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1 Introduction
Let {Xn; n ≥ } be a sequence of random variables defined on a fixed probability space
(�,F , P). We first review the definitions of negatively associated random variables and
negatively superadditive dependent (NSD) random variables.

Definition . A finite family of random variables {Xi;  ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint subsets A and A of {, , . . . , n},

Cov
(
f(Xi, i ∈ A), f(Xj, j ∈ A)

) ≤ , (.)

whenever f and f are coordinatewise nondecreasing functions such that this covariance
exists. An infinite family of random variables {Xn; n ≥ } is said to be NA if every finite
subfamily is NA.

Definition . (Kemperman []) A function φ: Rn → R is called superadditive if φ(x ∨
y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x, y ∈R

n, where ∨ is for a componentwise maximum and
∧ is for a componentwise minimum.

Definition . (Hu []) A random vector X = (X, X, . . . , Xn) is said to be NSD if

Eφ(X, X, . . . , Xn) ≤ Eφ
(
X∗

 , X∗
 , . . . , X∗

n
)
, (.)
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where X∗
 , X∗

 , . . . , X∗
n are independent such that X∗

i and Xi have the same distribution for
each i and φ is a superadditive function such that the expectations in (.) exist. A sequence
of random variables {Xn; n ≥ } is said to be NSD if for every n ≥ , (X, X, . . . , Xn) is NSD.

The concept of NA was given by Joag-Dev and Proschan [], and the concept of NSD
was introduced by Hu [], which was based on the class of superadditive functions. Hu []
gave an example illustrating that NSD random variables are not necessarily NA, and left an
open problem whether NA random variables implies NSD. Christofides and Vaggelatou
[] solved this open problem and showed that NA implies NSD. Thus, it is shown that NSD
is much weaker than NA. Because of the wide application of NSD random variables, many
authors have studied this concept and obtained some interesting results and applications.
For example, we refer to [–]. Hence, it is of important significance to extend the limit
properties of NA to the case of NSD random variables.

The concept of complete convergence was introduced by Hsu and Robbins [] as fol-
lows. A sequence of random variables {Xn; n ≥ } is said to converge completely to a con-
stant λ if

∞∑

n=

P
(|Xn – λ| > ε

)
< ∞ for all ε > . (.)

In view of the Borel-Cantelli lemma, the sequence of random variables {Xn; n ≥ } con-
verging completely to a constant λ implies Xn → λ almost surely (a.s.). Therefore, the
complete convergence of random variables is a very important tool in establishing almost
sure convergence. The first results concerning complete convergence for normed sums of
random variables were due to Hsu and Robbins () [] and Erdös () [], and the
obtained results have been extended in several directions by many authors. One can refer
to [–], etc.

Recently, Cai [] obtained the following complete convergence result for weighted sums
of NA random variables with identical distribution.

Theorem . Let {X, Xn; n ≥ } be a sequence of NA random variables with identical
distribution, and let {ani,  ≤ i ≤ n, n ≥ } be a triangular array of constants satisfying
∑n

i= |ani|α = O(n) for some  < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore,
assume that EX =  when  < α ≤ . If for some h > ,

E exp
(
h|X|γ )

< ∞, (.)

then, for all ε > ,

∞∑

n=


n

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

aniXi

∣∣
∣∣
∣

> εbn

)

< ∞. (.)

Sung [] extended the result of Cai [] under a much weaker moment condition and
obtained the following strong convergence results.

Theorem . Let {X, Xn; n ≥ } be a sequence of NA random variables with identical dis-
tribution, and let {ani,  ≤ i ≤ n, n ≥ } be an array of constants such that

∑n
i= |ani|α = O(n)
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for some  < α ≤ . Let bn = n/α(log n)/γ for some γ > . Furthermore, suppose that EX = 
when  < α ≤ . Then:

(i) If α > γ , then E|X|α < ∞ implies (.).
(ii) If α = γ , then E|X|α log( + |X|) < ∞ implies (.).

(iii) If α < γ , then E|X|γ < ∞ implies (.).

