
Luo and Zhang Journal of Inequalities and Applications  (2017) 2017:253 
DOI 10.1186/s13660-017-1529-2

R E S E A R C H Open Access

Robust solutions to box-constrained
stochastic linear variational inequality
problem
Mei-Ju Luo* and Yan Zhang

*Correspondence:
mjluo_office@sina.com
School of Mathematics, Liaoning
University, Liaoning, 110036, China

Abstract
We present a new method for solving the box-constrained stochastic linear
variational inequality problem with three special types of uncertainty sets. Most
previous methods, such as the expected value and expected residual minimization,
need the probability distribution information of the stochastic variables. In contrast,
we give the robust reformulation and reformulate the problem as a quadratically
constrained quadratic program or convex program with a conic quadratic inequality
quadratic program, which is tractable in optimization theory.
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1 Introduction
Variational inequality theory is an important branch in operations research. Recall that
the variational inequality problem, denoted by VI(X, F), is to find a vector x∗ ∈ X such
that

(
x – x∗)T F

(
x∗) ≥ , ∀x ∈ X, ()

where X ⊆ Rn is a non-empty closed convex set, F : X → Rn is a given function. A par-
ticularly important class of VI(X, F) is the box-constrained variational inequality problem
(see []), denoted by VI(l, u, F), where X = D = {x ∈ Rn | l ≤ x ≤ u}, l := (l, . . . , ln)T , u :=
(u, . . . , un)T , along with the lower bounds li ∈ R ∪ {–∞}, the upper bounds ui ∈ R ∪ {+∞}
and li < ui for all i = , . . . , n. To obtain the solutions of VI(l, u, F), many methods are pre-
sented based on the KKT system, which is given as follows:

xi – li ≥ , Fi(x) + yi ≥ , (xi – li)
(
Fi(x) + yi

)
= ,

ui – xi ≥ , yi ≥ , (ui – xi)yi = .
()

Note that this KKT system is a complementarity problem in fact.
The box-constrained variational inequality problem has many applications ranging from

operations research to economic equilibrium and engineering problems []. However,
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some elements may involve uncertain data in practice. For example, the demands are
generally difficult to be determined in supply chain network, because they vary with the
change of income level [, ]. Moreover, in traffic equilibrium problems, the selfish users’
attempt to minimize travel cost leads the equilibrium (or steady-state) flows to uncertainty
[–].

For the existence of stochastic elements, the solutions of stochastic variational inequality
problem would change with stochastic elements respectively. In order to meet the needs in
practice, many researchers begin to consider the following stochastic variational inequal-
ity problem, denoted by SVI(X, F), which requires an x∗ such that

(
x – x∗)T F

(
x∗,ω

) ≥ , ∀x ∈ X,ω ∈ �, a.s., ()

where ω ∈ � ⊆ Rτ is a stochastic vector and a.s. is the abbreviation for ‘almost surely’
under the given probability measure. Particularly, if F(x,ω) := M(ω)x + q(ω) and X = D =
{x ∈ Rn, l ≤ x ≤ u} is a non-empty set, where M(ω) : � → Rn×n and q(ω) : � → Rn are
mappings with respect to ω, we then call problem () box-constrained stochastic linear
variational inequality problem, denoted by SLVI(l, u, F). Following from (), the KKT sys-
tem of SLVI(l, u, F) can be rewritten as

 ≤
(

t
y

)

⊥
[

M(ω) I
–I 

](
t
y

)

+

(
M(ω)l + q(ω)

u – l

)

≥ , ()

where t = x – l ∈ Rn
+ and

( t
y
) ∈ Rn

+ are vectors, I denotes an n-dimensional identify matrix
and  represents a zero matrix with suitable dimension.

Before proceeding, we briefly touch upon earlier efforts about SVI(X, F). For example,
the expected value (EV) method [–] and the expected residual minimization (ERM)
method [–] focused on minimizing the average or the average of expected residual.
These methods needed the information of a probability distribution and focused on pro-
viding estimators of local solutions. In the spirit of robust approaches, instead of ERM or
EV, we consider the minimization of the worst-case residual over a particular uncertainty
set �.

