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Abstract
As a first-order method, the augmented Lagrangian method (ALM) is a benchmark
solver for linearly constrained convex programming, and in practice some
semi-definite proximal terms are often added to its primal variable’s subproblem to
make it more implementable. In this paper, we propose an accelerated PALM with
indefinite proximal regularization (PALM-IPR) for convex programming with linear
constraints, which generalizes the proximal terms from semi-definite to indefinite.
Under mild assumptions, we establish the worst-caseO(1/t2) convergence rate of
PALM-IPR in a non-ergodic sense. Finally, numerical results show that our new
method is feasible and efficient for solving compressive sensing.
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1 Introduction
Let R denote the set of all real numbers, Rn the Euclidean space of all real vectors with n
coordinates. In this paper, we are going to solve the following linearly constrained convex
programming:

min
{

f (x)|Ax = b, x ∈Rn}, ()

where f (x) : Rn →R is a closed proper convex function, A ∈Rm×n, b ∈Rm. Throughout,
we assume that the solution set of Problem () is nonempty. By choosing different objec-
tive function f (x), a variety of problems encountered in compressive processing, machine
learning and statistics can be cast into Problem () (see [–] and the references therein).
The following are two concrete examples of Problem ():

• The compressive sensing (CS):

min
x

f (x) = ‖x‖ +


μ
‖x‖

,

s.t. Ax = b,
()
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where μ > , A ∈ Rm×n(m � n) is the sensing matrix; b ∈ Rm is the observed signal,
and the �-norm and �-norm of the vector x are defined by ‖x‖ =

∑n
i= |xi| and ‖x‖ =

(
∑n

i= x
i )/, respectively.

• The wavelet-based image processing problem:

min
x

f (x) = ‖x‖,

s.t. BWx = b,
()

where B ∈ Rm×l is a diagonal matrix whose elements are either  (missing pixels) or 
(known pixels), and W ∈Rl×n is a wavelet dictionary.

Problem () can be converted into the following strongly convex programming:

min

{
f (x) +

β


‖Ax – b‖|Ax = b, x ∈Rn

}
, ()

where the constant β >  is a penalty parameter. Introducing the Lagrange multiplier
λ ∈ Rm to the linear constraints Ax = b, we get the Lagrangian function associated with
Problem ():

L(x,λ) = f (x) + λ�(Ax – b) +
β


‖Ax – b‖,

which is also the augmented Lagrangian function associated with Problem (). Then the
dual function is denoted by

G(λ) = inf
x
L(x,λ),

and the dual problem of () is

max
λ∈Rm

G(λ).

Due to the strong convexity of the objective function of Problem (), G(λ) is continuously
differentiable at any λ ∈Rm, and ∇G(λ) = –(Ax(λ) – b), where x(λ) = argminxL(x,λ) (see,
e.g., Theorem  of []). Solving the above dual problem by the gradient ascent method, we
get a benchmark solver for Problem (): the augmented Lagrangian method (ALM) [,
], which first minimizes the Lagrangian function of Problem () with respect to x by
fixing λ = λk to get x(λk), and set xk+ = x(λk); then it updates the Lagrange multiplier λ.
Specifically, for given λk , the kth iteration of PALM for Problem () reads

⎧
⎨

⎩
xk+ = arg minx∈Rn{L(x,λk)},
λk+ = λk + γβ(Axk+ – b),

()

where γ ∈ (, ) is a relaxation factor. Though ALM plays a fundamental role in the algo-
rithmic development of Problem (), the cost of solving its first subproblem is often high
for general f (·) and A. To address this issue, many proximal ALMs [, –] are developed
by adding the proximal term 

‖x – xk‖
G to the x-related subproblem, where G ∈Rn×n is a
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semi-definite matrix. By setting G = τ In – βA�A with τ > β‖A�A‖, the x-related subprob-
lem reduces to the following form:

xk+ = arg min
x∈Rn

{
f (x) +

τ


∥∥x – uk∥∥

}
,

where uk = 
τ

(Gxk – A�λk + βA�b). The above subproblem is often simple enough to have
a closed-form solution or can be easily solved up to a high precision. The proximal ALM
is so instructive, and along this philosophy, a lot of efficient proximal ALM-type methods
[, –] have been proposed. However, a new difficult problem has arisen for the prox-
imal ALM-type methods, which is how to determine the optimal value of the proximal
parameter τ . Numerical results indicate that smaller values of τ can often speed up the
corresponding proximal ALM-type method [].

