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Abstract
In this paper, we study the complete convergence and complete moment
convergence for weighted sums of extended negatively dependent (END) random
variables under sub-linear expectations space with the condition of
CV[|X|pl(|X|1/α )] <∞, further Ê(|X|pl(|X|1/α )) ≤ CV[|X|pl(|X|1/α )] <∞, 1 < p < 2 (l(x) > 0
is a slow varying and monotone nondecreasing function). As an application, the
Baum-Katz type result for weighted sums of extended negatively dependent random
variables is established under sub-linear expectations space. The results obtained in
the article are the extensions of the complete convergence and complete moment
convergence under classical linear expectation space.
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1 Introduction
Additivity has been generally regarded as a fairly natural assumption, so the classical prob-
ability theorems have always been considered under additive probabilities and the lin-
ear expectations. However, many uncertain phenomena do not satisfy this assumption.
So Peng [–] introduced the notions of sub-linear expectations to extend the classical
linear expectations. He also established the general theoretical framework of the sub-
linear expectation space. The theorems of sub-linear expectations are widely used to as-
sess financial riskiness under uncertainty. For complete convergence and complete mo-
ment convergence, there are few reports under sub-linear expectations. This paper aims
to obtain the complete convergence and complete moment convergence under sub-linear
expectation space with the condition of CV[|X|pl(|X|/α)] < ∞, further Ê(|X|pl(|X|/α)) ≤
CV[|X|pl(|X|/α)] < ∞,  < p < . In addition, the results and conditions of this paper in-
clude a slow varying and monotone nondecreasing function, so the theorems are more
generic than the traditional complete convergence. In a word, it is meaningful that this
paper extends the complete convergence and complete moment convergence under sub-
linear expectation.
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Sub-linear expectations generate lots of interesting properties which are unlike those
in linear expectations, and the issues in sub-linear expectations are more challenging, so
lots of scholars have attached importance to them. Numbers of results have been estab-
lished, for example, Peng [–] gained a weak law of large numbers and a central limit
theorem under sub-linear expectation space. Chen [] gained the law of large numbers for
independent identically distributed random variables with the condition of Ê(|X|+α) < ∞.
The powerful tools as the moment inequalities and Kolmogorov’s exponential inequalities
were established by Zhang [–]. He also obtained the Hartman-Wintner’s law of iterated
logarithm and Kolmogorov’s strong law of large numbers for identically distributed and
extended negatively dependent random variables. Wu and Chen [] also researched the
law of the iterated logarithm, and Cheng [] studied the strong law of larger number
with a general moment condition supi≥ Ê[|Xi|ψ(|Xi|)] < ∞, and so on. Many powerful in-
equations and conventional methods for linear expectation and probabilities are no longer
valid, the study of limit theorems under sub-linear expectation becomes much more chal-
lenging.

The complete convergence has a relatively complete development in probability limit
theory. The notion of complete convergence was raised by Hsu and Robbins [], and
Chow [] established complete moment convergence. The complete moment conver-
gence is a more general version of the complete convergence. Lots of results on com-
plete convergence and complete moment convergence for different sequences have been
found under classical probability space. For example, Shen et al. [], Wang et al. []
and Wu and Jiang [], and so on. Some recent papers had new results about complete
convergence and complete moment convergence. For instance, Wang et al. [] gained
general results of complete convergence and complete moment convergence for weighted
sums of some class of random variables, and Wang et al. [] researched complete con-
vergence and complete moment convergence for a class of random variables, and so on.
In addition, the theorems of this paper are the extensions of the literature [] under sub-
linear expectation space. And we prove the theorems in this paper with the condition of
CV[|X|pl(|X|/α)] < ∞, further Ê(|X|pl(|X|/α)) ≤ CV[|X|pl(|X|/α)] < ∞,  < p <  (l(x) > 
is a slow varying function).

In the next section, we generally introduce some basic notations and concepts, related
properties under sub-linear expectations and preliminary lemmas that are useful to prove
the main theorems. In Section , the complete convergence and complete moment con-
vergence under sub-linear expectation space are established. The proofs of these theorems
are stated in the last section.