By employing KKT system (), we give the robust reformulation of SLVI(l, u, F) as fol-
lows:

min max
ω∈�

(
tT , yT)

([
M(ω) I

–I 

](
t
y

)

+

(
M(ω)l + q(ω)

u – l

))

,

s.t. min
ω∈�

[
M(ω) I

–I 

](
t
y

)

+

(
M(ω)l + q(ω)

u – l

)

≥ ,

t, y ≥ .

()



Luo and Zhang Journal of Inequalities and Applications  (2017) 2017:253 Page 3 of 15

Obviously, () can be rewritten as follows:

min z

s.t. max
ω∈�

(
tT , yT)

([
M(ω) I

–I 

](
t
y

)

+

(
M(ω)l + q(ω)

u – l

))

≤ z,

min
ω∈�

[
M(ω) I

–I 

]

j

(
t
y

)

+

(
M(ω)l + q(ω)

u – l

)

j

≥ , ∀j = , . . . , n,

t, y ≥ .

()

Note that
( t

y
) ≥  solves () if and only if

( t
y
)

is a solution of () with optimal value zero
by Lemma . in [].

The organization of this paper is as follows. In Section , we discuss the tractable robust
counterparts of monotone SLVI(l, u, F) in different uncertain sets. Non-monotone gener-
alizations and their tractable robust counterparts form the core of Section . In Section ,
we give the conclusions.

2 Tractable robust counterparts of monotone SLVI(l, u, F)
To begin with, we provide robust counterparts in regimes where M(ω) is a stochastic pos-
itive semidefinite matrix and q(ω) is a stochastic vector with ω ∈ � and ω ∈ �, where
� and � are uncertainty sets. � contains �∞ and �

. These two types of uncertainty
sets state as follows:

�
∞ =

{
ω : ‖ω‖∞ ≤ ,ω ≥ 

}
and �

 =
{
ω : ‖ω‖ ≤ ,ω ≥ 

}
.

� contains �∞, �
 and �

, these three types of uncertainty sets state as follows:

�
∞ =

{
ω : ‖ω‖∞ ≤ 

}
, �

 =
{
ω : ‖ω‖ ≤ 

}
and �

 =
{
ω : ‖ω‖ ≤ 

}
.

Here, ‖ · ‖∞,‖ · ‖,‖ · ‖ denotes infinite norm, -norm and -norm, respectively. More-
over, we define M(ω) = M +

∑S
s= ω

s Ms, q(ω) = q +
∑S

s= ω
s qs, where Ms, s = , . . . , S,

is an n-dimensional symmetric positive semidefinite matrix and qs, s = , . . . , S, is an n-
dimensional vector. Without loss of generality, we assume that M(ω) is symmetric; if not,
we may replace the matrixes by their symmetrized counterparts. This assumption guar-
antees

[ M(ω) I
–I 

]( t
y
)

+
( M(ω)l+q(ω)

u–l

)
is monotone on Rn

+ (see []).
In this section, we first consider the case when � = �∞, the robust counterpart of

SLVI(l, u, F), and then focus on the case � = �
 while ω ∈ �. We now prove that ro-

bust problem () can be reformulated as a quadratically constrained quadratic program
(QCQP) or convex program with a conic quadratic inequality quadratic program [, ]
under the different uncertain sets.

Theorem  Consider the optimization problem () with ω ∈ �∞ and M(ω) = M +
∑S

s= ω
s Ms, q(ω) = q +

∑S
s= ω

s qs. Then () can be reformulated respectively as QCQP
or convex program with a conic quadratic inequality quadratic program while ω belongs
to different sets of �.
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Proof Case : � = �∞.
We first give the equivalent reformulation of the first constraint in problem () as fol-

lows:

tT Mt + max
ω

s ∈�∞

( S∑

s=

ω
s tT Mst

)

+
(
tT , yT)

(
Ml + q

u – l

)

+ max
ω

s ∈�∞

( S∑

s=

ω
s tT Msl

)

+ max
ω

s ∈�∞

( S∑

s=

ω
s tT qs

)

≤ z. ()

Noting that ‖η‖ = max‖ω‖∞≤ ηTω, we evaluate the maximum in the above formulation
as follows:

max
ω

s ∈�∞

( S∑

s=

ω
s tT Mst

)

