitution procedure, we refer the reader to [, ]. Here, we recall
some important results without giving their proofs and refer the reader to [].

We will consider the following standard model of floating point arithmetic in order to
analyze the rounding errors effects in the computations:

fl(x op y) = (x op y)( + η), |η| ≤ εM, op = +, –,∗, /, ()

where εM is the unit roundoff. The value of εM is of order – in single precision computer
arithmetic, while in double precision it is of the order –. Moreover, for addition and
subtraction in the absence of guard integers, we can write model () as follows:

fl(x ± y) = x( + η) ± y( + η), |ηi| ≤ εM, i = , .

Lemma . ([]) If |ηi| ≤ εM, δi = ± for i = , , . . . , n and nεM < , then

n
∏

i=

( + ηi)δi =  + φn,

where

|φn| ≤ nεM

 – nεM
= γn.

Here, we will use the constants γn and γ̃cn for convenience as adopted in [] where these
are defined by

γn =
nεM

 – nεM
, assuming nεM < , ()
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and

γ̃cn =
ncεM

 – ncεM
, assuming ncεM < , ()

where c is a small positive integer.

Lemma . ([]) Let x, y ∈Rn and consider the inner product xT y. Then

fl
(

xT y
)

= xT (y + 
y), |
y| ≤ γn|y|.

Lemma . ([]) Let φk and γk be defined for any positive integer k. Then for positive
integers j and k the following relations hold:

( + φk)( + φj) =  + φk+j, ()

( + φk)
( + φj)

=

⎧

⎨

⎩

 + φk+j, j ≤ k,

 + φk+j, j > k,
()

jγk ≤ γjk , ()

kγk + εM ≤ γk+, ()

γk + γj + γkγj ≤ γk+j. ()

Lemma . ([]) Considering the construction of τ ∈ R and v ∈ Rn given in Section ,
then the computed τ̃ and ṽ in floating point arithmetic satisfy

ṽ( : n) = v( : n)

and

τ̃ = τ ( + φ̃n) and ṽ = v( + φ̃n),

where φ̃n ≤ γ̃n.

Here, we represent the Householder transformation as I – vvT , which requires ‖v‖ =
√

.
Therefore, by redefining v =

√
τv and τ =  using Lemma ., we have

ṽ = v + 
v, |
v| ≤ γ̃mv for v ∈Rm,‖v‖ =
√

. ()

Lemma . ([]) Considering the computation of y = H̃b = (I – ṽṽT )b = b – ṽ(ṽT b) for
b ∈Rm and ṽ ∈Rm satisfies (). Then the computed ỹ satisfies

ỹ = (H + 
H)b, ‖
H‖F ≤ γ̃m,

where H = I – vvT and ‖ · ‖F denotes the Frobenius norm.
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Lemma . ([]) Let Hk = I – vkvT
k ∈Rm×m be the Householder matrix and we define the

sequence of transformations

Xk+ = HkXk , k =  : r,

where X = X ∈Rm×n. Furthermore, it is assumed that these transformations are performed
using computed Householder vectors ṽk ≈ vk and satisfy Lemma .. Then we have

X̃r+ = QT (X + 
X), ()

where QT = Hr , . . . , H, and

‖
xj‖ ≤ rγ̃m‖xj‖, j =  : n.

Theorem . ([]) Let R̃ ∈ Rm×n be the computed upper trapezoidal QR factor of X ∈
Rm×n (m ≥ n) obtained via Householder QR algorithm by Lemma .. Then there exists
an orthogonal matrix Q ∈Rm×m such that

X + 
X = QR̃,

where

‖
xj‖ ≤ γ̃mn‖xj‖, j =  : n. ()

Lemma . ([]) Let X ∈ Rm×n and H = I – τvvT ∈ Rm×m be the Householder matrix.
Also, assuming that the computation of HX is performed using computed τ̃ and ṽ such that
it satisfies Lemma .. Then, from Theorem ., we have

fl(HX) = H(X + 
X), ‖
X‖F ≤ γcm‖X‖F . ()

4.1 Backward error analysis of proposed algorithm
To appreciate the backward stability of our proposed Algorithm , we first need to carry
out the error analysis of Algorithms  and . For this purpose, we present the following.