2 Basic settings
The study of this paper uses the framework and notations which are established by Peng
[–]. So, we omit the definitions of sub-linear expectation (Ê), capacity (V, v), countably
sub-additive and Choquet integrals/expectations (CV, Cv) and so on.

Definition . (Peng [, ], Zhang [])
(i) (Identical distribution) Assume that a space X and a space X are two

n-dimensional random vectors defined severally in the sub-linear expectation space
(�,H, Ê) and (�,H, Ê). They are named identically distributed if

Ê
[
ϕ(X)

]
= Ê

[
ϕ(X)

]
, ∀ϕ ∈ Cl,Lip(Rn),
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whenever the sub-expectations are finite. A sequence {Xn, n ≥ } of random
variables is named to be identically distributed if, for each i ≥ , Xi and X are
identically distributed.

(ii) (Extended negatively dependent) A sequence of random variables {Xn, n ≥ } is
named to be upper (resp. lower) extended negatively dependent if there is some
dominating constant K ≥  such that

Ê

( n∏

i=

gi(Xi)

)

≤ K
n∏

i=

Ê
(
gi(Xi)

)
, ∀n ≥ .

Whenever the nonnegative functions gi(Xi) ∈ Cb,Lip(R), i = , , . . . , are all
nondecreasing (resp. all nonincreasing). They are named extended negatively
dependent if they are both upper extended negatively dependent and lower
extended negatively dependent.

It is distinct that if {Xn, n ≥ } is a sequence of extended independent random variables
and f(x), f(x), . . . ∈ Cl,Lip(R), then {fn(Xn), n ≥ } is also a sequence of extended dependent
random variables with K = ; if {Xn, n ≥ } is a sequence of upper extended negatively de-
pendent random variables and f(x), f(x), . . . ∈ Cl,Lip(R) are all nondecreasing (resp. all
nonincreasing) functions, then {fn(Xn); n ≥ } is also a sequence of upper (resp. lower)
extended negatively dependent random variables. It shall be noted that the extended neg-
ative dependence of {Xn, n ≥ } under Ê does not imply the extended negative dependence
under ε̂.

In the following, let {Xn, n ≥ } be a sequence of random variables in (�,H, Ê) and
∑n

i= Xi = Sn. The symbol C is on behalf of a generic positive constant which may differ
from one place to another. Let an � bn denote that there exists a constant C >  such
that an ≤ Cbn for sufficiently large n, I(·) denotes an indicator function, ax ∼ bx denotes
limx→∞ ax

bx
= . Also, let an ≈ bn denote that there exist constants c >  and c >  such

that can ≤ bn ≤ can for sufficiently large n.
The following three lemmas are needed in the proofs of our theorems.

Lemma . ([]) l(x) is a slow varying function if and only if

l(x) = c(x) exp

{∫ x



f (u)
u

du
}

, x > , (.)

where c(x) ≥ , limx→∞ c(x) = c > , and limx→∞ f (x) = .

Lemma . Suppose X ∈H, p > , α > , and l(x) is a slow varying function.
(i) Then, for ∀c > ,

CV

[|X|pl
(|X|/α)]

< ∞ ⇔
∞∑

n=

nαp–l(n)V
(|X| > cnα

)
< ∞. (.)

(ii) If CV[|X|pl(|X|/α)] < ∞, then for any θ >  and c > ,

∞∑

k=

θ kαpl
(
θ k)

V
(|X| > cθ kα

)
< ∞. (.)
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Proof (i) By Lemma ., we can express l(x) as equality (.), and f (u) →  as u → ∞,
c(x) → c as x → ∞. Let Z(x) = |x|pl(|x|/α), Z–(x) be the inverse function of Z(x), l(x) is a
slow varying function and for any c > , we have

CV

[|X|pl
(|X|/α)]

=
∫ ∞


V

(|X|pl
(|X|/α)

> x
)

dx

=
∫ ∞


V

(|X| > Z–(x) := cyα
)

dx

=
∫ ∞


V

(|X| > cyα
)(

cαpyαp–l(cy) + yαp–l(cy)cf (y)
)

dy

∼
∫ ∞


V

(|X| > cyα
)
αpyαp–l(y) dy.