In the case α > γ , Chen and Sung [] studied the complete convergence for weighted
sums of NA random variables under the moment condition E|X|α/(log( + |X|))α/γ – < ∞,
which is weaker than Theorem .. Li et al. [] extended and improved the result of Chen
and Sung [] to ρ∗-mixing random variables. Motivated by the above results obtained by
Cai [], Sung [] and Chen and Sung [], in this paper, we will further study the complete
convergence for weighted sums of NSD random variables. Some complete convergence re-
sults for the maximum weighted sums of NSD random variables are obtained without the
assumption of an identical distribution. As an application, the Marcinkiewicz-Zygmund
type strong law of large numbers for weighted sums of NSD random variables is obtained.
Our results not only generalize the corresponding ones of Cai [] and Sung [], but they
also extend and improve the corresponding one of Chen and Sung [].

2 Preliminaries
Throughout this paper, C represents a generic positive constant whose value may change
from one appearance to the next, and an = O(bn) means an ≤ Cbn. Let I(A) be the indicator
function of the set A.

Definition . A sequence of random variables {Xn; n ≥ } is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| ≥ x

) ≤ CP
(|X| ≥ x

)
,

for all x ≥  and n ≥ .

In order to prove our main results, we introduce the following lemmas.

Lemma . (Hu []) If X = (X, X, . . . , Xn) is NSD and f, f, . . . , fn are nondecreasing func-
tions, then (f(X), f(X), . . . , fn(Xn)) is NSD.

Lemma . (Wang et al. []) Let p >  and {Xn; n ≥ } be a sequence of NSD random
variables with E|Xi|p < ∞ for every i ≥ . Then, there exists a positive constant C = Cp

depending only on p such that, for every n ≥ , for  < p ≤ ,

E

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xi

∣
∣∣
∣∣

p)

≤ C
n∑

i=

E|Xi|p,

and, for p > ,

E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xi

∣∣
∣∣
∣

p)

≤ C

{ n∑

i=

E|Xi|p +

( n∑

i=

EX
i

)p/}

.
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Lemma . (Sung []) Let X be a random variable and {ani;  ≤ i ≤ n, n ≥ } be an array
of constants satisfying

∑n
i= |ani|α = O(n) for some α > . Let bn = n/α(log n)/γ for some

γ > . Then

∞∑

n=


n

n∑

i=

P
(|aniX| > bn

) ≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|α , for α > γ ,

CE|X|α log( + |X|), for α = γ ,

CE|X|γ , for α < γ .

(.)

Lemma . (Sung []) Let X be a random variable and {ani;  ≤ i ≤ n, n ≥ } be an array
of constants satisfying ani =  or |ani| > , and

∑n
i= |ani|α = O(n) for some α > . Let bn =

n/α(log n)/α . If p > α, then

∞∑

n=

n–b–p
n

n∑

i=

E|aniX|pI
(|aniX| ≤ bn

) ≤ CE|X|α log
(
 + |X|). (.)

Lemma . (Wu []) Let {Xn; n ≥ } be a sequence of random variables which is stochas-
tically dominated by a random variable X. For any u > , t >  and n ≥ , the following two
statements hold:

E|Xn|uI
(|Xn| ≤ t

) ≤ C
[
E|X|uI

(|X| ≤ t
)

+ tuP
(|X| > t

)]
, (.)

E|Xn|uI
(|Xn| > t

) ≤ CE|X|uI
(|X| > t

)
. (.)

3 Main results and proofs
Now we state and prove our main results.

Theorem . Let {Xn; n ≥ } be a sequence of NSD random variables which is stochasti-
cally dominated by a random variable X, and bn = n/α(log n)/γ for some  < α ≤  and
γ > . Let {ani;  ≤ i ≤ n, n ≥ } be an array of constants satisfying

∑n
i= |ani|γ = O(n). As-

sume further that EXn =  when  < α ≤ . Then:
(i) If α < γ , then E|X|γ < ∞ implies (.).