Theorem . The computed factor R̃ in Algorithm  satisfies

R̃ = QT

[(

R

Gr

)

+ er

]

and ‖er‖F ≤ γ̃n(r+)

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

,

where Gr ∈Rr×n is the appended block of rows to the R factor and Q = HH · · ·Hn.

Proof Let the Householder matrix Hj have zeros on the jth column of the matrix
( r̃jj

Grj

)

.
Then using Lemma ., we have

H

[(

R

Gr

)

+ e

]

=

(

R̃r

G̃r

)

, ()
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where

‖e‖F ≤ γ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

.

Similarly,

H

[(

R̃r

G̃r

)

+ e

]

=

(

R̃r

G̃r

)

= HH

[(

R

Gr

)

+ e()
r

]

,

and

‖e‖F ≤ γ̃r+

∥
∥
∥
∥
∥

(

R̃r

G̃r

)∥
∥
∥
∥
∥

F

,

where

∥
∥e()

r
∥
∥

F = ‖e + e‖F ,
∥
∥e()

r
∥
∥

F ≤ ‖e‖F + ‖e‖F ,

≤ γ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

+ γ̃r+

∥
∥
∥
∥
∥

(

R̂r

Ĝr

)∥
∥
∥
∥
∥

F

.

From equation (), we have
∥
∥
∥
∥
∥

(

R̂r

Ĝr

)∥
∥
∥
∥
∥

F

≤
∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

+ e

≤
∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

+ γ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

.

This implies that

∥
∥e()

r
∥
∥

F ≤ γ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

+ γ̃r+( + γ̃r+)

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

≤ (

γ̃r+ + γ̃r+( + γ̃r+)
)

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

≤ γ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

,

where we ignored (γ̃r+) as γ̃r+ is very small.
Continuing in the same fashion till the nth Householder reflection, we have

R̃ = HnHn– · · ·H

[(

R

Gr

)

+ er

]

,



Zeb and Yousaf Journal of Inequalities and Applications  (2017) 2017:281 Page 12 of 17

where

‖er‖F =
∥
∥e(n)

r
∥
∥

F ≤ nγ̃r+

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

,

or, by using equation () of Lemma ., we can write

‖er‖F ≤ γ̃n(r+)

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

,

which is the required result. �

Theorem . The backward error for the computed factor R in Algorithm  is given by

R = Q̃T[

(R, Uc) + ẽc
]

,

where Uc ∈R(m+p)×c is the appended block of columns to the right-end of R factor, ‖ẽc‖F ≤
γ̃(m+p)c‖Uc‖F and Q̃ = Hn+ · · ·Hn+c.

Proof To prove the required result, we proceed similar to the proof of Theorem ., and
obtain

∥
∥e

c
∥
∥

F ≤ γ̃c
∥
∥
[

(R, Uc) + ẽc
]∥
∥

F .

This implies that the error in the whole process of appending the block of columns to the
R factor is given by

R = Hn+c · · ·Hn+
[

(R, Uc) + ẽc
]

,

where

‖ec‖F ≤ γ̃(m+p)c‖Uc‖F . �

Theorem . Let the LSE problem () satisfy the conditions given in (). Then Algorithm 
solves the LSE problem with computed Q̃ = H · · ·Hn and R̃ which satisfies

∥
∥I – Q̃T Q̃

∥
∥

F ≤ √
nγ̃(m+p)n ()

and

‖E – Q̃R̃‖F ≤ √
nγ̃(m+p)n‖E‖F . ()

Proof To study the backward error analysis of Algorithm , we consider the reduced sub-
problem matrix E ∈ Rm×n from () and let ê be its backward error in the computed
QR factorization. Then from Lemma ., we have

