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Abstract
In this paper, we first define the Teodorescu operator Tψ ,α related to the Helmholtz
equation and discuss its properties in quaternion analysis. Then we propose the
Riemann boundary value problem related to the Helmholtz equation. Finally we give
the integral representation of the boundary value problem by using the previously
defined operator.
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1 Introduction
It is well known that the Helmholtz equation is an elliptic partial differential equation
describing the electromagnetic wave, which has important applications in geophysics,
medicine, engineering application, and many other fields. Many problems associated with
the Helmholtz equation have been studied by many scholars, for example [–]. The
boundary value problem for partial differential equations is an important and meaning-
ful research topic. The singular integral operator is the core component of the solution of
the boundary value problem for a partial differential system. The Teodorescu operator is
a generalized solution of the inhomogeneous Dirac equation, which plays an important
role in the integral representation of the general solution for the boundary value problem.
Many experts and scholars have studied the properties of the Teodorescu operator. For ex-
ample, Vekua [] first discussed some properties of the Teodorescu operator on the plane
and its application in thin shell theory and gas dynamics. Hile [] and Gilbert [] stud-
ied some properties of the Teodorescu operator in n-dimensional Euclid space and high
complex space, respectively. Yang [] and Gu [] studied the boundary value problem
associated with the Teodorescu operator in quaternion analysis and Clifford analysis, re-
spectively. Wang [–] studied the properties of many Teodorescu operators and related
boundary value problems.

In this paper, we will study some properties of the singular integral operator and the Rie-
mann boundary value problem associated to the Helmholtz equation using the quaternion
analysis method. The structure of this paper is as follows: in Section , we review some
basic knowledge of quaternion analysis. In Section , we first construct a singular inte-
gral operator Tψ ,α related to the Helmholtz equation and study some of its properties.
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In Section , we propose the Riemann boundary value problem related to the Helmholtz
equation. Finally we give the integral representation of the boundary value problem by
using the previously defined operator.

2 Preliminaries
Let {i, i, i} be an orthogonal basis of the Euclidean space R and H(C) be the set of com-
plex quaternions with basis

{i, i, i, i},

where i is the unit and i, i, i are the quaternionic imaginary units with the following
properties:

i
 = –i

k = i, iik = iki = ik , k = , , ,

ii = –ii = i, ii = –ii = i, ii = –ii = i.

Then an arbitrary quaternion a can be written as a =
∑

k= akik , ak ∈C. The quaternionic
conjugation is defined by ā = a –

∑
k= ak · ik . The norm for an element a ∈H(C) is taken

to be |a| =
√∑

k= |ak|. Moreover, if aā = āa = |a| and |a| �= , then we say that a is re-
versible. Obviously, its inverse element can be written as a– = ā

|a| .
Let λ ∈ C\{} and let α be its complex square root: α ∈ C, α = λ. Suppose � ⊂ R is

a domain and ∂� is its boundary. We shall consider functions f defined in � ⊂ R with
values in H(C). Then f can be expressed as f =

∑
k= fk(x)ik . Here fk(x) (k = , , , ) are

complex functions defined on �.
Let C(m)(�,H(C)) = {f | f : � → H(C), f (x) =

∑
k= fk(x)ik , fk(x) ∈ Cm(�,C)}. We define

the operators as follows:

ψD[f ] =
∑

k=

ψk · ∂f
∂xk

, ψD[f ] =
∑

k=

ψk · ∂f
∂xk

,

Dψ [f ] =
∑

k=

∂f
∂xk

· ψk , Dψ [f ] =
∑

k=

∂f
∂xk

· ψk ,

where ψ = {ψ,ψ,ψ} = {i, i, i}.
For the above stated α, let us introduce the following operators:

ψDα[f ] = αf + ψD[f ], αDψ [f ] = αf + Dψ [f ],

ψDα[f ] = αf – ψD[f ], αDψ [f ] = αf – Dψ [f ].

f will be called a left (right)-(ψ ,α)-hyperholomorphic in the domain �, if ψDα[f ] = 
(αDψ [f ] = ) in �. Let α ∈ C\{} and Imα �= . For x ∈ R\{}, we introduce the following
notation:

θα(x) =

⎧
⎨

⎩

– 
π |x| e

iα|x|, Imα > ,

– 
π |x| e

–iα|x|, Imα < .



Yang et al. Journal of Inequalities and Applications  (2017) 2017:264 Page 3 of 19

In both cases it is a fundamental solution of the Helmholtz equation with λ = α. Then the
fundamental solution to the operator ψDα , Kψ ,α is given by

Kψ ,α(x) = ψDα[θα](x) =

⎧
⎨

⎩

θα(x)(α + x
|x| – iα x

|x| ), Imα > ,

θα(x)(α + x
|x| + iα x

|x| ), Imα < .

If f (x) ∈ Lp,σ (R,H(C)) means that f (x) ∈ Lp(B,H(C)), f (σ )(x) = |x|–σ f ( x
|x| ) ∈ Lp(B,H(C)),

in which B = {x | |x| < }, σ is a real number, ‖f ‖p,σ = ‖f ‖Lp(B) + ‖f (σ )‖Lp(B), p ≥ .