So,

CV

[|X|pl
(|X|/α)]

< ∞ ⇔
∞∑

n=

nαp–l(n)V
(|X| > cnα

)
< ∞.

(ii) By the proof of (i), we can imply that for any θ > 

∞ >
∞∑

n=

nαp–l(n)V
(|X| > Cnα

)

≥ C
∞∑

k=

∑

θk–≤n<θk

θ k(αp–)l
(
θ k)

V
(|X| > Cθ kα

)

≈
∞∑

k=

θ kαpl
(
θ k)

V
(|X| > Cθ kα

)
. �

Lemma . (Zhang [] (Rosenthal’s inequalities)) Let {Xn, n ≥ } be a sequence of upper
extended negatively dependent random variables in (�,H, Ê). And Ê[Xk] ≤ , k = , . . . , n.
Then

V(Sn ≥ x) ≤ ( + Ke)
∑n

k= Ê(Xk)

x , ∀x ≥ . (.)

3 Main results
Theorem . Let  < p < , α > , αp > , and {Xn, n ≥ } be a sequence of END and iden-
tically distributed random variables under sub-linear expectations. Let l(x) >  be a slow
varying and monotone nondecreasing function. And {ani,  ≤ i ≤ n, n ≥ } is an array of real
numbers such that

n∑

i=

a
ni = O(n). (.)

If

CV

[|X|pl
(|X|/α)]

< ∞, (.)
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further, for  < p < ,

Ê
(|X|pl

(|X|/α)) ≤ CV

[|X|pl
(|X|/α)]

. (.)

Then, for any ε > ,

∞∑

n=

nαp–l(n)V

( n∑

i=

ani(Xi – bi) > εnα

)

< ∞, (.)

where bi =  if p ≤ , and bi = ÊXi if p > ;

∞∑

n=

nαp–l(n)V

( n∑

i=

ani(Xi – bi) < –εnα

)

< ∞, (.)

where bi =  if p ≤ , and bi = ε̂Xi if p > .

In particular, if ÊXi = ε̂Xi, then

∞∑

n=

nαp–l(n)V

(∣∣
∣∣
∣

n∑

i=

ani(Xi – bi)

∣∣
∣∣
∣

> εnα

)

< ∞, (.)

where bi =  if p ≤ , and bi = ÊXi = ε̂Xi if p > .

Theorem . Suppose that the conditions of Theorem . hold, and ÊXi = ε̂Xi = bi,
 < p < , then, for any ε > ,

∞∑

n=

nαp––αl(n)CV

[∣∣
∣∣
∣

n∑

i=

ani(Xi – bi)

∣∣
∣∣
∣

– εnα

]+

< ∞. (.)

Theorem . Suppose that / < α ≤  and other conditions of Theorem . hold. Let
l(x) >  be a monotone nondecreasing function. Assume further that {ani,  ≤ i ≤ n, n ≥ }
is an array of real numbers such that (.) holds and ÊXi = ε̂Xi = bi. If

Ê
(|X|/αl

(|X|/α)) ≤ CV

[|X|/αl
(|X|/α)]

< ∞, (.)

then, for ∀ε > ,

∞∑

n=

l(n)
n

V

( n∑

i=

ani(Xi – bi) > εnα

)

< ∞. (.)

4 Proof

Proof of Theorem . Without loss of generality, we can assume that ÊXi = , when p > .
We just need to prove (.). Because of considering {–Xn; n ≥ } instead of {Xn; n ≥ } in
(.), we can obtain (.). Noting that ani ≥ , without loss of generality, we can assume
that

n∑

i=

a
ni ≤ Cn, (.)
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and ani ≥  for all  ≤ i ≤ n and n ≥ . It follows by (.) and Hölder’s inequality that

n∑

i=

ani ≤
(

n
n∑

i=

a
ni

)/

≤ Cn. (.)