In [], Fazel et al. pointed out that the proximal matrix G should be as small as possible,
while the subproblem related to the primal variable x is still relatively easy to tackle. Fur-
thermore, though any τ > β‖A�A‖ can ensure the global convergence of proximal ALM-
type methods, the computation of the norm ‖A�A‖ is often high for some problems in
practice, especially for large n. Therefore, it is meaningful to relax the feasible region of
the proximal parameter τ . Quite recently some efficient methods with relaxed proximal
matrix [–] have been developed for Problem (). Specifically, He et al. [] proposed
a positive-indefinite proximal augmented Lagrangian method, in which the proximal ma-
trix is G = G – ( – α)βA�A, where G is an arbitrarily positive definite matrix in Rn, and
α ∈ ( +γ

 , ). If we set G = τ In – αβA�A with τ > αβ‖A�A‖, then G = τ In – βA�A, which
maybe indefinite.

Many research results on the convergence speed of the ALM-type methods have been
presented recently. For the classical ALM, He et al. [] firstly established the worst-case
O(/t) convergence rate in the non-ergodic sense, and further developed a new ALM-
type method, which has O(/t) convergence rate. However, for inequality (.) in [],
the authors only proved L(x∗,λ∗) – L(x̃k , λ̃k) ≤ C/(k + ) with C > , and we cannot ensure
L(x∗,λ∗) – L(x̃k , λ̃k) ≥ . Similar problem occurs in Theorem . of []. In the following,
we shall prove that the inequality L(x∗,λ∗) – L(x̃k , λ̃k) ≥  holds for the method in [].
Quite recently, by introducing an ingeniously designed sequence {θk}, Lu et al. [] pro-
posed a fast PALM-type method without proximal term, which has O(/t) convergence
rate.

In this paper, based on the study of [], we are going to further study the augmented
Lagrangian method and develop a new fast proximal ALM-type method with indefinite
proximal regularization, whose worst-case convergence rate is O(/t) in a non-ergodic
sense. Furthermore, a relaxation factor γ ∈ (, ) is attached to the updated formula of
our new method, which is often beneficial to speed up convergence in practice.

The rest of this paper is organized as follows. In Section , we list some necessary no-
tations. We then give the proximal ALM with indefinite proximal regularization (PALM-
IPR) and show its worst-caseO(/t) convergence rate in Section . In Section , numerical
experiments are conducted to illustrate the efficiency of PALM-IPR. Finally, some conclu-
sions are drawn in Section .
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2 Preliminaries
In this section, we give some notations used in the following analysis and present two
criteria to measure the worst-case O(/t) convergence rate of PALM type methods. At
the end of this section, we prove that the inequality L(x∗,λ∗) – L(x̃k , λ̃k) ≥  holds for the
method in [].

Throughout, we use the following standard notations. For any two vectors x, y ∈ Rn,
〈x, y〉 or x�y denote their inner products. The symbols ‖ · ‖ and ‖ · ‖ represent the �-
norm and �-norm for vector variables, respectively. In denotes the n-dimensional identity
matrix. If the matrix G ∈Rn×n is symmetric, we use the symbol ‖x‖

G to denote x�Gx even
if G is indefinite; G   (resp., G � ) denotes that the matrix G is positive definite (resp.,
semi-definite).

The following identity will be used in the following analysis:

〈x – y, x – z〉 =


(‖x – y‖ + ‖x – z‖ – ‖y – z‖), x, y, z ∈Rn. ()

Definition . A point (x∗,λ∗) is a Karush-Kuhn-Tucker (KKT) point of Problem () if
the following conditions are satisfied:

⎧
⎨

⎩
 ∈ ∂f (x∗) + A�λ∗,

Ax∗ = b.
()

Note that the two conditions of () correspond to the dual feasibility and the primal
feasibility of Problem (), respectively. The solution set of KKT system (), denoted by
W∗, is nonempty under the nonempty solution set of (). By () and the property of the
convex function f (·), for any (x∗,λ∗) ∈W∗, we have

f (x) – f
(
x∗) +

(
x – x∗)�(

A�λ∗) ≥ , ∀x ∈Rn. ()

Based on () and Ax∗ = b, we have the following proposition.

Proposition . ([]) Vector x̃ ∈ Rn is an optimal solution to Problem () if and only if
there exists r >  such that

f (x̃) – f
(
x∗) +

(
x̃ – x∗)�(

A�λ∗) +
r

‖Ax̃ – b‖ = , ()

where (x∗,λ∗) ∈W∗.

Now let us review two different criteria to measure the worst-case O(/t) convergence
rate in [, ].

() In [], Xu presented the following criterion:

⎧
⎨

⎩
|f (xt) – f (x∗)| ≤ C

(t+) ,

‖Axt – b‖ ≤ C
‖λ∗‖(t+) ,

()

where C > . The second inequality of () implies that there must exist at least one
(x∗,λ∗) ∈W∗ with λ∗ �= .