=
S∑

s=

max
ω

s ∈[,]

(
ω

s tT Mst
)

=
S∑

s=

max
(
tT Mst, 

)
=

S∑

s=

tT Mst, ()

where the last equality is obtained by applying the positive semidefiniteness of Ms for
s = , . . . , S. Similarly, we have

max
ω

s ∈�∞

( S∑

s=

ω
s tT Msl

)

=
S∑

s=

tT Msl, ()

max
ω

s ∈�∞

( S∑

s=

ω
s tT qs

)

=

∥
∥∥
∥∥∥
∥∥

⎛

⎜⎜
⎝

tT q
...

tT qS

⎞

⎟⎟
⎠

∥
∥∥
∥∥∥
∥∥



=
S∑

s=

∣∣tT qs
∣∣. ()

Hence, reformulation () can be rewritten as:

tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+
S∑

s=

tT Msl +
S∑

s=

∣∣tT qs
∣∣ ≤ z.

We then give the equivalent form of the second constraint in problem () as follows:

[
M I
–I 

]

j

(
t
y

)

+ min
ω

s ∈�∞

[∑S
s= ω

s Ms 
 

]

j

(
t
y

)

+

(
Ml + q

u – l

)

j

+ min
ω

s ∈�∞

(∑S
s= ω

s Msl


)

j

+ min
ω

s ∈�∞

(∑S
s= ω

s qs



)

j

≥ , j = , . . . , n. ()

After a simple calculation, for i = , . . . , n, s = , . . . , S, we have

min
ω

s ∈�∞

[∑S
s= ω

s Ms 
 

]

j

(
t
y

)

=
S∑

s=

min
ω

s ∈[,]
ω

s [Ms]it =
S∑

s=

min
(
[Ms]it, 

)
= –

S∑

s=

max
(
–[Ms]it, 

)
.
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Similarly, we have minω
s ∈�∞ (

∑S
s= ω

s Msl)i = –
∑S

s= max(–[Ms]il, ) and

min
ω

s ∈�∞

( S∑

s=

ω
s qs

)

i

= – max
ω

s ∈�∞

(

–
S∑

s=

ω
s qs

)

i

= –
S∑

s=

∣∣(qs)i
∣∣. ()

By the fact that the upper bound u ≥ x, we simplify formulation () as follows:

[M]it + yi –
S∑

s=

max
(
–[Ms]it, 

)
+ [M]il + (q)i

–
S∑

s=

max
(
–[Ms]il, 

)
–

S∑

s=

∣
∣(qs)i

∣
∣ ≥ .

Here, i = , . . . , n and for a given vector x ∈ Rn, |x| = (|x|, . . . , |xn|)T . Then problem () can
be rewritten as follows:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+
S∑

s=

tT Msl +
S∑

s=

∣∣tT qs
∣∣ ≤ z,

[M]it + yi –
S∑

s=

max
(
–[Ms]it, 

)
+ [M]il + (q)i

–
S∑

s=

max
(
–[Ms]il, 

)
–

S∑

s=

∣∣(qs)i
∣∣ ≥ , i = , . . . , n,

t, y ≥ .

Since it is difficult to compute maximum and absolute value functions, we can eliminate
them by increasing relaxation variables as ∈ R+,αs,βs ∈ Rn

+, s = , . . . , S. Then the above
problem can be converted to QCQP:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+
S∑

s=

tT Msl +
S∑

s=

as ≤ z,

Mt + Ml + y + q –
S∑

s=

αs –
S∑

s=

βs –
S∑

s=

|qs| ≥ ,

–as ≤ tT qs ≤ as,

Mst + αs ≥ ,

Msl + βs ≥ ,

as,αs,βs ≥ , s = , . . . , S,

t, y ≥ .

