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Abstract
We first prove one of the most basic inequalities on a b-metric space. And then we
prove some fixed point theorems. We also consider two similar conditions; one
implies the Cauchyness on sequences but the other does not.
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1 Introduction
In , Czerwik introduced the following interesting concept.

Definition  (Czerwik []) Let X be a set and let d be a function from X × X into [,∞).
Then (X, d) is said to be a b-metric space if the following hold:

(b) d(x, y) =  ⇔ x = y;
(b) d(x, y) = d(y, x) (symmetry);
(b) There exists K ≥  satisfying d(x, z) ≤ K(d(x, y) + d(y, z)) for any x, y, z ∈ X

(K-relaxed triangle inequality).

We note that in the case where K = , every b-metric space is obviously a metric space.
So this concept is a weaker concept than that of a metric space. Conditions (b) and (b)
also appear in the definition of metric space. So (b) is a feature of this concept. Therefore
it is important to study how to use (b) effectively.

Lemma  Let (X, d) be a b-metric space. For n ∈N and (x, . . . , xn) ∈ Xn+,

d(x, xn) ≤
n–∑

j=

Kj+d(xj, xj+) + Kn–d(xn–, xn) ()

holds.

Proof Obvious. �

Considering the rearrangement inequality, we could tell that () is effective in the case
where d(xj+, xj+) is much smaller than d(xj, xj+). Indeed, using (), the following lemma
was proved.
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Lemma  (Lemma . in []) Let (X, d) be a b-metric space and let {xn} be a sequence in X.
Assume that there exists r ∈ [, /K) satisfying d(xn+, xn+) ≤ rd(xn, xn+) for any n ∈ N.
Then {xn} is Cauchy.

In the case where d(xj+, xj+) is not much smaller than d(xj, xj+), how can we use (b)
effectively?

Motivated by this question, in this paper, we first prove some inequality. Using this in-
equality, we improve Lemma . In order to understand deeply the mathematical structure
of a b-metric space, we give a condition, which does not imply the Cauchyness on se-
quences. Finally, we improve some Nadler-type fixed point theorems.

2 Preliminaries
Throughout this paper we denote by N the set of all positive integers and by R the set of
all real numbers. For an arbitrary set A, we also denote by #A the cardinal number of A.
For a real number t, we denote by [t] the maximum integer not exceeding t.

In this section, we give some preliminaries.

Definition  Let (X, d) be a b-metric space. Let {xn} be a sequence in X and let A be a
subset of X.

• {xn} is said to converge to x if limn d(x, xn) =  holds.
• {xn} is said to be Cauchy if limn sup{d(xn, xm) : m > n} =  holds.
• X is said to be complete if every Cauchy sequence converges.
• A is said to be closed if for any convergent sequence in A, its limit belongs to A.
• A is said to be bounded if sup{d(x, y) : x, y ∈ A} < ∞ holds.

Remark While not every ν-generalized metric space is metrizable [–], every b-metric
space is metrizable. So we note that there is no room for ambiguity in Definition .

Let (X, d) be a b-metric space and let CB(X) be the set of all nonempty, bounded and
closed subsets of X. For x ∈ X and any subset A of X, we define d(x, A) = inf{d(x, y) : y ∈ A}.
Then the Hausdorff metric H with respect to d is defined by

H(A, B) = max
{
sup

{
d(u, B) : u ∈ A

}
, sup

{
d(v, A) : v ∈ B

}}

for all A, B ∈ CB(X).

3 Basic inequality
In this section, we prove one of the most basic inequalities on a b-metric space.

Lemma  Let (X, d) be a b-metric space. Define a function f from N into N∪ {} by

f (n) = –[– log n]. ()

For n ∈N and (x, . . . , xn) ∈ Xn+,

d(x, xn) ≤ Kf (n)
n–∑

j=

d(xj, xj+) ()

holds.
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Remark f is as follows:

f () = , f () = , f () = f () = ,

f () = · · · = f () = , f () = · · · = f () = , . . . .