Definition . Suppose that the functions u, v, ϕ are defined in � with values in H(C)
and u, v ∈ L(�,H(C)). If, for arbitrary ϕ ∈ C∞

 (�,H(C)), u, v satisfy

∫

�

ϕ(x)u(x) dvx –
∫

�
αDψ [ϕ]v(x) dvx = ,

then u is called a generalized derivative of the function v, where we denote u = ψDα[v].

Lemma . ([]) If σ,σ > ,  ≤ γ ≤ , then we have

∣
∣σ

γ
 – σ

γ

∣
∣ ≤ |σ – σ|γ .

Lemma . ([]) Suppose � is a bounded domain in R and let α′, β ′ satisfy  < α′,β ′ < ,
α′ + β ′ > . Then, for all x, x ∈ R and x �= x, we have

∫

�

|t – x|–α′ |t – x|–β ′
dt ≤ M

(
α′,β ′)|x – x|–α′–β ′

.

Lemma . ([]) Let �, ∂� be as stated above. If f ∈ C(m)(�,H(C)) (m ≥ ), then we have

∫

∂�

f (y) dσyKψ ,α(y – x) +
∫

�
αDψ[

f (y)
]
Kψ ,α(y – x) dvy = f (x), x ∈ �.

3 Some properties of the singular integral operator Tψ ,α for the Helmholtz
equation

In this section, we will discuss some properties of the singular integral operators as follows:

(
Tψ ,α[f ]

)
(x)

=
∫

B
Kψ ,α(y – x)f (y) dvy +

∫

B
Kψ ,α

(
y

|y| – x
)

f
(

y
|y|

)


|y| dvy

=
(
T ()

ψ ,α[f ]
)
(x) +

(
T ()

ψ ,α[f ]
)
(x), (.)

where B = {x | |x| < }, α = a + ib, b > .

Theorem . Assume B to be as stated above, α = a + ib, b > . If f ∈ Lp(B,H(C)),  < p <
+∞, then

() |(T ()
ψ ,α[f ])(x)| ≤ M(p)‖f ‖Lp(B), x ∈ R,

() |(T ()
ψ ,α[f ])(x) – (T ()

ψ ,α[f ])(x)| ≤ M(p)‖f ‖Lp(B)|x – x| + M(p)‖f ‖Lp(B)|x – x|β ,
x, x ∈ R,
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() ψDα(T ()
ψ ,α[f ])(x) = f (x), x ∈ B, ψDα(T ()

ψ ,α[f ])(x) = , x ∈ R\B,
where  < β = p–

p < .

Proof ()

(
T ()

ψ ,α[f ]
)
(x) =

∫

B
Kψ ,α(y – x)f (y) dvy

= –
α

π

∫

B

eiα|y–x|

|y – x| f (y) dvy –


π

∫

B

eiα|y–x|(y – x)
|y – x| f (y) dvy

+
iα
π

∫

B

eiα|y–x|(y – x)
|y – x| f (y) dvy

= I + I + I.

(i) By the Taylor series, we have |eiα|y–x|| = |ei(a+ib)|y–x|| = e–b|y–x| ≤ 
b|y–x| . By the Hölder

inequality, we have

|I| ≤ |α|
π

∫

B

e–b|y–x|

|y – x|
∣
∣f (y)

∣
∣dvy ≤ J

∫

B


|y – x|

∣
∣f (y)

∣
∣dvy

≤ J‖f ‖Lp(B)

[∫

B


|y – x|q dvy

] 
q

. (.)

When x ∈ B, because p > , 
p + 

q = . Then  < q < 
 . Thus

∫
B


|y–x|q dvy is bounded.

Hence we suppose
∫

B


|y – x|q dvy ≤ J. (.)

When x ∈ R\B, by Lemma . and the generalized spherical coordinate, we have

∫

B


|y – x|q dvy ≤ J

∫ d+

d

ρ–q dρ ≤ J, (.)

where ρ = |y – x|, d = d(x, B). Therefore, for arbitrary x ∈ R, we obtain

|I| ≤ M()
 (p)‖f ‖Lp(B), (.)

where M()
 (p) = max{JJ


q

 , JJ

q

 }.
(ii) Obviously, e–b|y–x| ≤ . By the Hölder inequality, we have

|I| ≤ 
π

∫

B

e–b|y–x|

|y – x|
∣
∣f (y)

∣
∣dvy ≤ J

∫

B


|y – x|

∣
∣f (y)

∣
∣dvy

≤ J‖f ‖Lp(B)

[∫

B


|y – x|q dvy

] 
q

.

Then, by inequality (.) and (.), we have

|I| ≤ M()
 (p)‖f ‖Lp(B), (.)

where M()
 (p) = max{JJ


q

 , JJ

q

 }.
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(iii) This case is similar to (ii). We obtain

|I| ≤ M()
 (p)‖f ‖Lp(B). (.)

By inequalities (.)-(.), we obtain

∣
∣
(
T ()

ψ ,α[f ]
)
(x)

∣
∣ ≤ |I| + |I| + |I| ≤ M(p)‖f ‖Lp(B),

where M(p) = M()
 (p) + M()

 (p) + M()
 (p).