Sun and Liu Journal of Inequalities and Applications  (2017) 2017:263 Page 5 of 14

() In [], Lin et al. proposed the following criterion:

f
(
xt) – f

(
x∗) +

(
xt – x∗)�(

A�λ∗) +
c

∥∥Axt – b

∥∥ ≤ C
(t + ) , ()

where c, C > . Obviously, inequality () is motivated by equality (). Compared with (),
the criterion () is more reasonable. Therefore, we shall use () to measure the O(/t)
convergence rate of our new method.

Now, we prove that the inequality L(x∗,λ∗) – L(x̃k , λ̃k) ≥  holds for the iteration method
proposed in [].

Theorem . For the KKT point (x∗,λ∗) of Problem (), the tuple (xk+, λ̃k+) generated by
the method in [] satisfies

L
(
xk+, λ̃k+) ≤L

(
x∗,λ∗).

Proof Since xk+ is generated by the following subproblem:

xk+ = arg min
x∈Rn

{
f (x) +

β



∥∥∥∥Ax – b +
λk

β

∥∥∥∥

}
,

then it holds that

 ∈ ∂f
(
xk+) + A�(

λk + β
(
Axk+ – b

))
,

i.e.,

–A�λ̃k+ ∈ ∂f
(
xk+).

This and the convexity of the function f (·) yield

f
(
x∗) – f

(
xk+) ≥ 〈

–A�λ̃k+, x∗ – xk+〉.

So, it holds that

L
(
x∗,λ∗) = f

(
x∗)

≥ f
(
xk+) +

〈
–A�λ̃k+, x∗ – xk+〉

≥ f
(
xk+) +

〈
–λ̃k+, Ax∗ – Axk+〉

≥ f
(
xk+) +

〈
λ̃k+, Axk+ – b

〉

= L
(
xk+, λ̃k+).

This completes the proof. �
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3 PALM-IPR and its convergence rate
In this section, we first present the proximal ALM with indefinite proximal regularization
(PALM-IPR) for Problem () and then prove its convergence rate step by step.

To present our new method, let us define a sequence {θk} which satisfies θ = , θk > 
and

 – θk+

θ
k+

=

θ

k
. ()

Then the sequence {θk} has the following properties []:

t∑

k=


θk

=

θ

t
, ()

and

θk ≤ 
k + 

, ∀k ≥ . ()

Algorithm . (PALM-IPR for Problem ())
Step . Input the parameters β = θ = ,γ ∈ (, ), the tolerance ε > . Initialize x ∈

Rn, z ∈Rn,λ ∈Rm and G ∈Rn×n. Set k := .
Step . Compute

zk+ = arg min
x∈Rn

{
f (x) +

βk



∥∥∥∥Ax – b +
λk

βk

∥∥∥∥



+
βk


∥∥x – zk∥∥

Gk

}
; ()

xk+ = ( – θk)xk + θkzk+; ()

λk+ = λk + γβk
(
Azk+ – b

)
; ()

θk+ =
–θ

k +
√

θ
k + θ

k


; ()

βk+ =


θk+
. ()

Step . If ‖xk – xk+‖ + ‖λk – λk+‖ ≤ ε, then stop; otherwise, choose Gk+ ∈ Rn×n, and
set k := k + . Go to Step .

To prove the global convergence of PALM-IPR, we need to impose some restrictions on
the proximal matrix Gk , which is stated as follows.

Assumption . The proximal matrix Gk is set as Gk = θ
k (Dk – ( – α)A�A), where α ∈

( +γ

 , ) and the matrix Dk � , ∀k ≥ .

Remark . The proximal matrix Gk maybe indefinite. For example, if we set Dk = , then
Gk = –( – α)θ

k A�A, which is indefinite when A is full-column rank.

Using the first-order optimality condition of the subproblem of PALM-IPR, we can de-
duce the following one-iteration result.
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Lemma . Let {(xk , yk , zk ,λk)}k≥ be the sequence generated by PALM-IPR. For any x ∈
Rn, it holds that

 – θk+

θ
k+

(
f
(
xk+) – f (x)

)
–


γ θk

〈
λk+ + (γ – )λk , Ax – Azk+〉

≤  – θk

θ
k

(
f
(
xk) – f (x)

)
+


θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)
. ()

Proof From the first-order optimality condition for z-related subproblem (), we have

 ∈ ∂f
(
zk+) + βkA�

(
Azk+ – b +


βk

λk
)

+ βkGk
(
zk+ – zk)

= ∂f
(
zk+) + A�λ̃k + βkGk

(
zk+ – zk), ()

where λ̃k = λk + βk(Azk+ – b). Then, from the convexity of f (·) and (), we have

f (x) – f
(
zk+) ≥ –

〈
A�λ̃k + βkGk

(
zk+ – zk), x – zk+〉. ()