For fixed n ≥ , denote for  ≤ i ≤ n that

X(n)
i = –nαI

(
Xi < –nα

)
+ XiI

(|Xi| ≤ nα
)

+ nαI
(
Xi > nα

)
,

T (n) = n–α

k∑

i=

ani
(
X(n)

i – ÊX(n)
i

)
.

It is easily checked that for ∀ε > ,
( n∑

i=

aniXi > εnα

)

⊂
n⋃

i=

(|Xi| > nα
) ∪

( n∑

i=

aniX(n)
i > εnα

)

,

which can imply that

∞∑

n=

nαp–l(n)V

( n∑

i=

aniXi > εnα

)

≤
∞∑

n=

nαp–l(n)
n∑

i=

V
(|Xi| > nα

)

+
∞∑

n=

nαp–l(n)V

(

T (n) > ε –

∣∣
∣∣
∣
n–α

n∑

i=

aniÊX(n)
i

∣∣
∣∣
∣

)

:= I + I.

For  < μ < , let g(x) be a decreasing function and g(x) ∈ Cl,Lip(R),  ≤ g(x) ≤  for all x
and g(x) =  if |x| ≤ μ, g(x) =  if |x| > . Then

I
(|x| ≤ μ

) ≤ g(x) ≤ I
(|x| ≤ 

)
, I

(|x| ≥ 
) ≤  – g(x) ≤ I

(|x| ≥ μ
)
. (.)

In order to prove (.), it suffices to show I < ∞ and I < ∞. By Lemma .(i) and identi-
cally distributed random variables, we can get that

I ≤ C
∞∑

n=

nαp–l(n)
n∑

i=

Ê

(
 – g

(
Xi

nα

))

≤ C
∞∑

n=

nαp–l(n)Ê
(

 – g
(

X
nα

))

≤ C
∞∑

n=

nαp–l(n)V
(|X| > μnα

)
< ∞.

In the following, we prove that I < ∞. First, we prove that
∣
∣∣
∣∣
n–α

n∑

i=

aniÊX(n)
i

∣
∣∣
∣∣
→  as n → ∞. (.)
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Case :  < p ≤ .
For any r > , by the Cr inequality and (.),

∣
∣X(n)∣∣r � |X|rI

(|X| ≤ nα
)

+ nrαI
(|X| > nα

) ≤ |X|rg
(

μX
nα

)
+ nrα

(
 – g

(
X
nα

))
,

Ê
∣
∣X(n)∣∣r � Ê

[
|X|rg

(
μX
nα

)]
+ nrα

Ê

[
 – g

(
X
nα

)]

≤ Ê

[
|X|rg

(
μX
nα

)]
+ nrα

V
(|X| > μnα

)
. (.)

So, by (.) we can imply that

∣
∣∣
∣∣
n–α

n∑

i=

aniÊX(n)
i

∣
∣∣
∣∣
� n–α

Ê
∣∣X(n)∣∣

n∑

i=

ani

≤ n–α
Ê
∣∣X(n)∣∣

≤ Cn–α

(
Ê|X|g

(
μX
nα

)
+ nα

V
(|X| > μnα

)
)

≤ Cn–α
Ê|X|g

(
μX
nα

)
+ CnV

(|X| > μnα
)

:= I + CnV
(|X| > μnα

)
. (.)

By (.), we can imply that

∞ >
∞∑

n=

nαp–l(n)V
(|X| > cnα

) ≥
∞∑

n=

V
(|X| > cnα

)
,

and V(|X| > μnα) ↓, so we get nV(|X| > μnα) →  as n → ∞. Next, we estimate I. Let
gj(x) ∈ Cl,Lip(R), j ≥  such that  ≤ gj(x) ≤  for all x and gj( x

jα ) =  if (j–)α < |x| ≤ jα ,
gj( x

jα ) =  if |x| ≤ (j–)α or |x| > ( + μ)jα . Then

gj

(
X
jα

)
≤ I

(
μ(j–)α < |X| ≤ ( + μ)jα)

, Xrg
(

X
kα

)
≤  +

k∑

j=

Xrgj

(
X
jα

)
. (.)