Case : � = �
 .
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We first replace ω
s ∈ �∞ in formulation () by ω

s ∈ �
 and noting that ‖η‖∞ =

max‖ω‖≤ ωTη, then for i = , . . . , n, we have

max
ω

s ∈�


( S∑

s=

ω
s tT qs

)

= max
ω

s ∈�


(
ω)T

⎛

⎜⎜
⎝

tT q
...

tT qS

⎞

⎟⎟
⎠ =

∥∥∥
∥∥
∥∥
∥

⎛

⎜⎜
⎝

tT q
...

tT qS

⎞

⎟⎟
⎠

∥∥∥
∥∥
∥∥
∥

∞

= max
s={,...,S}

∣∣tT qs
∣∣ ()

and

min
ω

s ∈�


( S∑

s=

ω
s qs

)

i

= – max
ω

s ∈�


(

–
S∑

s=

ω
s qs

)

i

= – max
s∈{,...,S}

∣∣(qs)i
∣∣. ()

After a simple calculation, problem () can be rewritten as follows:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+
S∑

s=

tT Msl + max
s∈{,...,S}

∣∣tT qs
∣∣ ≤ z,

[M]it + yi –
S∑

s=

max
(
–[Ms]it, 

)
+ [M]il + [q]i

–
S∑

s=

max
(
–[Ms]il, 

)
– max

s∈{,...,S}
∣
∣(qs)i

∣
∣ ≥ , i = , . . . , n,

t, y ≥ .

In order to calculate easily, we introduce variables a ∈ R+,αs,βs ∈ Rn
+, s = , . . . , S. Then we

obtain the following QCQP:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+
S∑

s=

tT Msl + a ≤ z,

Mt + Ml + y + q –
S∑

s=

αs –
S∑

s=

βs – |qs| ≥ ,

–a ≤ tT qs ≤ a,

Mst + αs ≥ ,

Msl + βs ≥ ,

αs,βs ≥ , s = , . . . , S,

a, t, y ≥ .

Case : � = �
.

Firstly, we use ω
s ∈ �

 instead of ω
s ∈ �∞ in formulation (). By Example .. in [], it

is seen that max‖ω‖≤r ωTη = r ηT η

‖η‖
= r‖η‖, which implies that max‖ω‖≤ ωTη = ‖η‖ and
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min‖ω‖≤ ωTη = – ηT η

‖η‖
= –‖η‖. As a result, for every i = , . . . , n, we have

max
ω

s ∈�


( S∑

s=

ω
s tT qs

)

= max
ω

s ∈�


(
ω)T

⎛

⎜⎜
⎝

tT q
...

tT qS

⎞

⎟⎟
⎠ =

∥
∥∥
∥∥∥
∥∥

⎛

⎜⎜
⎝

tT q
...

tT qS

⎞

⎟⎟
⎠

∥
∥∥
∥∥∥
∥∥



=

√√√√
S∑

s=

(
tT qs

) ()

and

min
ω

s ∈�


( S∑

s=

ω
s
∣
∣(qs)i

∣
∣
)

= min
ω

s ∈�


(
ω)T

⎛

⎜
⎜
⎝

(q)i
...

(qS)i

⎞

⎟
⎟
⎠ = –

∥∥
∥∥
∥∥
∥∥

⎛

⎜
⎜
⎝

(q)i
...

(qS)i

⎞

⎟
⎟
⎠

∥∥
∥∥
∥∥
∥∥



= –

√√
√√

S∑

s=

(qs)
i . ()

After a simple calculation, for i = , . . . , n, problem () can be rewritten as follows:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
M + q

u – l

)

+
S∑

s=

tT Msl +

√√√
√

S∑

s=

(
tT qs

) ≤ z,

[M]it + yi –
S∑

s=

max
(
–[Ms]it, 

)
+ [M]il + [q]i

–
S∑

s=

max
(
–[Ms]il, 

)
–

√√√
√

S∑

s=

(qs)
i ≥ ,

t, y ≥ .

Through adding variables a ∈ R+,αs,βs ∈ Rn
+, s = , . . . , S, the above problem can be refor-

mulated as the following convex program with a conic quadratic inequality quadratic pro-
gram:

min z

s.t. tT

[

M +
S∑

s=

Ms

]

t +
(
tT , yT)

(
M + q

u – l

)

+
S∑

s=

tT Msl + a ≤ z,

Mt + Ml + y + q –
S∑

s=

αs –
S∑

s=

βs –

√√√
√

S∑

s=

(qs) ≥ ,

√√√
√

S∑

s=

(
tT qs

) ≤ a,

Mst + αs ≥ ,

Msl + βs ≥ ,

αs,βs ≥ , s = , . . . S,

a, t, y ≥ .