From () and the convexity of f (·) again, we thus get

f
(
xk+) ≤ ( – θk)f

(
xk) + θkf

(
zk+)

≤ ( – θk)f
(
xk) + θk

(
f (x) +

〈
A�λ̃k + βkGk

(
zk+ – zk), x – zk+〉),

where the second inequality follows from (). Then, by rearranging terms of the above
inequality, we arrive at

f
(
xk+) – f (x) – θk

〈
A�λ̃k , x – zk+〉

≤ ( – θk)
(
f
(
xk) – f (x)

)
+

〈
Gk

(
zk+ – zk), x – zk+〉

≤ ( – θk)
(
f
(
xk) – f (x)

)
+



(∥∥zk – x

∥∥
Gk

–
∥∥zk+ – x

∥∥
Gk

–
∥∥zk+ – zk∥∥

Gk

)
,

where the second inequality uses (), and the third inequality comes from identity ().
Dividing both sides of the above inequality by θ

k , we get


θ

k
f
(
xk+) – f (x) –


θk

〈
A�λ̃k , x – zk+〉

≤  – θk

θ
k

(
f
(
xk) – f (x)

)
+


θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)
.

From (), we have

λ̃k = λk +
λk+ – λk

γ
=

λk+ + (γ – )λk

γ
.

Substituting this into the above inequality and using () lead to (). This completes the
proof. �
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Lemma . Let {(xk , yk , zk ,λk)}k≥ be the sequence generated by PALM-IPR. For any
(x,λ) ∈Rm+n with Ax = b, it holds that

 – θk+

θ
k+

(
f
(
xk+) – f (x)

)
–

 – θk

θ
k

(
f
(
xk) – f (x)

)
+


θk

〈
λ, Azk+ – b

〉

≤ 
θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)

+


γ 

[
γ
(∥∥λk – λ

∥∥ –
∥∥λk+ – λ

∥∥) – ( – γ )
∥∥λk+ – λk∥∥]. ()

Proof Adding the term 
θk

〈λ, Azk+ – b〉 to both sides of (), we get

 – θk+

θ
k+

(
f
(
xk+) – f (x)

)
–

 – θk

θ
k

(
f
(
xk) – f (x)

)
+


θk

〈
λ, Azk+ – b

〉

≤ 
θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)

+

θk

〈
λ –

λk+ + (γ – )λk

γ
, Azk+ – b

〉
. ()

Now, let us deal with the term 〈λ – λk++(γ –)λk

γ
, Azk+ – b〉. By (), we have

〈
λ –

λk+ + (γ – )λk

γ
, Azk+ – b

〉

=


γ βk

〈
γ λ – λk+ – (γ – )λk ,λk+ – λk 〉

=


γ βk

(
γ
〈
λ – λk ,λk+ – λk 〉 –

∥∥λk+ – λk∥∥)

=


γ βk

[
γ
(∥∥λk – λ

∥∥ –
∥∥λk+ – λ

∥∥) – ( – γ )
∥∥λk+ – λk∥∥].

Substituting the above equality into () and using (), we get () immediately. This
completes the proof. �

Let us further deal with the term ‖zk – x‖
Gk

– ‖zk+ – x‖
Gk

– ‖zk+ – zk‖
Gk

on the right-
hand side of ().

Lemma . Let {(xk , yk , zk ,λk)}k≥ be the sequence generated by PALM-IPR. For any
(x,λ) ∈Rm+n with Ax = b, it holds that


θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)

≤ ∥∥zk – x
∥∥

Dk
–

∥∥zk+ – x
∥∥

Dk
–

∥∥zk+ – zk∥∥
Dk

+ ( – α)
(∥∥Azk – b

∥∥ –
∥∥Azk+ – b

∥∥) + ( – α)
∥∥Azk+ – b

∥∥. ()

Proof By Assumption ., we have


θ

k

(∥∥zk – x
∥∥

Gk
–

∥∥zk+ – x
∥∥

Gk
–

∥∥zk+ – zk∥∥
Gk

)
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=
∥∥zk – x

∥∥
Dk

–
∥∥zk+ – x

∥∥
Dk

–
∥∥zk+ – zk∥∥

Dk

+ ( – α)
(
–
∥∥Azk – Ax

∥∥ +
∥∥Azk+ – Ax

∥∥ +
∥∥Azk – Azk+∥∥)

=
∥∥zk – x

∥∥
Dk

–
∥∥zk+ – x

∥∥
Dk

–
∥∥zk+ – zk∥∥

Dk

+ ( – α)
(
–
∥∥Azk – b

∥∥ +
∥∥Azk+ – b

∥∥ +
∥∥(

Azk – b
)

–
(
Azk+ – b

)∥∥).