()
(
T ()

ψ ,α[f ]
)
(x) –

(
T ()

ψ ,α[f ]
)
(x)

=
∫

B

[
Kψ ,α(y – x) – Kψ ,α(y – x)

]
f (y) dvy

= –
α

π

∫

B

[
eiα|y–x|

|y – x| –
eiα|y–x|

|y – x|
]

f (y) dvy

–


π

∫

B

[
eiα|y–x|(y – x)

|y – x| –
eiα|y–x|(y – x)

|y – x|
]

f (y) dvy

+
iα
π

∫

B

[
eiα|y–x|(y – x)

|y – x| –
eiα|y–x|(y – x)

|y – x|
]

f (y) dvy

= I + I + I.

Let us consider eiα|y–x|. For arbitrary x ∈ R, it is easy to prove |eiα|y–x|| ≤  and satisfy
|eiα|y–x| – eiα|y–x|| ≤ c|x – x|.

(i) For arbitrary x, x ∈ R, by the Hölder inequality, we have

|I| ≤ J

∫

B

∣
∣
∣
∣
eiα|y–x|

|y – x| –
eiα|y–x|

|y – x|
∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B

|eiα|y–x| – eiα|y–x||
|y – x|

∣
∣f (y)

∣
∣dvy + J

∫

B

∣
∣
∣
∣e

iα|y–x|
(


|y – x| –


|y – x|

)∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B


|y – x|

∣
∣f (y)

∣
∣dvy|x – x| + J

∫

B


|y – x||y – x|

∣
∣f (y)

∣
∣dvy|x – x|

≤
{

J

{∫

B


|y – x|q dvy

} 
q

+ J

{∫

B


|y – x|q|y – x|q dvy

} 
q
}

‖f ‖Lp(B)|x – x|.

As  < q < 
 ,

∫
B


|y–x|q|y–x|q dvy and

∫
B


|y–x|q dvy are bounded. Hence

|I| ≤ M()
 (p)‖f ‖Lp(B)|x – x|. (.)

(ii) I = –


π

∫

B

[
eiα|y–x|(y – x)

|y – x| –
eiα|y–x|(y – x)

|y – x|
]

f (y) dvy

= –


π

∫

B

(eiα|y–x| – eiα|y–x|)(y – x)
|y – x| f (y) dvy

–


π

∫

B
eiα|y–x|

(
y – x

|y – x| –
y – x

|y – x|
)

f (y) dvy

= I()
 + I()

 .
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By the Hölder inequality, we have

∣
∣I()


∣
∣ ≤ 

π

∫

B

|eiα|y–x| – eiα|y–x||
|y – x|

∣
∣f (y)

∣
∣dvy

≤ J

∫

B


|y – x|

∣
∣f (y)

∣
∣dvy|x – x|

≤ J‖f ‖Lp(B)

[∫

B


|y – x|q dvy

] 
q
|x – x|.

As  < q < 
 ,

∫
B


|y–x|q dvy is bounded. So we have

∣
∣I()


∣
∣ ≤ J‖f ‖Lp(B)|x – x|. (.)

By the Hölder inequality and the Hile lemma, we have

∣
∣I()


∣
∣ ≤ 

π

∫

B

∣
∣eiα|y–x|∣∣

∣
∣
∣
∣

y – x

|y – x| –
y – x

|y – x|
∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B

∣
∣
∣
∣

y – x

|y – x| –
y – x

|y – x|
∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B

|y – x| + |y – x|
|y – x||y – x| |x – x|

∣
∣f (y)

∣
∣dvy

= J

{∫

B


|y – x||y – x|

∣
∣f (y)

∣
∣dvy +

∫

B


|y – x||y – x|

∣
∣f (y)

∣
∣dvy

}

|x – x|

≤ J

{[∫

B


|y – x|q|y – x|q dvy

] 
q

+
[∫

B


|y – x|q|y – x|q dvy

] 
q
}

× ‖f ‖Lp(B)|x – x|.

We suppose α′ = q, β ′ = q. As  < q < 
 , we have α′ = q < , β ′ = q < , α′ + β ′ = q > .

Hence, by Lemma ., we have

∫

B


|y – x|q|y – x|q dvy ≤ M

(
α′,β ′)|x – x|–q,

∫

B


|y – x|q|y – x|q dvy ≤ M

(
α′,β ′)|x – x|–q.

So we have

∣
∣I()


∣
∣ ≤ J‖f ‖Lp(B)

(|x – x|–q) 
q |x – x| = J‖f ‖Lp(B)|x – x|β , (.)

where  < β = p–
p < . By inequality (.) and (.), we have

|I| ≤ J‖f ‖Lp(B)|x – x| + J‖f ‖Lp(B)|x – x|β . (.)

(iii) I =
iα
π

∫

B

[
eiα|y–x|(y – x)

|y – x| –
eiα|y–x|(y – x)

|y – x|
]

f (y) dvy

=
iα
π

∫

B

(eiα|y–x| – eiα|y–x|)(y – x)
|y – x| f (y) dvy
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+
iα
π

∫

B
eiα|y–x|

(
y – x

|y – x| –
y – x

|y – x|
)

f (y) dvy

= I()
 + I()

 .

Similar to I()
 , we have

∣
∣I()


∣
∣ ≤ J‖f ‖Lp(B)|x – x|. (.)