These complete the proof. �
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We now consider the robust counterpart of () defined by � = �
 and ω ∈ �.

Theorem  Consider the optimization problem () where ω ∈ �
 and M(ω) = M +

∑S
s= ω

s Ms, q(ω) = q +
∑S

s= ω
s qs. Then () can be reformulated as QCQP or convex pro-

gram with a conic quadratic inequality quadratic program while ω belongs to different
sets of �.

Proof Case : � = �∞.
We first consider the equivalent form of quadratic constraint in problem (), it can be

represented as

tT Mt + max
ω

s ∈�


( S∑

s=

ω
s tT Mst

)

+
(
tT , yT)

(
Ml + q

u – l

)

+ max
ω

s ∈�


( S∑

s=

ω
tT Msl

)

+ max
ω

s ∈�∞

( S∑

s=

ω
s tT qs

)

≤ z. ()

We then have to evaluate the result of maximum in the above formulation by ‖η‖∞ =
max‖ω‖≤ ηTω that

max
ω

s ∈�


( S∑

s=

ω
s tT Mst

)

= max
s∈{,...,S}

(
max

(
tT Mst, 

))
= max

s∈{,...,S}
tT Mst. ()

Here, we can obtain the last equality by applying the positive semidefiniteness of Ms for
s = , . . . , S. Similarly, we have

max
ω

s ∈�


( S∑

s=

ω
s tT Msl

)

= max
s∈{,...,S}

tT Msl. ()

It then follows from () that formulation () can be rewritten as

tT [M + Ms]t +
(
tT , yT)

(
Ml + q

u – l

)

+ tT Msl +
S∑

s=

∣∣tT qs
∣∣ ≤ z.

We then give the equivalent component form of the second constraint in problem ()
by formulation () as follows:

[M]it + yi + [M]il – max
s∈{,...,S}

(
max

(
–[Ms]it, 

))
– max

s∈{,...,S}
(
max

(
–[Ms]il, 

))
–

S∑

s=

∣
∣(qs)i

∣
∣ ≥ 

⇔ max
(
–[Ms]it, 

)
+ max

(
–[Ms]il, 

) ≤ [M]it + yi + [M]il + [q]i –
S∑

s=

∣∣(qs)i
∣∣

⇔ max(–Mst, ) + max(–Msl, ) ≤ Mt + y + Ml + q –
S∑

s=

|qs|,

i = , . . . , n, s = , . . . , S.
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Finally, by adding variables as ∈ R+, s = , . . . , S,α,β ∈ Rn
+, we obtain QCQP as follows:

min z

s.t. tT (M + Ms)t +
(
tT , yT)

(
Ml + q

u – l

)

+ tT Msl +
S∑

s=

as ≤ z, s = , . . . , S,

Mt + Ml + y + q – α – β –
S∑

s=

|qs| ≥ ,

–as ≤ tT qs ≤ as,

Mst + α ≥ ,

Msl + β ≥ ,

as ≥ , s = , . . . , S,

α,β , t, y ≥ .

Inspired by Case , we derive the conclusions of Case  and Case .
Case : � = �

 .
We replace ω

s ∈ �∞ in formulation () by ω
s ∈ �

 and combining with (), (), ()
and (), by adding variables a ∈ R+,α,β ∈ Rn

+, problem () can be reformulated as the
following QCQP:

min z

s.t. tT (M + Ms)t +
(
tT , yT)

(
Ml + q

u – l

)

+ tT Msl + a ≤ z,

Mt + Ml + y + q – α – β – |qs| ≥ ,

–a ≤ tT qs ≤ a,

Mst + α ≥ ,

Msl + β ≥ , s = , . . . , S,

a,α,β , t, y ≥ .

Case : � = �
.

We use ω
s ∈ �

 instead of ω
s ∈ �∞ in formulation () and taking (), (), () and

() into account, by adding variables a ∈ R+,α,β ∈ Rn
+, problem () can be converted to

convex program with a conic quadratic inequality quadratic program as follows:

min z

s.t. tT (M + Ms)t +
(
tT , yT)

(
Ml + q

u – l

)

+ tT Msl + a ≤ z,

Mt + Ml + y + q – α – β –

√√
√√

S∑

s=

(qs) ≥ ,
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√√
√√

S∑

s=

(
tT qs

) ≤ a,

Mst + α ≥ ,

Msl + β ≥ , s = , . . . , S,

a,α,β , t, y ≥ .