Using the inequality ‖ξ – η‖ ≤ ‖ξ‖ + ‖η‖ with ξ = Azk – b and η = Azk+ – b, we get

∥∥(
Azk – b

)
–

(
Azk+ – b

)∥∥ ≤ 
∥∥Azk – b

∥∥ + 
∥∥Azk+ – b

∥∥.

Substituting this inequality into the right-hand side of the above equality, we obtain asser-
tion () immediately. This completes the proof. �

Then, from () and (), we have

 – θk+

θ
k+

(
f
(
xk+) – f (x)

)
–

 – θk

θ
k

(
f
(
xk) – f (x)

)
+


θk

〈
λ, Azk+ – b

〉

≤ 

[∥∥zk – x

∥∥
Dk

–
∥∥zk+ – x

∥∥
Dk

–
∥∥zk+ – zk∥∥

Dk
+( – α)

(∥∥Azk – b
∥∥–

∥∥Azk+ – b
∥∥)]

+ ( – α)
∥∥Azk+ – b

∥∥

+


γ 

[
γ
(∥∥λk – λ

∥∥ –
∥∥λk+ – λ

∥∥) – ( – γ )
∥∥λk+ – λk∥∥]

≤ 
θ

k

[∥∥zk – x
∥∥

Dk
–

∥∥zk+ – x
∥∥

Dk
–

∥∥zk+ – zk∥∥
Dk

+ ( – α)
(∥∥Azk – b

∥∥ –
∥∥Azk+ – b

∥∥)]

+


γ

(∥∥λk – λ
∥∥ –

∥∥λk+ – λ
∥∥) +

 + γ – α

γ 

∥∥λk+ – λk∥∥, ()

where the second inequality comes from () and the fact βk ≥ .
Based on (), we are going to prove the worst-case O(/t) convergence rate of PALM-

IPR in an ergodic sense.

Theorem . Let {(xk , yk , zk ,λk)}k≥ be the sequence generated by PALM-IPR. Then

f
(
xt+) – f

(
x∗) +

〈
A�λ∗, xt+ – x∗〉 +

α –  – γ


∥∥Axt+ – b

∥∥

≤ 
(t + )

(∥∥z – x∗∥∥
D

+ ( – α)
∥∥Az – b

∥∥) +


γ (t + )

∥∥λ – λ∗∥∥.

Proof Setting x = x∗ and λ = λ∗ in (), we get

 – θk+

θ
k+

(
f
(
xk+) – f

(
x∗)) –

 – θk

θ
k

(
f
(
xk) – f

(
x∗)) +


θk

〈
λ∗, Azk+ – b

〉

≤ 

[∥∥zk – x∗∥∥

Dk
–

∥∥zk+ – x∗∥∥
Dk

–
∥∥zk+ – zk∥∥

Dk

+ ( – α)
(∥∥Azk – b

∥∥ –
∥∥Azk+ – b

∥∥)]
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+


γ

(∥∥λk – λ∗∥∥ –
∥∥λk+ – λ∗∥∥) +

 + γ – α

γ 

∥∥λk+ – λk∥∥.

Summing the above inequality over k = , , . . . , t and by (), we have

 – θt+

θ
t+

(
f
(
xt+) – f

(
x∗)) +

t∑

k=


θk

〈
λ∗, Azk+ – b

〉

≤ 

(∥∥z – x∗∥∥

D
+ ( – α)

∥∥Az – b
∥∥) +


γ

∥∥λ – λ∗∥∥

+
 + γ – α

θ
k

t∑

k=

∥∥Azk+ – b
∥∥

≤ 

(∥∥z – x∗∥∥

D
+ ( – α)

∥∥Az – b
∥∥) +


γ

∥∥λ – λ∗∥∥

+
 + γ – α

θk

t∑

k=

∥∥Azk+ – b
∥∥, ()

where the second inequality follows from θk ≤  and α ∈ ( +γ

 , ). By equations (), ()
of [], we have

t∑

k=

zk+

θk
=


θ

t
xt+,

and

t∑

k=


θk

∥∥Azk+ – b
∥∥ ≥ 

θ
t

∥∥Axt+ – b
∥∥.

Substituting the above two relationships into () and using (), we get

 – θt+

θ
t+

(
f
(
xt+) – f

(
x∗)) +


θ

t

〈
λ∗, Axt+ – b

〉
+

α –  – γ

θ
t

∥∥Axt+ – b
∥∥

≤ 

(∥∥z – x∗∥∥

D
+ ( – α)

∥∥Az – b
∥∥) +


γ

∥∥λ – λ∗∥∥.