(ii) If α = γ , then E|X|α log( + |X|) < ∞ implies (.).

Theorem . Let {Xn; n ≥ } be a sequence of NSD random variables which is stochasti-
cally dominated by a random variable X, and bn = n/α(log n)/γ for some  < α ≤  and
γ > . Let {ani;  ≤ i ≤ n, n ≥ } be an array of constants satisfying

∑n
i= |ani|α = O(n). As-

sume further that EXn =  when  < α ≤ . If α > γ , then E|X|α/(log( + |X|))α/γ – < ∞
implies (.).

Remark . In Theorem . and Theorem ., we use different methods from those of
Sung [] and Chen and Sung [] to prove the results, and obtain some strong convergence
results for weighted sums of NSD random variables without assumptions of identical dis-
tribution. The obtained theorems not only extend the corresponding results of Cai []
and Sung [] and Chen and Sung [] to the case of NSD random variables, but they also
improve them.



Meng et al. Journal of Inequalities and Applications  (2017) 2017:269 Page 5 of 14

Proof of Theorem . Without loss of generality, we suppose that ani > . For ∀i ≥ , define

Yi = –bnI(aniXni < –bn) + aniXniI
(|aniXni| ≤ bn

)
+ bnI(aniXni > bn),

Tj =
j∑

i=

(Yi – EYi), j = , , . . . , n.

It is easy to check that, for all ε > ,

{

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

aniXi

∣∣
∣∣
∣

> εbn

}

⊂
{

max
≤j≤n

|anjXj| > bn

}
∪

{

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Yi

∣∣
∣∣
∣

> εbn

}

, (.)

which implies that

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

aniXi

∣
∣∣
∣∣

> εbn

)

≤ P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Yi

∣∣
∣∣
∣

> εbn

)

+ P
(

max
≤j≤n

|anjXj| > bn

)

≤ P

(

max
≤j≤n

|Tj| > εbn – max
≤j≤n

∣∣
∣∣
∣

j∑

i=

EYi

∣∣
∣∣
∣

)

+
n∑

j=

P
(|anjXj| > bn

)
. (.)

Firstly, we prove that

b–
n max

≤j≤n

∣∣
∣∣∣

j∑

i=

EYi

∣∣
∣∣∣
→ , as n → ∞. (.)

If  < α ≤ , then by EXn = , Lemma ., Definition ., the Cr inequality, the Markov
inequality and the Hölder inequality, we get

b–
n max

≤j≤n

∣∣
∣∣
∣

j∑

i=

EYi

∣∣
∣∣
∣
≤ b–

n

n∑

i=

|EYi|

≤ b–
n

n∑

i=

∣
∣EaniXiI

(|aniXi| ≤ bn
)∣∣ +

n∑

i=

P
(|aniXi| > bn

)

≤ Cb–
n

n∑

i=

E|aniX|I(|aniX| > bn
)

+ C
n∑

i=

P
(|aniX| > bn

)

≤ Cb–α
n

n∑

i=

E|aniX|αI
(|aniX| > bn

)
+ Cb–α

n

n∑

i=

E|aniX|α

≤ Cb–α
n

n∑

i=

E|aniX|α + Cb–α
n

n∑

i=

E|aniX|α

≤ Cb–α
n

n∑

i=

|ani|γ E|X|α

≤ C(log n)–α/γ → , as n → ∞. (.)
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If  < α ≤ , then by Lemma ., Definition ., the Cr inequality and the Markov inequal-
ity, we get again

b–
n max

≤j≤n

∣∣
∣∣∣

j∑

i=

EYi

∣∣
∣∣∣
≤ b–

n

n∑

i=

|EYi|

≤ b–
n

n∑

i=

∣∣EaniXiI
(|aniXi| ≤ bn

)∣∣ +
n∑

i=

P
(|aniXi| > bn

)

≤ Cb–
n

n∑

i=

[
E|aniX|I(|aniX| ≤ bn

)
+ bnP

(|aniX| > bn
)]

+ C
n∑

i=

P
(|aniX| > bn

)

≤ Cb–α
n

n∑

i=

E|aniX|α + Cb–α
n

n∑

i=

E|aniX|α

≤ Cb–α
n

n∑

i=

|ani|γ E|X|α

≤ C(log n)–α/γ → , as n → ∞. (.)