These complete the proof. �

Theorems  and  present an approach to seek robust solutions of SLVI(l, u, F), when
Ms(s = , . . . , S) is a positive semidefinite matrix. However, this condition is a little strict
so that it is difficult to satisfy in practice. Thus, we give more general circumstances in
Section .

3 Tractable robust counterparts of non-monotone SLVI(l, u, F)
In this section, we first define M(ω) = M +

∑S
s= ωsMs +

∑K
k= ωS+kM′

k , where M(ω), M, Ms,
M′

k are symmetric matrices for s = , . . . , S, k = , . . . , K ; if not, we may replace the matrices
by their symmetrical counterparts, and M, Ms � , s = , . . . , S, M′

k � , k = , . . . , K . Then
the corresponding function

[
M(ω) I

–I 

](
t
y

)

+

(
M(ω)l + q(ω)

u – l

)

is no longer monotone for ω ∈ �, a.s. In this section, we consider the case that q is a
certain vector. Since it is difficult to directly apply the results of quadratic program, these
problems are somewhat more challenging. As we proceed, we may still obtain the results
that robust problem () can be reformulated as QCQP or convex program under suitably
defined uncertain sets.

Theorem  Consider the optimization problem () with uncertain sets defined by �,
() can be reformulated as QCQP or convex program.

Proof Case : � = �∞.
Firstly, we consider the first constraint in formulation (). Similar to (), (), combining

with max‖ω‖∞≤ ηTω = ‖η‖ and Ms � , M′
k � , for every s, k, we have

max
ω∈�∞

( S∑

s=

ωstT Mst

)

=
S∑

s=

∣∣tT Mst
∣∣ =

S∑

s=

tT Mst,

max
ω∈�∞

( K∑

k=

ωS+ktT M′
kt

)

=
K∑

k=

∣∣tT M′
kt

∣∣ = –
K∑

k=

tT M′
kt,

max
ω∈�∞

( S∑

s=

ωstT Msl

)

=
S∑

s=

∣
∣tT Msl

∣
∣ =

S∑

s=

tT Msl,

max
ω∈�∞

( K∑

k=

ωS+ktT M′
kl

)

=
K∑

k=

∣∣tT M′
kl

∣∣ = –
K∑

k=

tT M′
kl.
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We then consider the second constraint in formulation (). Since max‖ω‖∞≤ ηTω = ‖η‖,
there holds

max
ω∈�∞

( S∑

s=

ωs[–Mst]

)

=
S∑

s=

|–Mst| =
S∑

s=

|Mst|.

In the same way, we have

max
ω∈�∞

( K∑

k=

ωS+k
[
–M′

kt
]
)

=
K∑

k=

∣∣–M′
kt

∣∣ =
K∑

k=

∣∣M′
kt

∣∣,

max
ω∈�∞

( S∑

s=

ωs[–Msl]

)

=
S∑

s=

|–Msl| =
S∑

s=

|Msl|,

max
ω∈�∞

( K∑

k=

ωS+k
[
–M′

kl
]
)

=
K∑

k=

∣∣–M′
kl

∣∣ =
K∑

k=

∣∣M′
kl

∣∣.

It then follows from the fact h(x,ω) ≥ ,ω ∈ �∞, a.s. ⇔ minω∈�∞ h(x,ω) ≥  and elim-
inate all absolute value by adding extra variables αs,βs ∈ Rn

+, s = , . . . , S + K , then problem
() can be rewritten as the following QCQP:

min z

s.t. tT

[

M +
S∑

s=

Ms –
K∑

k=

M′
k

]

t +
(
tT , yT)

(
Ml + q

u – l

)

+ tT

[ S∑

s=

Ms –
K∑

s=k

M′
k

]

l ≤ z,

Mt + y –
S+K∑

s=

αs + Ml + q –
S+K∑

s=

βs ≥ ,

–αs ≤ Mst ≤ αs,

–βs ≤ Msl ≤ βs, s = , . . . , S,

–αs ≤ M′
s–St ≤ αs,

–βs ≤ M′
s–Sl ≤ βs, s = S + , . . . , S + K ,

αs,βs ≥ , s = , . . . , S + K ,

t, y ≥ .