Then multiplying two sides of the above inequality by θ
t and using () lead to

f
(
xt+) – f

(
x∗) +

〈
λ∗, Axt+ – b

〉
+

α –  – γ


∥∥Axt+ – b

∥∥

≤ θ
t


(∥∥z – x∗∥∥
D

+ ( – α)
∥∥Az – b

∥∥) +
θ

t
γ

∥∥λ – λ∗∥∥

≤ 
(t + )

(∥∥z – x∗∥∥
D

+ ( – α)
∥∥Az – b

∥∥) +


γ (t + )

∥∥λ – λ∗∥∥,

where the second inequality follows from (). The above inequality with Ax∗ = b results
in the conclusion of the theorem. The proof is completed. �
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4 Numerical results
In this section, we apply PALM-IPR to some practical applications and report the numer-
ical results. All the codes were written by Matlab Ra and conducted on ThinkPad
notebook with GB of memory.

Problem . (Quadratic programming) Firstly, let us test PALM-IPR on equality con-
strained quadratic programming (ECQP) [] to validate its stability:

min F(x) =



x�Qx + c�x, s.t. Ax = b.

We set the problem size to m = , n =  and generate A ∈Rm×n, b, c and Q ∈Rn×n ac-
cording to the standard Gaussian distribution. We compare PALM-IPR with the classical
ALM with β = . For PALM-IPR, we set Gk =  for simplicity. We have tested the experi-
ment sixty times, and the numerical results are listed in Table , in which ‘NC’ means the
number of convergence; ‘ND’ means the number of divergence and ‘Ratio’ means the ratio
of succession. From Table , we can see that PALM-IPR performs much more stably than
the classical ALM.

Problem . (Compressive sensing: the linearly constrained � – � minimization prob-
lem ()) Now, let us test PALM-IPR on the compressive sensing to validate its accel-
eration. For this problem, we firstly elaborate on how to solve subproblem () result-
ing from PALM-IPR. Due to the existence of the augmented term ‖Ax – b‖, we cannot
get the closed-form solution if we do not attach the proximal term 

‖x – zk‖
Gk

. In this
case, we have to solve the subproblem inexactly, which is often time-consuming. There-
fore, we choose the proximal matrix Gk in () as Gk = θ

k (Dk – ( – α)A�A), in which
Dk = 

βkθ
k

Pk + ( – α)A�A, Pk = τkIn – βkA�A and τk > βk‖A�A‖, and subproblem () can
be written as

zk+ = arg min
x∈Rn

{
f (x) +

βk



∥∥∥∥Ax – b +
λk

βk

∥∥∥∥



+


∥∥x – zk∥∥

Pk

}
,

which is equivalent to

zk+ = arg min
x∈Rn

{
‖x‖ +

 + μτk

μ

∥∥∥∥x –
μ

 + μτk

(
Pkzk – A�λk + βkA�b

)∥∥∥∥

}
,

and has a closed-form solution as follows:

zk+ = shrink,
(
ak ,μ/( + μτk)

) .= sign
(
ak) · max

{
,

∣∣ak∣∣ – μ/( + μτk)
}

,

in which ak = μ

+μτk
(Pkzk –A�λk +βkA�b). Note that all computations are component-wise.

Table 1 Comparison of PALM-IPR with ALM

Method NC ND Ratio

PALM-IPR 59 1 98.33%
ALM 36 24 60.00%
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Table 2 Comparison of PALM-IPR with PALM-SDPR and PALM-PIPR

n a b IPR SDPR PIPR
Iter RelErr Iter RelErr Iter RelErr

500 0.2 0.2 62.3 0.0488 93.2 0.0473 98.6 0.0491
0.2 0.1 20.5 0.0482 73.6 0.0440 69.2 0.0443

1,000 0.2 0.2 91.9 0.0492 80.0 0.0476 84.3 0.0484
0.2 0.1 20.6 0.0462 83.3 0.0469 79.9 0.0450

1,500 0.2 0.2 66.4 0.0493 77.5 0.0482 87.5 0.0485
0.2 0.1 20.3 0.0471 76.6 0.0459 75.9 0.0453

2,000 0.2 0.2 44.7 0.0492 58.3 0.0491 54.0 0.0488
0.2 0.1 19.1 0.0474 85.2 0.0481 86.5 0.0459

3,000 0.2 0.2 46.3 0.0488 86.8 0.0480 93.2 0.0477
0.2 0.1 20.2 0.0474 69.3 0.0472 64.6 0.0496

In this experiment, we set m = floor(a × n) and k = floor(b × m) with n ∈
{, ,, ,, ,, ,}, where k is the number of random nonzero elements
contained in the original signal. The sensing matrix A is generated by the following Mat-
lab scripts: Ā = randn(m, n), [Q, R] = qr(Ā′, ); A = Q′, and the nonzero entries of the
true signal x∗, whose values are sampled from the standard Gaussian: x∗ = zeros(n, );
p = randperm(n); x∗(p( : k)) = randn(k, ), are selected at random. The observed signal
b is generated by b = R′ \ Ax∗. In addition, we set μ = , γ = .. In this experiment, we
set the proximal parameter τk = βk‖A�A‖. Furthermore, the stopping criterion is