By the Hölder inequality and the Hile lemma, we have

∣
∣I()


∣
∣ ≤ |α|

π

∫

B

∣
∣eiα|y–x|∣∣

∣
∣
∣
∣

y – x

|y – x| –
y – x

|y – x|
∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B

∣
∣
∣
∣

y – x

|y – x| –
y – x

|y – x|
∣
∣
∣
∣
∣
∣f (y)

∣
∣dvy

≤ J

∫

B

|x – x|
|y – x||y – x|

∣
∣f (y)

∣
∣dvy

= J

∫

B


|y – x||y – x|

∣
∣f (y)

∣
∣dvy|x – x|

≤ J‖f ‖Lp(B)

{∫

B


|y – x|q|y – x|q dvy

} 
q
|x – x|.

As  < q < 
 ,

∫
B


|y–x|q|y–x|q dvy is bounded. So we have

∣
∣I()


∣
∣ ≤ J‖f ‖Lp(B)|x – x|. (.)

By inequalities (.) and (.), we have

|I| ≤
∣
∣I()


∣
∣ +

∣
∣I()


∣
∣ ≤ M()

 (p)‖f ‖Lp(B)|x – x|, (.)

where M()
 (p) = J + J. By inequalities (.), (.) and (.), we have

∣
∣
(
T ()

ψ ,α[f ]
)
(x) –

(
T ()

ψ ,α[f ]
)
(x)

∣
∣ ≤ M(p)‖f ‖Lp(B)|x – x| + M(p)‖f ‖Lp(B)|x – x|β ,

where M(p) = M()
 (p) + J + M()

 (p), M(p) = J.
() When x ∈ B, for arbitrary ϕ ∈ C∞

 (B,H(C)), by Lemma . and the Fubini theorem,
we have

∫

B
αDψ [ϕ]

(
T ()

ψ ,α[f ]
)
(x) dvx =

∫

B
αDψ [ϕ]

[∫

B
Kψ ,α(y – x)f (y) dvy

]

dvx

=
∫

B

[∫

B
αDψ [ϕ]Kψ ,α(y – x) dvx

]

f (y) dvy

=
∫

B

[

ϕ(y) –
∫

∂B
ϕ(x) dσxKψ ,α(y – x)

]

f (y) dvy

=
∫

B
ϕ(y)f (y) dvy =

∫

B
ϕ(x)f (x) dvx.
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Hence, in the sense of generalized derivatives, ψDα(T ()
ψ ,α[f ])(x) = f (x), x ∈ B. When x ∈

R\B, it is easy to see ψDα(T ()
ψ ,α[f ])(x) = . �

Theorem . Assume B to be as stated above and α = a + ib, b > .If f ∈ Lp,(B,H(C)),
 < p < +∞, then

() |(T ()
ψ ,α[f ])(x)| ≤ M(p)‖f ()‖Lp(B), x ∈ R,

() |(T ()
ψ ,α[f ])(x) – (T ()

ψ ,α[f ])(x)| ≤ M(p)‖f ()‖Lp(B)|x – x| + M(p)‖f ()‖Lp(B)|x – x|β ,
x, x ∈ R,

() ψDα(T ()
ψ ,α[f ])(x) = , x ∈ B, ψDα(T ()

ψ ,α[f ])(x) = f (x), x ∈ R\B,
where  < β = p–

p < .

Proof ()

(
T ()

ψ ,α[f ]
)
(x) =

∫

B
Kψ ,α

(
y

|y| – x
)

f
(

y
|y|

)


|y| dvy

= –
α

π

∫

B

e
iα| y

|y| –x|

| y
|y| – x| f

(
y

|y|
)


|y| dvy

–


π

∫

B

e
iα| y

|y| –x|
( y
|y| – x)

| y
|y| – x| f

(
y

|y|
)


|y| dvy

+
iα
π

∫

B

e
iα| y

|y| –x|
( y
|y| – x)

| y
|y| – x| f

(
y

|y|
)


|y| dvy

= I + I + I.

As the first step, by the Hölder inequality, we have

|I| ≤ |α|
π

∫

B

e
–b| y

|y| –x|

| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

∫

B


| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

{∫

B

[

|y|–
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣

]p

dvy

} 
p
{∫

B


| y
|y| – x|q|y|q

dvy

} 
q

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q , (.)

where 
p + 

q = . Next we discuss O(x) in two cases.
(i) When |x| ≥ 

 , since

∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q

|y|–q = |y|–q
{

|y|–q
∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q∣∣
∣
∣

x
|x|

∣
∣
∣
∣

–q}

|x|–q

≤ C|y|–q
∣
∣
∣
∣y

(
y

|y| – x
)

x
|x|

∣
∣
∣
∣

–q

|x|–q = C|y|–q
∣
∣
∣
∣

x
|x| – y

∣
∣
∣
∣

–q

|x|–q,



Yang et al. Journal of Inequalities and Applications  (2017) 2017:264 Page 9 of 19

we have

O(x) ≤
∫

B
C|y|–q

∣
∣
∣
∣

x
|x| – y

∣
∣
∣
∣

–q

|x|–q dvy = C|x|–q
∫

B
|y|–q

∣
∣
∣
∣

x
|x| – y

∣
∣
∣
∣

–q

dvy.

We suppose α′ = q, β ′ = q. As  < q < 
 , we have  < α′ < ,  < β ′ < , α′ + β ′ = q > .

Thus, by Lemma ., we have

O(x) ≤ CM
(
α′,β ′)|x|–q

∣
∣
∣
∣

x
|x|

∣
∣
∣
∣

–q

≤ CM
(
α′,β ′)–q = C. (.)