QT
 (E + ê) = R and ‖ê‖F ≤ γ̃mn‖E‖F .
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As in our proposed Algorithm , we appended a block of columns Uc = QT
 Gc to the R

factor, then by using Theorem ., we have

R = Hn+ · · ·Hn+c
[

(R, Uc) + ec
]

,

where ‖ec‖F ≤ γ̃mc‖Uc‖F .
Therefore, by simplifying

‖ê‖F =
∥
∥QT

 QT
 ê + QT

 ec
∥
∥

F ,

where QT
 = Hn+ · · ·Hn+c and ê is the error of computing the QR factorization, we obtain

‖ê‖F =
∥
∥QT

 QT
 ê + QT

 ec
∥
∥

F

≤ ∥
∥QT


∥
∥

F

∥
∥QT


∥
∥

F‖ê‖F +
∥
∥QT


∥
∥

F‖ec‖F

≤ ‖ê‖F + ‖ec‖F

≤ γ̃mn‖E‖F + γ̃mc‖Uc‖F

≤ [γ̃mn + γ̃mc]max
(‖E‖F ,‖Uc‖F

)

.

Hence, we have

‖ê‖F ≤ [γ̃mn + γ̃mc]max
(‖E‖F ,‖Uc‖F

)

,

which is the total error at this stage of appending the block of columns and its updating.
Furthermore, we appended the block of rows Gr to the computed factor R in our algo-
rithm and, by using Theorem ., we obtain

R̃ = Hn · · ·H

[(

R

Gr

)

+ er

]

,

where

‖er‖F ≤ γ̃(r+)n

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

,

is the error for appending the block of rows Gr .
Hence, the total error e for the whole updating procedure in Algorithm  can be written

as

‖e‖F ≤ ‖er‖F + ‖ê‖F

≤ γ̃(r+)n

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

+ (γ̃mn + γ̃mc)max
(‖E‖F ,‖Uc‖F

)

≤ (γ̃(r+)n + γ̃mn + γ̃mc)max

(

‖E‖F ,‖Uc‖F ,

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

)

. ()
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Now, if the orthogonal factor Q is to be formed explicitly, then the deviation from nor-
mality in our updating procedure can be examined. For this, we consider E = I , then from
Lemma ., we have

Q̃ = QT
 (Im + ζ ),

where ζ is the error in the computed factor Q̃ given as

‖ζ‖F ≤ γ̃mn‖Im‖F =
√

nγ̃mn ,

where ‖Im‖F = √n. In a similar manner, the computed factor Q̃ after appending
columns Uc is given by

Q̃ = QT
 (Im + ζc),

where

‖ζc‖F ≤ √
cγ̃mc.

Therefore, the total error in Q̃ is given as

Q̃Q̃ = QT
 (Im + ζ),

where

‖ζ‖F ≤ ‖ζ‖F + ‖ζc‖F ≤ √
nγ̃mn +

√
cγ̃mc.

Similarly, the error in the computed factor Q̃ after appending block of rows is given as

Q̃ = QT (Ir + ζr),

where

‖ζr‖F ≤ √
nγ̃(r+)n.

So, the total error ζ in Q during the whole updating procedure is given by

‖ζ‖F = ‖ζ‖F + ‖ζr‖F

≤ √
nγ̃(r+)n +

√
nγ̃mn +

√
cγ̃mc, ()

where m < m + p, n < n and c < n.
Therefore, the error measure in Q̃ which shows the amount by which it has been devi-

ated from normality is given by

∥
∥I – Q̃T Q̃

∥
∥

F ≤ √
n(γ̃(r+)n + γ̃mn + γ̃mc). ()



Zeb and Yousaf Journal of Inequalities and Applications  (2017) 2017:281 Page 15 of 17