It immediately follows from (.) and (.), that (.) holds. Hence, for n large enough,

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

aniXi

∣∣
∣∣
∣

> εbn

)

≤
n∑

i=

P
(|aniXi| > bn

)
+ P

(
max
≤j≤n

∣∣∣
∣Tj >

εbn



∣∣∣
∣

)
. (.)

Then, to prove (.), it suffices to prove that

I �
∞∑

n=


n

n∑

i=

P
(|aniXi| > bn

)
< ∞ (.)

and

J �
∞∑

n=


n

P
(

max
≤j≤n

|Tj| >
εbn



)
< ∞. (.)

By Lemma ., we can easily obtain

I �
∞∑

n=


n

n∑

i=

P
(|aniXi| > bn

)

≤ C
∞∑

n=


n

n∑

i=

P
(|aniX| > bn

)
< ∞. (.)

For fixed n ≥ , it is easily seen that {Yi;  ≤ i ≤ n} is still a sequence of NSD random
variables by Lemma .. Hence, for p > , it follows from Lemma ., the Markov inequality
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and the Jensen inequality that

J �
∞∑

n=


n

P
(

max
≤j≤n

|Tj| >
εbn



)

≤ C
∞∑

n=


n

b–p
n E

(
max
≤j≤n

|Tj|p
)

≤ C
∞∑

n=

n–b–p
n

( n∑

i=

E|Yi – EYi|p +

( n∑

i=

E|Yi – EYi|
)p/)

≤ C
∞∑

n=

n–b–p
n

n∑

i=

E|Yi|p + C
∞∑

n=

n–b–p
n

( n∑

i=

E|Yi|
)p/

� J + J. (.)

Firstly, we prove J < ∞. By Lemma ., we obtain

J � C
∞∑

n=

n–b–p
n

n∑

i=

E|Yi|p

≤ C
∞∑

n=

n–b–p
n

n∑

i=

[
E|aniX|pI

(|aniX| ≤ bn
)

+ bp
nP

(|aniX| > bn
)]

= C
∞∑

n=

n–b–p
n

n∑

i=

E|aniX|pI
(|aniX| ≤ bn

)
+ C

∞∑

n=

n–
n∑

i=

P
(|aniX| > bn

)

� J + J. (.)

Actually, by Lemma ., we can directly obtain J < ∞. Hence, we only need to prove
J < ∞ in the following two cases.

(i) If α < γ , take p > max{,γ }, then by
∑n

i= |ani|γ ≤ Cn and E|X|γ < ∞ it follows that

J = C
∞∑

n=

n–b–p
n

n∑

i=

E|aniX|pI
(|aniX| ≤ bn

)

= C
∞∑

n=

n–
n∑

i=

E
∣
∣∣
∣
aniX
bn

∣
∣∣
∣

p

I
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–
n∑

i=

E
∣
∣∣
∣
aniX
bn

∣
∣∣
∣

γ

I
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–γ
n

n∑

i=

E|aniX|γ I
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–γ
n

n∑

i=

|ani|γ E|X|γ

≤ C
∞∑

n=

n–n–γ /α(log n)–nE|X|γ

≤ C
∞∑

n=

n–γ /α(log n)– < ∞. (.)
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(ii) If α = γ , we need to divide {ani;  ≤ i ≤ n, n ≥ } into three subsets: {ani : |ani| ≤
/(log n)t}, {ani : /(log n)t < |ani| ≤ } and {ani : |ani| > }, where t = /(p – α). Then we
obtain

J = C
∞∑

n=

n–b–p
n

n∑

i=

E|aniX|pI
(|aniX| ≤ bn

)

= C
∞∑

n=

n–b–p
n

n∑

i:|ani|≤/(log n)t

E|aniX|pI
(|aniX| ≤ bn

)

+ C
∞∑

n=

n–b–p
n

n∑

i:/(log n)t<|ani|≤

E|aniX|pI
(|aniX| ≤ bn

)

+ C
∞∑

n=

n–b–p
n

n∑

i:|ani|>

E|aniX|pI
(|aniX| ≤ bn

)

� J + J + J. (.)