For every n, there exists k such that k– ≤ n < k , thus by (.), g(x) ↓, and n–α+ ↓ , from
α > 

p ≥ , we get

I ≤ (k–)(–α)
Ê|X|g

(
μX
kα

)

≤ C(k–)(–α)
k∑

j=

Ê|X|gj

(
μX
jα

)

≤ (k–)(–α)
k∑

j=

jα
V

(|X| > (j–)α)
.
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Noting that by (.), αp > ,

∞∑

j=

jα

j(α–) V
(|X| > (j–)α)

=
∞∑

j=

j
V

(|X| > –αjα)

≤
∞∑

j=

jαpl
(
j)

V
(|X| > –αjα)

< ∞.

It follows that

I →  as n → ∞

from the Kronecker lemma and j(α–) ↑ ∞.
Case :  < p < .
By (.), we can get that

Ê|X|p < ∞. (.)

By (.) and αp > ,  < p < , one can get that

∣∣
∣∣
∣
n–α

n∑

i=

aniÊX(n)
i

∣∣
∣∣
∣
≤ n–α

n∑

i=

ani
∣
∣ÊXi – ÊX(n)

i
∣
∣

≤ n–α

n∑

i=

aniÊ
∣
∣Xi – X(n)

i
∣
∣

≤ n–α Ê|X||X|p–

nα(p–)

(
 – g

(
X
nα

))

� Cn–αp
Ê|X|p →  as n → ∞.

It follows that for all n large enough,

∣
∣∣∣
∣
n–α

n∑

i=

aniÊX(n)
i

∣
∣∣∣
∣

< ε/,

which implies that

I ≤ C
∞∑

n=

nαp–l(n)V
(
T (n) > ε/

)
.

By Definition .(ii), we can know that fixed n ≥ , {ani(X(n)
i – ÊX(n)

i ),  ≤ i ≤ n} are still
END random variables. Hence, we have by Lemma . (taking x = εnα) that

V
(
T (n) > ε/

) ≤ C
∑n

i= Ê(ani(X(n)
i – ÊX(n)

i ))

εnα

≤ Cn–α

n∑

i=

a
niÊ

(
X(n)

i
).
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By (.), we have

I ≤ C
∞∑

n=

nαp–α–l(n)
n∑

i=

a
niÊ

∣∣X(n)
i

∣∣

≤ C
∞∑

n=

nαp–α–l(n)Ê
[

Xg
(

μX
nα

)]

+ C
∞∑

n=

nαp–l(n)V
(|X| > μnα

)

:= I + I.

By Lemma .(i), we can get I < ∞. Noting that by (.)

I = C
∞∑

j=

j+–∑

n=j

nαp–α–l(n)Ê
[

Xg
(

μX
nα

)]

≤ C
∞∑

j=

(αp–α–)jjl
(
j)

Ê

[
Xg

(
μX

α(j+)

)]

≤ C
∞∑

j=

α(p–)jl
(
j)

Ê

[

 +
j∑

k=

Xgk

(
μX

α(k+)

)]

≤ C
∞∑

j=

α(p–)jl
(
j) + C

∞∑

j=

α(p–)jl
(
j)

j∑

k=

Ê

[
Xgk

(
μX

α(k+)

)]

= I + I.

By p < , we get I < ∞. Next we estimate I. By (.), we can imply that

I =
∞∑

j=

α(p–)jl
(
j)

j∑

k=

Ê

[
Xgk

(
μX

α(k+)

)]

≤
∞∑

k=

αpkl
(
k)

Ê

[
gk

(
μX

α(k+)

)]

≤
∞∑

k=

αpkl
(
k)

V
(|X| > αk)

< ∞.

Hence, it follows that

I < ∞.