Table 1 Description of test problems

Problem Size of (A) κ(A) ‖A‖F Size of (B) κ(B) ‖B‖F

1. 10×8 1.3667e+02 2.0006e+02 6×8 7.4200e+01 1.0216e+02
2. 100×90 2.9303e+03 2.1395e+03 90×90 3.3687e+03 1.3735e+03
3. 800×700 6.2106e+03 1.6872e+04 600×700 1.6164e+03 9.9000e+03
4. 1,000×500 1.1602e+03 1.5943e+04 500×500 1.2883e+05 7.6360e+03
5. 2,000×1,000 1.6727e+03 3.1884e+04 1,000×1,000 1.7430e+06 1.5272e+04

From equation (), we have

γ̃(r+)n + γ̃mn + γ̃mc ≈ γ̃(m+p+)n = γ̃(m+p)n, ()

and using it in equation (), we get the required result ().
Also, we have

‖E – Q̃R̃‖F =
∥
∥(E – QR̃) +

(

(Q – Q̃)R̃
)∥
∥

F

≤ √
n(γ̃(r+)n + γ̃mn + γ̃mc) max

(

‖E‖F ,‖Ec‖F ,

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

)

. ()

As ‖X‖F = ‖QR‖F = ‖R‖F , therefore, we can write

max

(

‖E‖F ,‖Uc‖F ,

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

)

=

∥
∥
∥
∥
∥

(

R

Gr

)∥
∥
∥
∥
∥

F

= ‖E‖F . ()

Hence, applying expressions () and () to (), we obtain the required equation ()
which shows how large is the error in the computed QR factorization. �

5 Numerical experiments
This section is devoted to some numerical experiments which illustrate the applicabil-
ity and accuracy of Algorithm . The problem matrices A and B and its corresponding
right-hand side vectors b and d are generated randomly using the MATLAB built-in com-
mands rand(‘twister’) and rand. These commands generate pseudorandom numbers from
a standard uniform distribution in the open interval (, ). The full description of test
matrices are given in Table , where we denote the Frobenius norm with ‖ · ‖F and the
condition number by κ(·). For accuracy of the solution, we consider the actual solution
such that x = rand(n, ) and denote the result obtained from Algorithm  by xLSE and that
of direct QR Householder factorization with column pivoting by xp. We obtain the rela-
tive errors between the solutions given in Table . Moreover, the solution xLSE satisfy the
constrained system effectively. The description of the matrix E, the size of the reduced
subproblem (SP), value of the weighted factor ω, the relative errors err = ‖x – xLSE‖/‖x‖

and err1 = ‖x – xp‖/‖x‖ are provided in Table . We also carry out the backward error
tests of Algorithm  numerically for our considered problems and provide the results in
Table , which agrees with our theoretical results.

6 Conclusion
The solution of linear least squares problems with equality constraints is studied by up-
dated techniques based on QR factorization. We updated only the R factor of the QR
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Table 2 Results comparison

Problem Size of (E) γ Size of SP err1 err

1. 16×8 8.9564e+15 3×3 1.3222e–14 1.4585e–15
2. 190×90 7.1258e+15 3×3 1.2628e–13 5.5294e–14
3. 1,400×700 7.7993e+15 3×3 1.2821e–12 4.2522e–13
4. 1,500×500 9.5551e+15 3×3 1.9377e–12 1.3559e–12
5. 3,000×1,000 9.5549e+15 3×3 1.0828e–10 8.5181e–12

Table 3 Backward error analysis results

Problem ‖E–Q̃R̃‖F‖E‖F
‖I – Q̃T Q̃‖F

1. 4.4202e–16 1.3174e–15
2. 4.7858e–16 9.0854e–15
3. 1.0450e–15 4.9428e–14
4. 9.0230e–16 3.8711e–14
5. 9.9304e–16 6.4026e–14

factorization of the small subproblem in order to obtain the solution of our considered
problem. Numerical experiments are provided which illustrated the accuracy of the pre-
sented algorithm. We also showed that the algorithm is backward stable. The presented
approach is suitable for dense problems and also applicable where QR factorization of a
problem matrix is available and we are interested in the solution after adding new data to
the original problem. In the future, it will be of interest to study the updating techniques
for sparse data problems and for those where the linear least squares problem is fixed and
the constraint system is changing frequently.
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