Obviously, by Lemma ., we directly obtain J ≤ E|X|α log ( + |X|) < ∞.
It follows from

∑
i:|ani|≤/(log n)t |ani|α ≤ Cn(log n)–tα and E|X|α < ∞ that

J = C
∞∑

n=

n–b–p
n

n∑

i:|ani|≤/(log n)t

E|aniX|pI
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–p
n

n∑

i:|ani|≤/(log n)t

|ani|pE|X|pI
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–α
n

n∑

i:|ani|≤/(log n)t

|ani|αE|X|αI
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–α
n E|X|α

n∑

i:|ani|≤/(log n)t

|ani|α

≤ C
∞∑

n=

n–b–α
n E|X|α

n∑

i:|ani|≤/(log n)t

|ani|α

≤ C
∞∑

n=

E|X|αn–(log n)––tα

≤ C
∞∑

n=

n–(log n)––tα < ∞. (.)

It follows from
∑

i:/(log n)t<|ani|≤ |ani|p ≤ Cn, E|X|α < ∞ and t = /(p–α) for p > ,  < α ≤ 
that

J = C
∞∑

n=

n–b–p
n

n∑

i:/(log n)t<|ani|≤

E|aniX|pI
(|aniX| ≤ bn

)

≤ C
∞∑

n=

n–b–p
n

n∑

i:/(log n)t<|ani|≤

|ani|pE|X|pI
(|aniX| ≤ bn

)
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≤ C
∞∑

n=

b–p
n E|X|pI

(|X| ≤ bn(log n)t)

≤ C
∞∑

n=

b–p
n

n∑

k=

E|X|pI
(
(k – )/α(

log (k – )
)t+/α < |X| ≤ k/α(log k)t+/α)

≤ C
∞∑

k=

E|X|pI
(
(k – )/α(

log (k – )
)t+/α < |X| ≤ k/α(log k)t+/α)

×
∞∑

n=k

n–p/α(log n)–p/α

≤ C
∞∑

k=

E|X|α kp/α(log k)p(t+/α)

(k – )(log (k – ))αt+ k–p/α(log k)–p/α

≤ CE|X|α < ∞. (.)

Therefore, by (.)-(.), we can see that J < ∞. Finally, we prove J < ∞. Actually, take
p > max{, γ

α
}, then by Lemma ., the Markov inequality and E|X|γ < ∞, we get

J = C
∞∑

n=

n–b–p
n

( n∑

i=

E|Yi|
)p/

≤ C
∞∑

n=

n–b–p
n

( n∑

i=

E|aniXi|I
(|aniXi| ≤ bn

)
)p/

+ C
∞∑

n=

n–b–p
n

( n∑

i=

b
nP

(|aniXi| > bn
)
)p/

≤ C
∞∑

n=

n–b–p
n

( n∑

i=

[
E|aniX|I

(|aniX| ≤ bn
)

+ b
nP

(|aniX| > bn
)]

)p/

+ C
∞∑

n=

n–

( n∑

i=

P
(|aniX| > bn

)
)p/

≤ C
∞∑

n=

n–

( n∑

i=

b–
n E|aniX|I

(|aniX| ≤ bn
)
)p/

+ C
∞∑

n=

n–

( n∑

i=

P
(|aniX| > bn

)
)p/

≤ C
∞∑

n=

n–

( n∑

i=

b–α
n E|aniX|αI

(|aniX| ≤ bn
)
)p/

+ C
∞∑

n=

n–

( n∑

i=

b–α
n E|aniX|α

)p/

≤ C
∞∑

n=

n–b–αp/
n

( n∑

i=

|ani|αE|X|α
)p/
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≤ C
∞∑

n=

n–b–αp/
n np/

= C
∞∑

n=

n–n–p/(log n)– αp
γ np/

= C
∞∑

n=

n–(log n)– αp
γ < ∞. (.)