(ii) When |x| < 
 , by |y| < , we have | – yx| ≥ 

 , thus

O(x) =
∫

B


| y
|y| – x|q|y|q

dvy =
∫

B
|y|–q|y|–q

∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q

dvy

≤ C

∫

B
|y|–q

∣
∣
∣
∣y

(
y

|y| – x
)∣

∣
∣
∣

–q

dvy = C

∫

B
|y|–q| – yx|–q dvy

≤ C

∫

B
|y|–qq dvy ≤ C

∫

B
|y|–q dvy ≤ C. (.)

Therefore, by (.)-(.), we have

|I| ≤ M()
 (p)

∥
∥f ()∥∥

Lp(B), (.)

where M()
 (p) = max{CC


q

 , CC

q

 }.
As the second step, by the Hölder inequality, we have

|I| ≤ 
π

∫

B

e
–b| y

|y| –x|

| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

∫

B


| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

{∫

B

[

|y|–
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣

]p

dvy

} 
p
{∫

B


| y
|y| – x|q|y|q

dvy

} 
q

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q . (.)

Similar to O(x), we find that O(x) is bounded. Suppose O(x) ≤ C. Then

|I| ≤ M()
 (p)

∥
∥f ()∥∥

Lp(B). (.)

As the third step, similar to I, we have

|I| ≤ M()
 (p)

∥
∥f ()∥∥

Lp(B). (.)

By inequalities (.), (.), and (.),

∣
∣
(
T ()

ψ ,α[f ]
)
(x)

∣
∣ ≤ |I| + |I| + |I| ≤ M(p)

∥
∥f ()∥∥

Lp(B),
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where M(p) = M()
 (p) + M()

 (p) + M()
 (p).

()
(
T ()

ψ ,α[f ]
)
(x) –

(
T ()

ψ ,α[f ]
)
(x)

= –
α

π

∫

B

[
e

iα| y
|y| –x|

| y
|y| – x|

–
e

iα| y
|y| –x|

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

–


π

∫

B

[e
iα| y

|y| –x|( y
|y| – x)

| y
|y| – x|

–
e

iα| y
|y| –x|

( y
|y| – x)

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

+
iα
π

∫

B

[e
iα| y

|y| –x|( y
|y| – x)

| y
|y| – x|

–
e

iα| y
|y| –x|

( y
|y| – x)

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

= I + I + I.

Firstly, we discuss I. We have

I = –
α

π

∫

B

[
e

iα| y
|y| –x|

| y
|y| – x|

–
e

iα| y
|y| –x|

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

= –
α

π

∫

B

e
iα| y

|y| –x| – e
iα| y

|y| –x|

| y
|y| – x|

f
(

y
|y|

)


|y| dvy

–
α

π

∫

B
e

iα| y
|y| –x|

(


| y
|y| – x|

–


| y
|y| – x|

)

f
(

y
|y|

)


|y| dvy

= I()
 + I()

 .

By the Hölder inequality, we have

∣
∣I()


∣
∣ ≤ |α|

π

∫

B

|eiα| y
|y| –x| – e

iα| y
|y| –x||

| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ |α|
π

∫

B

c|x – x|
| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

= C

∫

B


| y
|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy|x – x|

≤ C

{∫

B

[

|y|–
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣

]p

dvy

} 
p
{∫

B


| y
|y| – x|q|y|q

dvy

} 
q
|x – x|

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x|.

By (.) and (.), we have O(x) ≤ max{C, C}. Therefore
∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|, (.)

where C = max{CC

q

 , CC

q

 }.
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By the Taylor series, we have |eiα| y
|y| –x|| = |e–b| y

|y| –x|| ≤ 
b| y

|y| –x| . Therefore

∣
∣I()


∣
∣ ≤ |α|

π

∫

B
e

–b| y
|y| –x|

∣
∣
∣
∣


| y
|y| – x|

–


| y
|y| – x|

∣
∣
∣
∣

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ |α|
π

∫

B


b| y

|y| – x|
|| y

|y| – x| – | y
|y| – x||

| y
|y| – x|| y

|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

∫

B

|x – x|
| y
|y| – x|| y

|y| – x|
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

= C

∫

B


| y
|y| – x|| y

|y| – x||y|
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣|y|– dvy|x – x|

≤ C
∥
∥f ()∥∥

Lp(B)

{∫

B


| y
|y| – x|q| y

|y| – x|q|y|q
dvy

} 
q
|x – x|

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x|. (.)

Since

∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q∣∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q

|y|–q = |y|–q
∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q

|y|–q
∣
∣
∣
∣

y
|y| – x

∣
∣
∣
∣

–q

≤ C

∣
∣
∣
∣y

(
y

|y| – x

)∣
∣
∣
∣

–q∣∣
∣
∣y

(
y

|y| – x

)∣
∣
∣
∣

–q

= C| – yx|–q| – yx|–q,

we have

O(x) ≤ C

∫

B


| – yx|q| – yx|q dvy = CO(x).

By (.), we have

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x|. (.)

In the following, we discuss O(x) in four cases.
(i) When |x| ≤ 

 , |x| ≤ 
 , as |y| ≤ , we have | – yx| ≥ 

 , | – yx| ≥ 
 , |x – x| ≤ .

Hence

O(x) ≤
∫

B
qq dvy = q

∫

B
dvy = C.