Proof We first note that f (n)– < n ≤ f (n) holds for any n ∈ N. It is obvious that () holds
for n = . We assume that () holds for n with n ≤ k for some k ∈ N∪ {}. Fix n ∈ N with
k < n ≤ k+. Then we note f (n) = k + , f (k) = k and f (n – k) ≤ k. We have

d(x, xn) ≤ Kd(x, xk ) + Kd(xk , xn)

≤ KKf (k )
k –∑

j=

d(xj, xj+) + KKf (n–k )
n–∑

j=k

d(xj, xj+)

≤ Kk+
n–∑

j=

d(xj, xj+)

= Kf (n)
n–∑

j=

d(xj, xj+).

Thus () holds for n. By induction, we obtain the desired result. �

Using Lemma , we give a sufficient condition for the Cauchyness on sequences. The
following lemma can be very useful when we prove existence theorems in complete b-
metric spaces. In order to demonstrate that, in Section , we improve some fixed point
theorems. See [, ] and others.

Lemma  Let (X, d) be a b-metric space and let {xn} be a sequence in X. Assume that there
exists r ∈ [, ) satisfying

d(xn+, xn+) ≤ rd(xn, xn+) ()

for any n ∈ N. Then {xn} is Cauchy.

Remark Compare Lemma  with Lemma .

Proof In the case where r = , the conclusion obviously holds. So we assume r > . We
choose � ∈N satisfying

Kr�
< .

Define a function f by (). For m, n ∈N with n < m ≤ n + �, we have by Lemma 

d(xn, xm) ≤ Kf (m–n)
m–∑

j=n

d(xj, xj+)

≤ K�

m–∑

j=n

rj–d(x, x)
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≤ K�

∞∑

j=n

rj–d(x, x)

≤ K�rnC,

where we put C = d(x, x)/(r( – r)). For m, n ∈N with n + � < m, putting μ = [(m – n)/�],
we have by ()

d(xn, xm) ≤
μ–∑

i=

Ki+d(xn+i� , xn+(i+)� ) + Kμd(xn+μ� , xm)

≤
μ–∑

i=

Ki+�+rn+i�
C + Kμ+�rn+μ�

C

≤ rnC
μ∑

i=

Ki+�+ri�

≤ rnC
∞∑

i=

Ki+�+ri�

= rnC
K�+

 – Kr�
.

Therefore {xn} is Cauchy. �

4 Example, part 1
In this section, we give a typical example of a b-metric space.

Lemma  Define a function f by (). Then the following hold:
(i) f (n) = f (n) +  for any n ∈N.

(ii) f (n + ) ∈ {f (n), f (n) + } for any n ∈N.
(iii) f is nondecreasing.

Proof Obvious. �

Lemma  Let K ∈ [,∞) and put X = N. Define a function f by (). Define a function g
from N∪ {} into [,∞) by

g() = ,

g(n) =
(
n – f (n))Kf (n) +

(
f (n) – n

)
Kf (n)–.

()

Then

g(n) = K
(
g
(
[n/]

)
+ g

(
n – [n/]

))
, ()

g(n) – g(n – ) ≥ g(n – ) – g(n – ) > , ()

g(n) ≤ K
(
g(k) + g(n – k)

)
()

hold for any n, k ∈N with  ≤ n and k < n. Also g is strictly increasing.
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Remark The function g is as follows:

g() = , g() = K , g() = K + K ,

g() = K, g() = K + K, g() = K + K.

Proof We first show (). Fix n ∈N. We consider the following two cases:
• n +  = f (n+)– + ,
• n +  > f (n+)– + .

We put a = n + , b = [(n + )/] and c = a – b. In the first case, noting f (a) ≥ f () = , we
have

b =
[(

f (n+)– + 
)
/

]
= f (n+)–

and

c = f (n+)– +  – f (n+)– = f (n+)– + .

Hence

f (b) = f (n + ) –  = f (a) – 

and

f (c) = f (n + ) –  = f (a) – 

hold. We have

g(a) =
(
(n + ) – f (n+))Kf (a) +

(
f (n+) – n – 

)
Kf (a)–

=
(
f (n+) +  – f (n+))Kf (a) +

(
f (n+) – f (n+)– – 

)
Kf (a)–

= Kf (a) + (a – )Kf (a)–

= Kf (c)+ + bKf (b)+ + (c – )Kf (c)

= K
((

b – f (b))Kf (b) +
(
f (b) – b

)
Kf (b)–

+
(
c – f (c))Kf (c) +

(
f (c) – c

)
Kf (c)–)

= K
(
g(b) + g(c)

)
.