Thus, the proof of Theorem . is completed. �

Proof of Theorem . Without loss of generality, we suppose that ani > . For ∀i ≥ , define

Zi = aniXniI
(|aniXni| ≤ bn

)
.

It is easy to check that, for all ε > ,

{

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

aniXi

∣
∣∣
∣∣

> εbn

}

⊂
{

max
≤j≤n

|anjXj| > bn

}
∪

{

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Zi

∣
∣∣
∣∣

> εbn

}

,

which implies that

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

aniXi

∣∣
∣∣
∣

> εbn

)

≤ P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Zi

∣
∣∣
∣∣

> εbn

)

+ P
(

max
≤j≤n

|anjXj| > bn

)

≤ P

(

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

Zi

∣
∣∣∣
∣

> εbn

)

+
n∑

j=

P
(|anjXj| > bn

)
. (.)

To prove (.), it suffices to show that

H �
∞∑

n=


n

n∑

i=

P
(|aniXi| > bn

)
< ∞ (.)

and

L �
∞∑

n=


n

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Zi

∣
∣∣
∣∣

> εbn

)

< ∞. (.)

We first prove (.). Note that

P
(|aniXi| > bn

)
= P

(|aniXi| > bn, |Xi| > bn
)

+ P
(|aniXi| > bn, |Xi| ≤ bn

)
. (.)

By the Markov inequality, we get

P
(|aniXi| > bn, |Xi| > bn

) ≤ b–θ
n |ani|θ E|Xi|θ I

(|Xi| > bn
)

(.)
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for any  < θ < α and

P
(|aniXi| > bn, |Xi| ≤ bn

) ≤ b–α
n |ani|αE|Xi|αI

(|Xi| ≤ bn
)
. (.)

It is easy to show that

∞∑

n=

n–b–θ
n

n∑

i=

|ani|θ E|Xi|θ I
(|Xi| > bn

)

≤ C
∞∑

n=

b–θ
n E|X|θ I

(|X| > bn
)

≤ CE|X|α/
(
log

(
 + |X|))α/γ < ∞ (.)

and

∞∑

n=

n–b–α
n

n∑

i=

|ani|αE|Xi|αI
(|Xi| ≤ bn

)

≤ C
∞∑

n=

b–α
n

[
E|X|αI

(|X| ≤ bn
)

+ bα
nP

(|X| > bn
)]

≤ C
∞∑

n=

b–α
n E|X|αI

(|X| ≤ bn
)

+ C
∞∑

n=

P
(|X| > n/α(log n)/γ )

≤ CE|X|α/
(
log

(
 + |X|))α/γ – + CE|X|α/

(
log

(
 + |X|))α/γ < ∞. (.)

Then, (.) holds by (.)-(.). Now we prove (.) in the following two cases.
(i) If  < α ≤ , similar to the proof of (.), we have

E|aniXi|αI
(|aniXi| ≤ bn

)
= E|aniXi|αI

(|aniXi| ≤ bn, |Xi| > bn
)

+ E|aniXi|αI
(|aniXi| ≤ bn, |Xi| ≤ bn

)
. (.)

Note that

E|aniXi|αI
(|aniXi| ≤ bn, |Xi| > bn

) ≤ bα–θ
n |ani|θ E|Xi|θ I

(|Xi| > bn
)

(.)

for any  < θ < α and

E|aniXi|αI
(|aniXi| ≤ bn, |Xi| ≤ bn

) ≤ |ani|αE|Xi|αI
(|Xi| ≤ bn

)
. (.)

By the Markov inequality, the Cr inequality and (.)-(.), we obtain

L ≤
∞∑

n=

n–b–α
n

n∑

i=

E|aniXi|αI
(|aniXi| ≤ bn

)
< ∞. (.)