As |x – x| ≤ ,  < β = p–
p < , we have |x – x| ≤ |x – x|β . Therefore, by (.), we

have

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β . (.)
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(ii) When |x| ≥ 
 , |x| ≤ 

 , we have | – yx| ≥ 
 , 

|x| ≤ , |x|
|x| ≤ . Thus

O(x) ≤ q
∫

B


| – yx|q dvy = q|x|–q

∫

B


| – yx|q| x

|x| |q dvy

≤ Cq|x|–q
∫

B


|( – yx) x

|x| |q dvy = Cq|x|–q
∫

B


|y – x

|x| |q dvy.

Again, since


|x| =


|x|β

∣
∣
∣
∣

x

|x|
∣
∣
∣
∣

–β

=


|x|β
∣
∣
∣
∣
x(x – x)(x – x)

|x||x – x|
∣
∣
∣
∣

–β

≤ C


|x|β
∣
∣
∣
∣
x(x – x)

|x|
∣
∣
∣
∣

–β 
|x – x|–β

= C


|x|β
∣
∣
∣
∣ –

xx

|x|
∣
∣
∣
∣

–β

|x – x|β–

≤ C|x|–β

(

 +
|x|
|x|

)–β

|x – x|β– ≤ C|x – x|β–,

we have |x|–q ≤ C|x – x|(β–)q. Again from the notion that  < q < 
 , we know

∫
B


|y– x

|x| |q dvy is bounded. Hence,we obtain

O(x) ≤ C|x – x|(β–)q.

Therefore, by (.), we have

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)

[
C|x – x|(β–)q] 

q |x – x|
= C

∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

(iii) When |x| ≤ 
 , |x| ≥ 

 , similar to (ii), we have

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

(iv) When |x| ≥ 
 , |x| ≥ 

 , we have 
|x| ≤ , 

|x| ≤ . Since

| – yx|–q = | – yx|–q|x|q|x|–q = | – yx|–q
∣
∣
∣
∣

x

|x|
∣
∣
∣
∣

–q

|x|–q

≤ C

∣
∣
∣
∣( – yx)

x

|x|
∣
∣
∣
∣

–q

|x|–q = C

∣
∣
∣
∣y –

x

|x|
∣
∣
∣
∣

–q

|x|–q,

| – yx|–q = | – yx|–q|x|q|x|–q = | – yx|–q
∣
∣
∣
∣

x

|x|
∣
∣
∣
∣

–q

|x|–q

≤ C

∣
∣
∣
∣( – yx)

x

|x|
∣
∣
∣
∣

–q

|x|–q = C

∣
∣
∣
∣y –

x

|x|
∣
∣
∣
∣

–q

|x|–q.

We have

O(x) ≤ C

∫

B


|y – x

|x| |q|y – x
|x| |q

dvy.
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Suppose α′ = q, β ′ = q. Then  < α′ < ,  < β ′ < , α′ +β ′ = q > . Thus, by Lemma .,
we have

O(x) ≤ C

∣
∣
∣
∣

x

|x| –
x

|x|
∣
∣
∣
∣

–q

= C

∣
∣
∣
∣
x|x| – x|x|

|x||x|
∣
∣
∣
∣

–q

= C

∣
∣
∣
∣
x|x| – x|x| + x|x| – x|x|

|x||x|
∣
∣
∣
∣

–q

= C

∣
∣
∣
∣
x – x

|x| +
x(|x| – |x|)

|x||x|
∣
∣
∣
∣

–q

≤ C

(


|x| +
|x| + |x|
|x||x|

)–q

|x – x|–q

= C

(


|x| +


|x| +


|x||x|
)–q

|x – x|–q

≤ C|x – x|–q.

Therefore, by (.), we have

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)

[
C|x – x|–q] 

q |x – x|
= C

∥
∥f ()∥∥

Lp(B)|x – x|β , (.)

where  < β = p–
p < . From (.)-(.), we obtain

∣
∣I()


∣
∣ ≤ M()

 (p)
∥
∥f ()∥∥

Lp(B)|x – x|β , (.)

where M()
 (p) = max{C, C, C, C}.

By (.), (.), we obtain

|I| ≤ C
∥
∥f ()∥∥

Lp(B)|x – x| + M()
 (p)

∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

Secondly, we discuss I. We have

I = –


π

∫

B

[e
iα| y

|y| –x|( y
|y| – x)

| y
|y| – x|

–
e

iα| y
|y| –x|

( y
|y| – x)

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

= –


π

∫

B

(e
iα| y

|y| –x| – e
iα| y

|y| –x|
)( y

|y| – x)

| y
|y| – x|

f
(

y
|y|

)


|y| dvy

–


π

∫

B
e

iα| y
|y| –x|

( y
|y| – x

| y
|y| – x|

–
y

|y| – x

| y
|y| – x|

)

f
(

y
|y|

)


|y| dvy

= I()
 + I()

 .