Case : � = �
 .

Similar to obtaining (), (), taking max‖ω‖≤ ωTη = ‖η‖∞ together with the fact that
for all t, l, tT Mst, tT Msl ≥ , s = , . . . , S and tT M′

kt, tT M′
kl ≤ , k = , . . . , K , we have

max
ω∈�



( S∑

s=

ωstT Mst +
K∑

k=

ωS+ktT M′
kt

)

= max
(

max
s∈{,...,S}

∣∣tT Mst
∣∣, max

k∈{,...,K}
∣∣tT M′

kt
∣∣
)

,
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max
ω∈�



( S∑

s=

ωstT Msl +
K∑

k=

ωS+ktT M′
kl

)

= max
(

max
s∈{,...,S}

∣
∣tT Msl

∣
∣, max

k∈{,...,K}
∣
∣tT M′

kl
∣
∣
)

.

Then the first constraint in problem () can be transformed as follows:

tT Mt + max
s∈{,...,S}

tT Mst +
(
tT , yT)

(
Ml + q

u – l

)

+ max
s∈{,...,S}

tT Msl ≤ z,

tT Mt + max
k∈{,...,K}

(
–tT M′

kt
)

+
(
tT , yT)

(
Ml + q

u – l

)

+ max
s∈{,...,S}

tT Msl ≤ z,

tT Mt + max
s∈{,...,S}

tT Mst +
(
tT , yT)

(
Ml + q

u – l

)

+ max
k∈{,...,K}

(
–tT M′

kl
) ≤ z,

tT Mt + max
k∈{,...,K}

(
–tT M′

kt
)

+
(
tT , yT)

(
Ml + q

u – l

)

+ max
k∈{,...,K}

(
–tT M′

kl
) ≤ z.

On the other hand, it follows from max‖ω‖≤ ωTη = ‖η‖∞ that, for every s, k, we can de-
duce that

max
ω∈�



( S∑

s=

ωs(–Mst) +
K∑

k=

ωS+k
(
–M′

kt
)
)

= max
ω∈�



ωT

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

–Mt
...

–MSt
–M′

t
...

–M′
K t

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

= max
(

max
s∈{,...,S}

(|–Mst|
)
, max

k∈{,...,K}
(∣∣–M′

kt
∣
∣)

)
. ()

Similarly, we have

max
ω∈�



( S∑

s=

ωs(–Msl) +
K∑

k=

ωS+k
(
–M′

kl
)
)

= max
(

max
s∈{,...,S}

(|–Msl|
)
, max

k∈{,...,K}
(∣∣–M′

kl
∣∣)

)
.

()

It then follows from (), () that the second constraint can be transformed as follows:

Mt + y – max
s∈{,...,S}

(|–Mst|
)

+ Ml + q – max
s∈{,...,S}

(|–Msl|
) ≥ ,

Mt + y – max
k∈{,...,K}

(∣∣–M′
kt

∣
∣) + Ml + q – max

s∈{,...,S}
(|–Msl|

) ≥ ,

Mt + y – max
s∈{,...,S}

(|–Mst|
)

+ Ml + q – max
k∈{,...,K}

(∣∣–M′
kl

∣∣) ≥ ,

Mt + y – max
k∈{,...,K}

(∣∣–M′
kt

∣
∣) + Ml + q – max

k∈{,...,K}
(∣∣–M′

kl
∣
∣) ≥ .