(ii) If  < α ≤ , we first prove that

b–
n max

≤j≤n

∣
∣∣
∣∣

j∑

i=

EaniXiI
(|aniXi| ≤ bn

)
∣
∣∣
∣∣
→ , as n → ∞. (.)
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By EXn = , we have

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

EaniXiI
(|aniXi| ≤ bn

)
∣∣
∣∣
∣
≤

n∑

i=

E|aniXi|I
(|aniXi| > bn

)

=
n∑

i=

E|aniXi|I
(|aniXi| > bn, |Xi| > bn

)

+
n∑

i=

E|aniXi|I
(|aniXi| > bn, |Xi| ≤ bn

)
. (.)

Since

E|aniXi|I
(|aniXi| > bn, |Xi| > bn

)

≤ |ani|E|X|I(|X| > bn
)

= |ani|E
( |X|α

(log( + |X|))α/γ – · |X|–α
(
log

(
 + |X|))α/γ –

)
I
(|X| > bn

)

≤ Cb–α
n

(
log ( + bn)

)α/γ –|ani|
≤ Cn–+/α(log n)/γ –|ani| (.)

and

E|aniXi|I
(|aniXi| > bn, |Xi| ≤ bn

)

≤ E|aniXi| · |aniXi|α–

bα–
n

I
(|Xi| ≤ bn

)

≤ b–α
n |ani|αE|Xi|αI

(|Xi| ≤ bn
)

≤ Cb–α
n |ani|αE|X|αI

(|X| ≤ bn
)

+ Cbn|ani|αP
(|X| > bn

)

≤ Cb–α
n |ani|αE|X|αI

(|X| ≤ bn
)

+ Cb–α
n |ani|αE|X|α

≤ Cb–α
n |ani|αE

( |X|α
(log( + |X|))α/γ – · (log

(
 + |X|))α/γ –

)

≤ Cn–+/α(log n)/γ –|ani|α , (.)

we have

b–
n

n∑

i=

E|aniXi|I
(|aniXi| > bn, |Xi| > bn

) ≤ Cb–
n n–+/α(log n)/γ –

n∑

i=

|ani|

≤ C(log n)– → , as n → ∞ (.)

and

b–
n

n∑

i=

E|aniXi|I
(|aniXi| > bn, |Xi| ≤ bn

) ≤ Cb–
n n–+/α(log n)/γ –

n∑

i=

|ani|α

≤ C(log n)– → , as n → ∞. (.)
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Thus, (.) holds by (.)-(.). Therefore, we only need to prove that

∞∑

n=


n

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

(Zi – EZi)

∣
∣∣
∣∣

> εbn

)

< ∞. (.)

Actually, by the Markov inequality, Lemma ., Lemma ., (.) and (.), we get

∞∑

n=


n

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

(Zi – EZi)

∣∣
∣∣
∣

> εbn

)

.

≤ C
∞∑

n=

n–b–
n

n∑

i=

E(Zi – EZi)

≤ C
∞∑

n=

n–b–
n

n∑

i=

E|aniXi|I
(|aniXi| ≤ bn

)

≤ C
∞∑

n=

n–b–
n

n∑

i=

E|aniX|I
(|aniX| ≤ bn

)
+ C

∞∑

n=

n–
n∑

i=

P
(|aniX| > bn

)

≤ C
∞∑

n=

n–b–
n

n∑

i=

E
(|aniX|α · |aniX|–α

)
I
(|aniX| ≤ bn

)
+ C

≤ C
∞∑

n=

n–b–α
n

n∑

i=

E|aniX|αI
(|aniX| ≤ bn

)
< ∞. (.)

Thus, the proof of Theorem . is completed. �

4 Conclusions
In this paper, we use different methods from those of Sung [] and Chen and Sung [] to
prove the results, and we obtain some strong convergence results for weighted sums of
NSD random variables without the assumption of an identical distribution. Our results
extend and improve the corresponding ones of Cai [] and Sung [] and Chen and Sung
[] to the case of NSD random variables.
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