In the second case, noting that a is odd, we have f (a)– > a/ > f (a)– + . So

f (a)– < f (a)– +  ≤ b < a/ < b +  = c ≤ f (a)–

holds and hence f (b) = f (c) = f (a) –  holds. So we have

g(a) =
(
b + c – f (b) – f (c))Kf (a) +

(
f (b) + f (c) – b – c

)
Kf (a)–

=
(
b – f (b))Kf (b)+ +

(
f (b) – b

)
Kf (b)
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+
(
c – f (c))Kf (c)+ +

(
f (c) – c

)
Kf (c)

= K
(
g(b) + g(c)

)
.

Using Lemma , we have

g(n) =
(
n – f (n))Kf (n) +

(
f (n) – n

)
Kf (n)–

=
(
n – f (n)+)Kf (n)+ +

(
f (n)+ – n

)
Kf (n)

= K
((

n – f (n))Kf (n) +
(
f (n) – n

)
Kf (n)–)

= K
(
g(n) + g(n)

)

= K
(
g
(
[n/]

)
+ g

(
n – [n/]

))
.

We have shown ().
We shall show (). We have

g() – g() = K –  ≥  = g() – g() > .

Fix n ∈N with n ≥ . In the case where f (n) = f (n – ), we have

g(n) – g(n – ) = Kf (n) – Kf (n)–.

In the other case, where f (n) > f (n – ), we have n –  = f (n)– and f (n – ) = f (n) – . So

g(n) – g(n – ) = Kf (n) + (n – )Kf (n)– – (n – )Kf (n–)

= Kf (n) – Kf (n)–.

Since f is nondecreasing and K ≥  holds, {g(n) – g(n – )} is also nondecreasing.
Let us prove (). By (), there exists a convex function from [,∞) into R whose restric-

tion to N is g . So we have

g(n) = K
(
g
(
[n/]

)
+ g

(
n – [n/]

))

≤ K
(
g
(
[n/] – 

)
+ g

(
n – [n/] + 

))

≤ K
(
g
(
[n/] – 

)
+ g

(
n – [n/] + 

))

≤ · · · ≤ K
(
g() + g(n – )

)
.

We have shown ().
By (), g is strictly increasing. �

The following example is a typical example of a b-metric space. Indeed, we use this ex-
ample in order to make Example .

Example  Let K ∈ [,∞) and put X = N. Define functions f and g by () and (), respec-
tively. Define a function d from X × X into [,∞) by

d(x, y) = g
(|x – y|).

Then (X, d) is a b-metric space.
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Proof (b) and (b) obviously hold. In order to prove (b), we note

d(�, m) ≤ d(�, n) and d(m, n) ≤ d(�, n)

for any �, m, n ∈ N with � < m < n because g is strictly increasing. Fix �, m, n ∈N with � < n,
� �= m and m �= n. We consider the following two cases:

(a) m < � or n < m,
(b) � < m < n.

In the case of (a), without loss of generality, we may assume n < m. Then we have

d(�, n) ≤ d(�, m) ≤ d(�, m) + d(m, n) ≤ Kd(�, m) + Kd(m, n).

In the case of (b), we have by ()

d(�, n) ≤ Kd(�, m) + Kd(m, n).

We have shown (b). �

5 Examples, part 2
We have proved that () implies the Cauchyness on sequences. In this section, we give
examples of that

∑∞
n= d(xn, xn+) < ∞ does not imply the Cauchyness on sequences. The

author thinks that such a property is one of characteristics of a b-metric space.

Example  Let K ∈ [,∞) and let {αn} be a sequence in (,∞). Let X be a subset of
[,∞) satisfying N⊂ X and #(X ∩ [, a]) < ∞ for any a ∈ [,∞). Define a strictly increasing
function χ fromN into X satisfying χ (N) = X. Define a sequence {νj} inN satisfying χ (νj) =
j for any j ∈ N. Define functions f and g by () and (), respectively. Define a function d
from X × X into [,∞) by

d
(
χ (m),χ (n)

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if m = n,

g(n – m)αk if νk ≤ m < n ≤ νk+ for some k ∈ N,

d(χ (m), j + ) +
∑k–

i=j+ d(i, i + ) + d(k,χ (n))

if νj ≤ m < νj+ ≤ νk < n ≤ νk+ for some j, k ∈N,

d(χ (n),χ (m)) if m > n,

for all m, n ∈ N. Then (X, d) is a b-metric space.