Similar to I()
 , we get

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|. (.)
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By the Hölder inequality and the Hile lemma, we have

∣
∣I()


∣
∣ ≤ 

π

∫

B
e

–b| y
|y| –x|

∣
∣
∣
∣

y
|y| – x

| y
|y| – x|

–
y

|y| – x

| y
|y| – x|

∣
∣
∣
∣

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

∫

B

| y
|y| – x| + | y

|y| – x|
| y
|y| – x|| y

|y| – x|
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy|x – x|

= C

∫

B


| y
|y| – x|| y

|y| – x|
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy|x – x|

+ C

∫

B


| y
|y| – x|| y

|y| – x|

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy|x – x|

≤ C
∥
∥f ()∥∥

Lp(B)

[∫

B


| – yx|q| – yx|q dvy

] 
q
|x – x|

+ C
∥
∥f ()∥∥

Lp(B)

[∫

B


| – yx|q| – yx|q dvy

] 
q
|x – x|

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x| + C

∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x|. (.)

This is similar to I()
 and it is easy to prove the following:

C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x| ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β ,

C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x| ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β .

Therefore, we obtain

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

By (.) and (.), we have

|I| ≤ C
∥
∥f ()∥∥

Lp(B)|x – x| + C
∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

Finally, we discuss I. We have

I =
iα
π

∫

B

[e
iα| y

|y| –x|( y
|y| – x)

| y
|y| – x|

–
e

iα| y
|y| –x|

( y
|y| – x)

| y
|y| – x|

]

f
(

y
|y|

)


|y| dvy

=
iα
π

∫

B

(e
iα| y

|y| –x| – e
iα| y

|y| –x|
)( y

|y| – x)

| y
|y| – x|

f
(

y
|y|

)


|y| dvy

+
iα
π

∫

B
e

iα| y
|y| –x|

( y
|y| – x

| y
|y| – x|

–
y

|y| – x

| y
|y| – x|

)

f
(

y
|y|

)


|y| dvy

= I()
 + I()

 .
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Similar to I()
 , we get

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|. (.)

By the Hile lemma and the Hölder inequality, we have

∣
∣I()


∣
∣ ≤ |α|

π

∫

B
e

–b| y
|y| –x|

∣
∣
∣
∣

y
|y| – x

| y
|y| – x|

–
y

|y| – x

| y
|y| – x|

∣
∣
∣
∣

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

≤ C

∫

B

|x – x|
| y
|y| – x|| y

|y| – x|
∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣


|y| dvy

= C

∫

B


| y
|y| – x|| y

|y| – x||y|
|y|–

∣
∣
∣
∣f

(
y

|y|
)∣

∣
∣
∣dvy|x – x|

≤ C
∥
∥f ()∥∥

Lp(B)

[∫

B


| y
|y| – x|q| y

|y| – x|q|y|q
dvy

] 
q
|x – x|

= C
∥
∥f ()∥∥

Lp(B)

[
O(x)

] 
q |x – x|.

Therefore

∣
∣I()


∣
∣ ≤ C

∥
∥f ()∥∥

Lp(B)|x – x|β , (.)

by (.) and (.), so we have

|I| ≤ C
∥
∥f ()∥∥

Lp(B)|x – x| + C
∥
∥f ()∥∥

Lp(B)|x – x|β . (.)

By (.), (.), and (.), we have

∣
∣
(
T ()

ψ ,α[f ]
)
(x) –

(
T ()

ψ ,α[f ]
)
(x)

∣
∣

≤ M(p)
∥
∥f ()∥∥

Lp(B)|x – x| + M(p)
∥
∥f ()∥∥

Lp(B)|x – x|β ,

where M(p) = C + C + C, M(p) = M()
 (p) + C + C.

() This case is similar to Theorem ., and it is easy to prove. �

Remark . Assume B to be as stated above and α = a + ib, b > . If f ∈ Lp,(B,H(C)),
 < p < +∞, then

() |(Tψ ,α[f ])(x)| ≤ M(p)‖f ‖p,, x ∈ R,
() |(Tψ ,α[f ])(x) – (Tψ ,α[f ])(x)| ≤ M(p)‖f ‖p,|x – x| + M(p)‖f ‖p,|x – x|β ,

x, x ∈ R,
() ψDα(Tψ ,α[f ])(x) = f (x), x ∈ R\∂B,

where  < β = p–
p < .
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4 Integral representation of solution of Riemann boundary problem to
inhomogeneous partial differential system

In this section, we will discuss the inhomogeneous partial differential system of first order
equations as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αw – wx
– wx

– wx
= c(x),

αw + wx
– wx

+ wx
= c(x),

αw + wx
+ wx

– wx
= c(x),

αw + wx
– wx

+ wx
= c(x),

(.)

where wj(x), cj(x) (j = , , , ) are real-value functions.

Problem P Let B ⊂ R be as stated above. The Riemann boundary value problem for
system (.) is to find a solution w(x) of (.) that satisfies the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B,

where w±(τ ) = limx∈B± ,x→τ w(x), B+ = B, B– = R\B, G is a quaternion constant, G– exists,
and f ∈ Hν

∂B ( < ν < ).

In fact,

ψDα[w] =
∑

j=

ij
∂w
∂xj

+ αw

=
∑

j=

(

iji
∂w

∂xj
+ iji

∂w

∂xj
+ iji

∂w

∂xj
+ iji

∂w

∂xj

)

+ α

∑

k=

wkik

= (αw – wx
– wx

– wx
)i + (αw + wx

– wx
+ wx

)i

+ (αw + wx
+ wx

– wx
)i + (αw + wx

– wx
+ wx

)i. (.)

Let

g(x) = c(x)i + c(x)i + c(x)i + c(x)i =
∑

j=

cj(x)ij. (.)