By I < ∞ and I < ∞, we can get I < ∞.
This finishes the proof of Theorem .. �
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Proof of Theorem . Without loss of generality, we can assume that ÊXi =  when p > ,
and assume that ani ≥ . For ∀ε > , we have by Theorem . that

∞∑

n=

nαp––αl(n)CV

( n∑

i=

ani(Xi – bi) – εnα

)+

=
∞∑

n=

nαp––αl(n)
∫ ∞


V

( n∑

i=

aniXi – εnα > t

)

dt

=
∞∑

n=

nαp––αl(n)
∫ nα


V

( n∑

i=

aniXi – εnα > t

)

dt

+
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

( n∑

i=

aniXi – εnα > t

)

dt

≤
∞∑

n=

nαp–l(n)V

( n∑

i=

aniXi > εnα

)

+
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

( n∑

i=

aniXi – εnα > t

)

dt

≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

( n∑

i=

aniXi > t

)

dt.

Hence, it suffices to show that

H :=
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

( n∑

i=

aniXi > t

)

dt < ∞.

For t > nα , denote

Zti = –tI(Xi < –t) + XiI
(|Xi| ≤ t

)
+ tI(Xi > t), i = , , . . . (.)

and

Uti = tI(Xi < –t) + XiI
(|Xi| > t

)
– tI(Xi > t), i = , , . . . . (.)

Since Xi = Uti + Zti, it follows that

H ≤
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

( n∑

i=

aniXi > t

)

dt

≤
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

(∣
∣∣
∣∣

n∑

i=

aniUti

∣
∣∣
∣∣

> t/

)

dt

+
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V

(

t–
n∑

i=

ani(Zti – ÊZti) > / – t–

∣∣
∣∣
∣

n∑

i=

aniÊZti

∣∣
∣∣
∣

)

dt

:= H + H.
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Note that by Lemma .(i)

H ≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

V
(∃ ≤ i < n, |Xi| > t

)
dt

≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

n∑

i=

V
(|Xi| > t

)
dt

≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

Ê

(
 – g

(
X
t

))
dt

= C
∞∑

n=

nαp––αl(n)
∞∑

m=n

∫ (m+)α

mα

Ê

(
 – g

(
X
t

))
dt

≤ C
∞∑

n=

nαp––αl(n)
∞∑

m=n

[
(m + )α – mα

]
Ê

(
 – g

(
X

mα

))

≤ C
∞∑

m=

mα–
V

(|X| > μmα
) m∑

n=

nαp––αl(n)

�
∞∑

m=

mαp–l(m)V
(|X| > μmα

)
< ∞. (.)

In the following, we prove that H < ∞. First, we show that

sup
t≥nα

t–

∣∣∣
∣∣

n∑

i=

aniÊZti

∣∣∣
∣∣
→  as n → ∞. (.)

Case :  < p ≤ .
Note (.) and (.), which imply that

|Zti| � |Xi|I
(|Xi| ≤ t

)
+ tI

(|Xi| > t
) ≤ |Xi|g

(
μXi

t

)
+ t

(
 – g

(
Xi

t

))
,

Ê|Zti| � Ê

[
|X|g

(
μX

t

)]
+ tÊ

[
 – g

(
X
t

)]

≤ Ê

[
|X|g

(
μX

t

)]
+ tV

(|X| > μt
)
. (.)

So, for t > nα , we get

sup
t≥nα

t–

∣
∣∣
∣∣

n∑

i=

aniÊZti

∣
∣∣
∣∣
� sup

t≥nα
t–nÊ|Zti|

≤ sup
t≥nα

t–n
(
Ê|X|g

(
μX

t

)
+ tV

(|X| > μt
))

≤ n–α
Ê|X|g

(
μX
nα

)
+ nV

(|X| > μnα
)

:= H + nV
(|X| > μnα

)
.
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We get nV(|X| > μnα) →  as n → ∞ in the proof of (.). Next, we estimate H. For every
n, there exists k such that k– ≤ n < k , thus by (.), (.), g(x) ↓, t > nα and n–α+ ↓ ,
from α > , we get

H ≤ Cn–α
Ê|X|g

(
μX
nα

)

≤ (k–)(–α)
Ê|X|g

(
μX
kα

)

≤ (k–)(–α)
k∑

j=

Ê|X|g
(

μX
kα

)

≤ (k–)(–α)
k∑

j=

jα
V

(|X| > (j–)α)
.