Proof It is obvious that (b) and (b) hold. Let us prove (b). Define a function e from
N×N into [,∞) by

e(m, n) = d
(
χ (m),χ (n)

)
.

We note

e(�, m) ≤ e(�, n) and e(m, n) ≤ e(�, n)
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for any �, m, n ∈N with � < m < n. Fix �, m, n ∈N with � < n, � �= m and m �= n. We consider
the following three cases:

(a) m < � or n < m,
(b) νk ≤ � < m < n ≤ νk+ for some k ∈N,
(c) � < m < n and νj ≤ � < νj+ ≤ νk < n ≤ νk+ for some j, k ∈N.

In the cases of (a) and (b), we can prove (b) as in the proof of Example . In the case of
(c), we further consider the following two cases:

(c-) m ≤ νj+ or νk ≤ m,
(c-) νj+ < m < νk .

In the case of (c-), without loss of generality, we may assume m ≤ νj+. We have

e(�, n) = e(�,νj+) +
k–∑

i=j+

e(νi,νi+) + e(νk , n)

≤ Ke(�, m) + Ke(m,νj+) +
k–∑

i=j+

e(νi,νi+) + e(νk , n)

≤ Ke(�, m) + Ke(m,νj+) + K
k–∑

i=j+

e(νi,νi+) + Ke(νk , n)

= K
(
e(�, m) + e(m, n)

)
.

In the case of (c-), there exists p ∈N satisfying

νj+ ≤ νp ≤ m < νp+ ≤ νk .

We have

e(�, n) = e(�,νj+) +
p–∑

i=j+

e(νi,νi+)

+ e(νp,νp+) +
k–∑

i=p+

e(νi,νi+) + e(νk , n)

≤ e(�,νj+) +
p–∑

i=j+

e(νi,νi+)

+ Ke(νp, m) + Ke(m,νp+) +
k–∑

i=p+

e(νi,νi+) + e(νk , n)

≤ Ke(�,νj+) + K
p–∑

i=j+

e(νi,νi+)

+ Ke(νp, m) + Ke(m,νp+) + K
k–∑

i=p+

e(νi,νi+) + Ke(νk , n)

= K
(
e(�, m) + e(m, n)

)
.

We have shown (b) in all cases. �
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Example  Let K ∈ (,∞) and define a sequence {αn} in (,∞) by αn = –nK–n. Let X be
a subset of [,∞) satisfying N ⊂ X and #(X ∩ [n, n + )) = n for any n ∈N. Let χ , {νj}, f , g
and d be as in Example . Then the following hold:

(i) (X, d) is a b-metric space.
(ii)

∑∞
n= d(χ (n),χ (n + )) < ∞ holds.

(iii) {χ (n)} is not Cauchy.
(iv) X is complete.

Proof We have proved (i) in Example . We have

∞∑

n=

d
(
χ (n),χ (n + )

)
=

∞∑

k=

νk+–∑

n=νk

d
(
χ (n),χ (n + )

)

=
∞∑

k=

νk+–∑

n=νk

αk =
∞∑

k=

kαk =
∞∑

k=

K–k < ∞.

We have

d(n, n + ) = g
(
n)αn = nKnαn = 

for any n ∈ N. Since the sequence {n} in X is a subsequence of {χ (n)}, {χ (n)} is not Cauchy.
Let us prove (iv). We note d(n, m) = |n – m| for any m, n ∈N. So limm d(χ (n),χ (m)) = ∞

holds for any n ∈ N. Let {xn} be a Cauchy sequence in X. Then {xn} is bounded. So, there
exists z ∈ X satisfying xn = z for sufficiently large n ∈N. Thus, {xn} converges to z. �

6 Fixed point theorems
Czerwik proved the following fixed point theorem. See page  of []. Compare Theo-
rem  with Theorem  in [] and Theorem . in [].