RelErr =
‖xk – x∗‖

‖x∗‖ ≤ %,

or the number of iterations exceeds , where xk is the iterate generated by PALM-IPR.
Furthermore, all initial points are set as x = A�b,λ = . For comparison, we also give the
numerical results of PALM-SDPR [] and the proximal PALM with positive-indefinite
proximal regularization (PALM-PIPR) [], and the proximal matrix is set to be G = τ In –
βA�A in PALM-SDPR and G = .τ In – βA�A in PALM-PIPR, and τ = .β‖A�A‖, β =
mean(abs(b)). Furthermore, we set γ =  in PALM-PIPR. Since the computational load
of all three methods are almost the same at each iteration, we only list the number of
iterations (‘Iter’), the relative error (‘RelErr’) when three methods achieve the stopping
criterion. The numerical results are listed in Table , and in the view of statistics, all the
results are the average of  runs for each pair (n, a, b).

Numerical results in Table  indicate that: () All methods have succeeded in solving
Problem () for all the scenarios; () The new method PALM-IPR outperforms PALM-
SDPR and PALM-PIPR by taking a fewer number of iterations to converge except (n, a, b) =
(,, ., .).

5 Conclusions
In this paper, an accelerated augmented proximal Lagrangian method with indefinite prox-
imal regularization (PALM-IPR) for linearly constrained convex programming is pro-
posed. Under mild conditions, we have established the worst-case O(/t) convergence
rate in a non-ergodic sense of PALM-IPR. Two sets of numerical results, which illustrate
that PALM-IPR performs better than some state-of-the-art solvers, are given.
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Similar to our proposed method, the methods in [, ] also have the worst-case
O(/t) convergence rate in a non-ergodic sense, but they often have to solve a difficult
subproblem at each iteration, and some inner iteration has to be executed. A prominent
characteristic of the methods in [, ] is that the parameter β can be any positive con-
stant, but the parameter β in PALM-IPR changes with respect to the iteration counter k,
and it can actually go to infinity as k → ∞. In practice, we often observe that larger β

usually induces to slower convergence. Therefore, the method with proximal term, faster
convergence rate and constant parameter β deserves further research.

Acknowledgements
The authors gratefully acknowledge the valuable comments of the anonymous reviewers, and great thanks go to Prof.
Yiju Wang of the School of Management, Qufu Normal University for the helpful discussions on this paper.

Funding
This work is supported by the National Natural Science Foundation of China (No. 11671228, 11601475), the First Class
Discipline of Zhejiang-A (Zhejiang University of Finance and Economics-Statistics) and the Educational Reform Project of
Zaozhuang University (No. 1021402).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors conceived the study, participated in its design and read and approved the final manuscript.

Author details
1School of Management, Qufu Normal University, Shandong, 276826, P.R. China. 2School of Mathematics and Statistics,
Zaozhuang University, Shandong, 277160, P.R. China. 3School of Data Sciences, Zhejiang University of Finance and
Economics, Zhejiang, 310018, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 September 2017 Accepted: 12 October 2017

References
1. Boyd, S, Parikh, N, Chu, E, Peleato, B, Eckstein, J: Distributed optimization and statistical learning via the alternating

direction method of multipliers. Found. Trends Mach. Learn. 3, 1-122 (2011)
2. He, BS, Yuan, XM, Zhang, WX: A customized proximal point algorithm for convex minimization with linear constraints.

Comput. Optim. Appl. 56, 559-572 (2013)
3. Ma, F, Ni, MF: A class of customized proximal point algorithms for linearly constrained convex optimization. Comput.

Appl. Math. (2016). doi:10.1007/s40314-016-0371-3
4. Sun, HC, Sun, M, Wang, YJ: Proximal ADMMwith larger step size for two-block separable convex programming and its

application to the correlation matrices calibrating problems. J. Nonlinear Sci. Appl. 10(9), 5038-5051 (2017).
doi:10.22436/jnsa.010.09.40

5. Liu, J, Duan, YR, Sun, M: A symmetric version of the generalized alternating direction method of multipliers for
two-block separable convex programming. J. Inequal. Appl. 2017, Article ID 129 (2017)

6. Sun, HC, Tian, MY, Sun, M: The symmetric ADMMwith indefinite proximal regularization and its application. J. Inequal.
Appl. 2017, Article ID 172 (2017)

7. Sun, HC, Liu, J, Sun, M: A proximal fully parallel splitting method for stable principal component pursuit. Math. Probl.
Eng. (2017, in press)

8. Sun, M, Sun, HC, Wang, YJ: Two proximal splitting methods for multi-block separable programming with applications
to stable principal component pursuit. J. Appl. Math. Comput. (2017). doi:10.1007/s12190-017-1080-9

9. Nesterov, YE: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103(1), 127-152 (2005).
doi:10.1007/s10107-004-0552-5

10. Hestenes, MR: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303-320 (1969)
11. Powell, MJ: A method for non-linear constraints in minimization problems. In: Fletcher, R (ed.) Optimization, pp.