By (.) and (.), the inhomogeneous partial differential system (.) can be trans-
formed to the following equation:

ψDα[w] =
∑

j=

cj(x)ij = g(x). (.)

Therefore Problem P as stated above can be transformed to Problem Q.

Problem Q Let B ⊂ R be as stated above. The Riemann boundary value problem for
system (.) is to find a solution w(x) of (.) that satisfies the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B,



Yang et al. Journal of Inequalities and Applications  (2017) 2017:264 Page 17 of 19

where w±(τ ) = limx∈B± ,x→τ w(x), B+ = B, B– = R\B, G is a quaternion constant, G– exists,
and f ∈ Hν

∂B ( < ν < ).

Theorem . Let B be as stated above. Find a quaternion-valued function u(x) satisfying
the system ψDα[u] = (x ∈ R\∂B) and vanishing at infinity with the boundary condition

u+(τ ) = u–(τ )G + f (τ ), τ ∈ ∂B, (.)

where u±(τ ) = limx∈B± ,x→τ u(x), G is a quaternion constant, G– exists, and f ∈ Hλ
∂B ( <

λ < ). Then the solution can be expressed as

u(x) =

⎧
⎨

⎩

∫
∂B Kψ ,α(y – x) dσyf (y), x ∈ B+,

∫
∂B Kψ ,α(y – x) dσyf (y)G–, x ∈ B–.

Proof Define

ϕ(x) =

⎧
⎨

⎩

u(x), x ∈ B+,

u(x)G, x ∈ B–.

Then it is obvious that ψDα[ϕ] =  (x ∈ R\∂B) and the Riemann boundary condition (.)
is equivalent to

ϕ+(τ ) = ϕ–(τ ) + f (τ ), τ ∈ ∂B.

Suppose �(x) =
∫
∂B Kψ ,α(y – x) dσyf (y). Then ψDα[�] =  (x ∈ R\∂B). By the Plemelj for-

mula, we have

�+(τ ) – �–(τ ) = f (τ ), τ ∈ ∂B.

Hence ϕ+(τ ) –�+(τ ) = ϕ–(τ ) –�–(τ ) (τ ∈ ∂B). Thus ψDα[ϕ –�] =  and by Theorem .
in [] we obtain ϕ(x) = �(x). So the solution can be expressed as

u(x) =

⎧
⎨

⎩

∫
∂B Kψ ,α(y – x) dσyf (y), x ∈ B+,

∫
∂B Kψ ,α(y – x) dσyf (y)G–, x ∈ B–. �

Theorem . Let B be as stated above and g(x) ∈ Lp,(R,H(C)),  < p < +∞. Find a
quaternion-valued function w(x) satisfying the system ψDα[w](x) = g(x) (x ∈ R\∂B) and
vanishing at infinity with the boundary condition

w+(τ ) = w–(τ )G + f (τ ), τ ∈ ∂B, (.)

where w±(τ ) = limx∈B± ,x→τ w(x), G is a quaternion constant, G– exists, and f ∈ Hλ
∂B ( <

λ < ). Then the solution has the form

w(x) = �(x) +
(
Tψ ,α[g]

)
(x),
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in which ψDα[�] =  and

�(x) =

⎧
⎨

⎩

∫
∂B Kψ ,α(y – x) dσyf̃ (y), x ∈ B+,

∫
∂B Kψ ,α(y – x) dσyf̃ (y)G–, x ∈ B–,

where f̃ = f + (Tψ ,α[g])(G – ).

Proof By Remark ., we know ψDα[w] = ψDα[�(x) + (Tψ ,α[g])(x)] = g(x). The boundary
condition (.) is equivalent to

(
� + Tψ ,α[g]

)+(τ ) =
(
� + Tψ ,α[g]

)–(τ )G + f (τ ), τ ∈ ∂B. (.)

Again from Remark ., we know that (Tψ ,α[g])(x) has continuity in R. Thus (Tψ ,α[g])+ =
(Tψ ,α[g])– = Tψ ,α[g], so (.) is equivalent to

�+(τ ) = �–(τ )G +
(
Tψ ,α[g]

)
(τ )(G – ) + f (τ ), τ ∈ ∂B. (.)

Suppose f̃ = f + (Tψ ,α[g])(G – ). Then (.) has the following form:

�+(τ ) = �–(τ )G + f̃ (τ ), τ ∈ ∂B. (.)

Again from Theorem ., the solutions which satisfy the system ψDα[�] =  and boundary
condition (.) can be represented in the form

�(x) =

⎧
⎨

⎩

∫
∂B Kψ ,α(y – x) dσyf̃ (y), x ∈ B+,

∫
∂B Kψ ,α(y – x) dσyf̃ (y)G–, x ∈ B–,

where f̃ = f + (Tψ ,α[g])(G – ). �

Remark . By Theorem ., the solution of problem P can be expressed as

w(x) = �(x) +
(
Tψ ,α[g]

)
(x),

in which ψDα[�] =  and

�(x) =

⎧
⎨

⎩

∫
∂B Kψ ,α(y – x) dσyf̃ (y), x ∈ B+,

∫
∂B Kψ ,α(y – x) dσyf̃ (y)G–, x ∈ B–,

where f̃ = f + (Tψ ,α[g])(G – ).
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