Finally, in order to eliminate the maximum function, we add extra variables α,α,β,
β ∈ Rn

+ into constraints. In addition, taking the fact h(x,ω) ≥ ,ω ∈ �
 , a.s. ⇔
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minω∈�


h(x,ω) ≥  into account, we obtain the QCQP form of problem () as follows:

min z

s.t. tT [M + Ms]t +
(
tT , yT)

(
[M + Ms]l + q

u – l

)

≤ z,

tT[
M – M′

k
]
t +

(
tT , yT)

(
[M + Ms]l + q

u – l

)

≤ z,

tT [M + Ms]t +
(
tT , yT)

(
[M – M′

k]l + q
u – l

)

≤ z,

tT[
M – M′

k
]
t +

(
tT , yT)

(
[M – M′

k]l + q
u – l

)

≤ z,

Mt – α + Ml + q – β ≥ ,

Mt – α + Ml + q – β ≥ ,

Mt – α + Ml + q – β ≥ ,

Mt – α + Ml + q – β ≥ ,

–α ≤ Mst ≤ α,

–β ≤ Msl ≤ β, s = , . . . , S,

–α ≤ M′
kt ≤ α,

–β ≤ M′
kl ≤ β, k = , . . . , K ,

α,α,β,β, t, y ≥ .

Case : � = �
.

In this circumstance, we begin by simplifying the first constraint in problem (), accord-
ing to max‖ω‖≤ ωTη = ‖η‖, we can derive that

max
ω∈�



( S∑

s=

ωstT Mst +
K∑

k=

ωS+ktT M′
kt

)

= max
ω∈�



ωT

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

tT Mt
...

tT MSt
tT M′

t
...

tT M′
K t

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

=

√√
√√

S∑

s=

(
tT Mst

) +
K∑

k=

(
tT M′

kt
).

Similarly, we have

max
ω∈�



( S∑

s=

ωstT Msl +
K∑

k=

ωS+ktT M′
kl

)

=

√√√
√

S∑

s=

(
tT Msl

) +
K∑

k=

(
tT M′

kl
).



Luo and Zhang Journal of Inequalities and Applications  (2017) 2017:253 Page 14 of 15

Noting that, by calculating the second derivative of
√∑S

s=(tT Mst) +
∑K

k=(tT M′
kt) and

√∑S
s=(tT Msl) +

∑K
k=(tT M′

kl), we can easily derive that the first constraint is a convex
constraint.

We then give the equivalent form of the second constraint in problem (), according to
max‖ω‖≤ ωTη = ‖η‖, the formulation is transformed as follows:

max
ω∈�



( S∑

s=

ωs[Ms]it +
K∑

k=

ωS+k
[
M′

k
]

it

)

= max
ω∈�



ωT

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

(M)it
...

(MS)it
(M′

)it
...

(M′
K )it

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

=

√√
√√

S∑

s=

(
[Ms]it

) +
K∑

k=

([
M′

k
]

it
), i = , . . . , n.

Noting that above n constraints are in the form of second-order cone constraints, they are
tractable convex constraints. Similarly, for i = , . . . , n, we have

max
ω∈�



( S∑

s=

ωs[Ms]il +
K∑

k=

ωS+k
[
M′

k
]

il

)

=

√√√
√

S∑

s=

(
[Ms]il

) +
K∑

k=

([
M′

k
]

il
).

Therefore, problem () can be converted to a convex program as follows:

min z

s.t. tT Mt +

√√√
√

S∑

s=

(
tT Mst

) +
K∑

k=

(
tT M′

kt
) +

(
tT , yT)

(
Ml + q

u – l

)

+

√√√
√

S∑

s=

(
tT Msl

) +
K∑

k=

(
tT M′

kl
) ≤ z,

[M]it + yi –

√√√
√

S∑

s=

(
[Ms]it

) +
K∑

k=

([
M′

k
]

it
) + [M]il + qi

–

√√√
√

S∑

s=

(
[Ms]il

) +
K∑

k=

([
M′

k
]

il
) ≥ , i = , . . . , n,

t, y ≥ .

The proof is completed. �

The core idea of Theorem  is to derive the tractable robust counterparts of SLVI(l, u, F).
The case with uncertain q can be easily proved similar to Section , so it is omitted here.
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4 Conclusions
We present the first attempt to give the robust reformulation for solving the box-
constrained stochastic linear variational inequality problem. For three types of uncertain
variables, the robust reformulation of SLVI(l, u, F) can be solved as either a quadratically
constrained quadratic program (QCQP) or a convex program, which are all more tractable
and can provide solutions for SLVI(l, u, F), no matter for monotone or non-monotone F .
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