283-298. Academic Press, San Diego (1969)
12. He, BS, Liao, LZ, Han, DR, Yang, H: A new inexact alternating directions method for monotone variational inequalities.

Math. Program. 92(1), 103-118 (2002)
13. He, BS, Yuan, XM: On theO(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM

J. Numer. Anal. 50(2), 700-709 (2012)
14. Yang, JF, Yuan, XM: Linearized augmented Lagrangian and alternating direction methods for nuclear norm

minimization. Math. Comput. 82(281), 301-329 (2013)
15. Wang, YJ, Zhou, GL, Caccetta, L, Liu, WQ: An alternative Lagrange-dual based algorithm for sparse signal

reconstruction. IEEE Trans. Signal Process. 59, 1895-1901 (2011)

http://dx.doi.org/10.1007/s40314-016-0371-3
http://dx.doi.org/10.22436/jnsa.010.09.40
http://dx.doi.org/10.1007/s12190-017-1080-9
http://dx.doi.org/10.1007/s10107-004-0552-5


Sun and Liu Journal of Inequalities and Applications  (2017) 2017:263 Page 14 of 14

16. Qiu, HN, Chen, XM, Liu, WQ, Zhou, GL, Wang, YJ, Lai, JH: A fast �1-solver and its applications to robust face
recognition. J. Ind. Manag. Optim. 8, 163-178 (2012)

17. Wang, YJ, Liu, WQ, Caccetta, L, Zhou, G: Parameter selection for nonnegative �1 matrix/tensor sparse decomposition.
Oper. Res. Lett. 43, 423-426 (2015)

18. Sun, M, Wang, YJ, Liu, J: Generalized Peaceman-Rachford splitting method for multiple-block separable convex
programming with applications to robust PCA. Calcolo 54(1), 77-94 (2017)

19. Li, M, Sun, DF, Toh, KC: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite
optimization. SIAM J. Optim. 26(2), 922-950 (2016)

20. Fazel, M, Pong, TK, Sun, DF, Tseng, P: Hankel matrix rank minimization with applications to system identification and
realization. SIAM J. Matrix Anal. Appl. 34, 946-977 (2013)

21. He, BS, Ma, F, Yuan, XM: Linearized alternating direction method of multipliers via positive-indefinite proximal
regularization for convex programming. Unpublished manuscript (2016)

22. He, BS, Yuan, XM: Improving an ADMM-like splitting method via positive-indefinite proximal regularization for
three-block separable convex minimization. Unpublished manuscript (2016)

23. He, BS, Ma, F, Yuan, XM: Positive-indefinite proximal augmented Lagrangian method and its application to full
Jacobian splitting for multi-block separable convex minimization problems. Unpublished manuscript (2016)

24. Sun, M, Liu, J: The convergence rate of the proximal alternating direction method of multipliers with indefinite
proximal regularization. J. Inequal. Appl. 2017, Article ID 19 (2017)

25. He, BS, Yuan, XM: On the acceleration of augmented Lagrangian method for linearly constrained optimization.
Unpublished manuscript (2010)

26. Ke, YF, Ma, CF: An accelerated augmented Lagrangian method for linearly constrained convex programming with the
rate of convergenceO(1/k2). Appl. Math. J. Chin. Univ. 32(1), 117-126 (2017). doi:10.1007/s11766-017-3381-z

27. Lu, CY, Li, H, Lin, ZC, Yan, SC: Fast proximal linearized alternating direction method of multiplier with parallel splitting.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16), pp. 739-745. AAAI Press, Menlo
Park (2016)

28. Lin, ZC, Liu, RS, Li, H: Linearized alternating direction method with parallel splitting and adaptive penalty for
separable convex programs in machine learning. Mach. Learn. 99(2), 287-325 (2015)

29. Xu, YY: Accelerated first-order primal-dual proximal methods for linearly constrained composite convex
programming. Unpublished manuscript (2016)

30. Kang, M, Yun, S, Woo, H, Kang, M: Accelerated Bregman method for linearly constrained �1 – �2 minimization. J. Sci.
Comput. 56, 515-534 (2013)

http://dx.doi.org/10.1007/s11766-017-3381-z

	An accelerated proximal augmented Lagrangian method and its application in compressive sensing
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	PALM-IPR and its convergence rate
	Numerical results
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