Theorem  ([]) Let (X, d) be a complete b-metric space and let T be a mapping from X
into CB(X). Assume that there exists r ∈ [, /K) satisfying

H(Tx, Ty) ≤ rd(x, y) ()

for all x, y ∈ X. Then there exists z ∈ X satisfying z ∈ Tz.

Using Lemma , we improve Theorem . We begin with a generalization of Theorem 
in [].

Theorem  Let (X, d) be a complete b-metric space and let T be a mapping from X into
CB(X). Assume there exists ε >  satisfying the following:

(i) There exists r ∈ [, ) such that () holds for all x, y ∈ X with d(x, y) < ε.
(ii) There exists x ∈ X such that d(x, Tx) < ε.

Then there exists z ∈ X satisfying z ∈ Tz.

Proof Put q := ( + r)/ ∈ (, ). Then we have the following:
• For x, y ∈ X and u ∈ Tx with d(x, y) < ε, there exists v ∈ Ty satisfying d(u, v) ≤ qd(x, y).
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In particular, putting u = y, we obtain the following:
• For x ∈ X and y ∈ Tx with d(x, y) < ε, there exists v ∈ Ty satisfying d(y, v) ≤ qd(x, y).

Therefore we can choose a sequence {un} in X satisfying

d(u, Tu) ≤ d(u, u) < ε,

un+ ∈ Tun,

d(un+, un+) ≤ qd(un, un+)

for n ∈N. By Lemma , {un} is Cauchy. Since X is complete, {un} converges to some point
z ∈ X. Since

d(z, Tz) ≤ lim
n→∞ K

(
d(z, un+) + d(un+, Tz)

)

= K lim
n→∞ d(un+, Tz) ≤ K lim

n→∞ H(Tun, Tz)

≤ Kq lim
n→∞ d(un, z) = 

holds and Tz is closed, we obtain z ∈ Tz. �

As a direct consequence, we obtain a generalization of Nadler’s fixed point theorem [].

Corollary  Let (X, d) be a complete b-metric space and let T be a mapping from X into
CB(X). Assume that there exists r ∈ [, ) such that () holds for all x, y ∈ X. Then there
exists z ∈ X satisfying z ∈ Tz.

Using Theorem , we can prove a generalization of Mizoguchi and Takahashi’s fixed
point theorem []. See also [, –] and others.

Corollary  Let (X, d) be a complete b-metric space and let T be a mapping from X into
CB(X). Assume that there exists a function α from [,∞) into [, ) satisfying

H(Tx, Ty) ≤ α
(
d(x, y)

)
d(x, y)

for all x, y ∈ X and

lim sup
s→t+

α(s) < 

for all t ∈ [,∞). Then there exists z ∈ X satisfying z ∈ Tz.

Proof Since lim sups→+ α(s) < , we can choose ε >  and r ∈ [, ) satisfying α(t) ≤ r for
any t ∈ [, ε). Thus (i) of Theorem  holds. So we only have to prove (ii) of Theorem .
Define a function β from [,∞) into (, ) by β(t) = (α(t) + )/ for t ∈ [,∞). As in the
proof of Theorem , we can choose a sequence {un} in X satisfying

un+ ∈ Tun and d(un+, un+) ≤ β
(
d(un, un+)

)
d(un, un+)
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for n ∈ N. Since β(t) <  for any t ∈ [,∞), {d(un, un+)} is a nonincreasing sequence in
[,∞). So {d(un, un+)} converges to some τ ∈ [,∞). Since lim sups→τ+ β(s) <  and β(τ ) <
, there exist q ∈ [, ) and δ >  satisfying β(s) ≤ q for all s ∈ [τ , τ + δ]. Choose ν ∈ N

satisfying d(uν , uν+) ≤ τ + δ. Then, for any n ∈N with n ≥ ν , we have

d(un+, un+) ≤ β
(
d(un, un+)

)
d(un, un+) ≤ qd(un, un+),

which implies limn d(un, un+) = . Therefore d(un, un+) ≤ d(un, Tun) < ε holds for suffi-
ciently large n ∈N. We have shown (ii) of Theorem . �
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