Noting that by (.), αp > ,

∞∑

j=

jα

j(α–) V
(|X| > (j–)α)

=
∞∑

j=

j
V

(|X| > –αjα)

≤
∞∑

j=

jαpl
(
j)

V
(|X| > –αjα)

< ∞.

It follows that

H →  as n → ∞

from the Kronecker lemma and j(α–) ↑ ∞.
Case :  < p < .
By ÊXi =  and αp > , t > nα , we can get that

sup
t≥nα

t–

∣
∣∣∣
∣

n∑

i=

aniÊZti

∣
∣∣∣
∣
≤ sup

t≥nα
t–

n∑

i=

ani|ÊXi – ÊZti|

≤ n–α

n∑

i=

aniÊ
∣
∣Xi – X(n)

i
∣
∣

≤ Cn–α Ê|X||X|p–

nα(p–)

(
 – g

(
X
nα

))

= Cn–αp
Ê|X|p

(
 – g

(
X
nα

))
→  as n → ∞.

It follows that for all n large enough,

t–

∣
∣∣
∣∣

n∑

i=

aniÊZit

∣
∣∣
∣∣

< /,
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which implies that

H ≤ C
∞∑

n=

nαp–l(n)
∫ ∞

nα

V

(

t–
n∑

i=

ani(Zti – ÊZti) > /

)

dt.

For fixed t > nα and n ≥ , it is easily seen that {ani(Zti – ÊZti), i ≥ } are still END ran-
dom variables. Hence, we have by Markov’s inequality, Lemma ., (.), (.), (.),
Lemma .(i) that

H ≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

t–
n∑

i=

a
niÊZ

ti dt

≤ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

t–
ÊXg

(
μX

t

)
dt

+ C
∞∑

n=

nαp––αl(n)
∫ ∞

nα

Ê

(
 – g

(
X
t

))
dt

≤ C
∞∑

n=

nαp––αl(n)
∞∑

m=n

∫ (m+)α

mα

t–
ÊXg

(
μX

t

)
dt

≤ C
∞∑

n=

nαp––αl(n)
∞∑

m=n
mα––α

ÊXg
(

μX
(m + )α

)
dt

= C
∞∑

m=

mα––α
ÊXg

(
μX

(m + )α

) m∑

n=

nαp––αl(n)

≤ C
∞∑

m=

mα––α
ÊXg

(
μX

(m + )α

)
mαp–αl(m)

= C
∞∑

n=

nαp––αl(n)ÊXg
(

μX
(n + )α

)

≤ C
∞∑

n=

nαp–l(n)V
(|X| > μnα

)
< ∞.

Hence, this finishes the proof of Theorem .. �

Proof of Theorem . We use the same notations as those in Theorem .. The proof is
similar to that of Theorem .. We only need to show that

n–α

∣∣∣
∣∣

n∑

i=

ÊaniX(n)
i

∣∣∣
∣∣
→  as n → ∞.

Because l(x) >  is a monotone nondecreasing function, we have

|X|/α = |X|/αI
(|X| ≤ 

)
+ |X|/αl

(|X|/α) 
l(|X|/α)

I
(|X| > 

)

≤  + |X|/αl
(|X|/α) 

l()
,
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which together with (.) yields that CV|X|/α < CV[|X|/αl(|X|/α)] < ∞. Noting that  ≤
/α <  and ÊXi = , we have

n–α

∣
∣∣
∣∣

n∑

i=

ÊaniX(n)
i

∣
∣∣
∣∣
≤ n–α

n∑

i=

ani
∣∣ÊXi – ÊX(n)

i
∣∣

≤ n–α

n∑

i=

aniÊ
∣∣Xi – X(n)

i
∣∣

≤ Cn–α
Ê|X|

(
 – g

(
X
nα

))

≤ Cn–α Ê|X||X|/α–

n–α

(
 – g

(
X
nα

))

� CV

(|X|/αI
(|X| > μnα

)) →  as n → ∞. �
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