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Abstract
Two Ostrowski-Grüss type inequalities for k points with a parameter λ ∈ [0, 1] are
hereby presented. The first generalizes a recent result due to Nwaeze and Tameru,
and the second extends the result of Liu et al. to k points. Many new interesting
inequalities can be derived as special cases of our results by considering different
values of λ and k ∈ N. In addition, we apply our results to the continuous, discrete,
and quantum time scales to obtain several novel inequalities in this direction.
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1 Introduction
In , Dragomir and Wang [] (see also [, ] for related results) obtained the following
inequality which is today known as the Ostrowski-Grüss inequality.

Theorem  If f : [a, b] →R is differentiable on [a, b] and γ ≤ f ′(x) ≤ � for all x ∈ [a, b] for
some constants γ ,� ∈R, then

∣
∣
∣
∣
f (x) –


b – a

∫ b

a
f (t) dt –

f (b) – f (a)
b – a

(

x –
a + b



)∣
∣
∣
∣
≤ 


(b – a)(� – γ ) ()

for all x ∈ [a, b].

With the introduction of the theory of time scales (see Section ), Tuna and Daghan []
obtained the following time scale version of the Ostrowski-Grüss type inequality. Specif-
ically, they proved the following.

Theorem  Let a, b, x, t ∈ T, a < b, and f : [a, b] → R be differentiable. If f � is rd-
continuous and γ ≤ f �(t) ≤ � for all t ∈ [a, b] and for some γ ,� ∈ R, then for all x ∈ [a, b],
we have

∣
∣
∣
∣
f (x) –


b – a

∫ b

a
f σ (t)�t –

� + γ

(b – a)
[

h(x, a) – h(x, b)
]
∣
∣
∣
∣

≤ � – γ

(b – a)
[

h(x, a) + h(x, b)
]

. ()
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Recently, Nwaeze and Tameru [] proved the following generalization of Theorem  to
k points.

Theorem  Suppose that
. a, b ∈ T, Ik : a = x < x < · · · < xk– < xk = b is a partition of the interval [a, b] for

x, x, . . . , xk ∈ T;
. αj ∈ T (j = , , . . . , k + ) is k +  points so that α = a, αj ∈ [xj–, xj] (j = , . . . , k) and

αk+ = b;
. f : [a, b] →R is differentiable, f � is rd-continuous, and there exist γ ,� ∈R such

that γ ≤ f �(t) ≤ � for all t ∈ [a, b].
Then we have the following inequality:

∣
∣
∣
∣
∣

k
∑

j=

(αj+ – αj)f (xj) –
∫ b

a
f σ (t)�t –

� + γ



k–
∑

j=

(

h(xj+,αj+) – h(xj,αj+)
)

∣
∣
∣
∣
∣

≤ � – γ



k–
∑

j=

(

h(xj,αj+) + h(xj+,αj+)
)

. ()

Inequality () is sharp in the sense that the constant / on the right-hand side cannot be
replaced by a smaller one.

Many other variants of the Ostrowski-Grüss type inequality (on time scales) and related
results (see, for example, [–, , ] and the references therein) are bound in the liter-
ature. For the sake of this work, we present next a recent result due to Liu et al. [].

Theorem  Let a, b, t, x ∈ T, a < b, and f : [a, b] → R be differentiable. Then, for all x ∈
[a, b], we have

∣
∣
∣
∣
f (x) –

f (b) – f (a)
b – a

(
h(x, a) – h(x, b)

b – a

)

–


b – a

∫ b

a
f σ (t)�t

∣
∣
∣
∣

≤
[


b – a

∫ b

a
S(x, t)�t –

(
h(x, a) – h(x, b)

b – a

)] 


×
[


b – a

∫ b

a

(

f �(t)
)

�t –
(

f (b) – f (a)
b – a

)] 


, ()

where

S(x, t) =

⎧

⎨

⎩

t – a, a ≤ t < x,

t – b, x ≤ t ≤ b.

The aim of this work is the following: generalize Theorem  via a parameter λ ∈ [, ]
such that for λ = , we recover Theorem , and for λ ∈ (, ] we get completely new results.
Next, we extend Theorem  to k points.

This paper is organized as follows. In Section , we recall some definitions and results
of the time scale theory. Thereafter, our results are stated and proved in Section . Finally,
we apply our results to different time scales in Section .
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2 Time scale essentials
In order to unify the theory of integral and differential calculus with the calculus of finite
difference, the German mathematician Stefan Hilger [] in  introduced the concept of
time scales. We now present a brief overview of the theory of time scales. For an in-depth
study, we invite the interested reader to see references [, ].

A time scale T is an arbitrary nonempty closed subset of R. We assume throughout that
a time scale T has the topology that it inherits from the real numbers with the standard
topology. Since a time scale may not be connected, we need the following concept of jump
operators.

The forward jump operator σ : T → T is defined by

σ (t) := inf{s ∈ T : s > t},

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In this definition, we put inf∅ = supT (i.e., σ (t) = t if T has a maximum t) and sup∅ = infT

(i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set. The jump operators
σ and ρ allow the classification of points in T in this manner: if σ (t) > t, we say that t is
right-scattered, while if ρ(t) < t we say that t is left-scattered. Points that are right-scattered
and left-scattered at the same time are called isolated. Also, if t < supT and σ (t) = t, then t
is called right-dense, and if t > infT and ρ(t) = t, then t is called left-dense. Points that are
right-dense and left-dense at the same time are called dense. We also introduce the sets
T

k , Tk , and T
k
k , which are derived from the time scale T as follows: if T has a left-scattered

maximum t, then T
k = T \ {t}, otherwise T

k = T. If T has a right-scattered minimum t,
then Tk = T \ {t}, otherwise Tk = T. Finally, we define T

k
k = T

k ∩Tk .
For a, b ∈ T with a ≤ b, we define the interval [a, b] in T by [a, b] = {t ∈ T : a ≤ t ≤ b}.

Open intervals and half-open intervals are defined in the same manner.

Definition  The function f σ : T→R is defined as f σ (t) = f (σ (t)).

Definition  (Delta derivative) Assume that f : T→R is a function. Then the delta
derivative f �(t) ∈R at t ∈ T

k is defined to be number (provided it exists) with the property
that, for any ε > , there exists a neighborhood U of t such that

∣
∣f σ (t) – f (s) – f �(t)

[

σ (t) – s
]∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣, ∀s ∈ U .

If T = R, then f �(t) = df (t)
dt , and if T = Z, then f �(t) = f (t + ) – f (t).

Theorem  Let f , g : T → R be two differentiable functions at t ∈ T
k . Then the product

fg : T →R is also differentiable at t with

(fg)�(t) = f �(t)g(t) + f σ (t)g�(t) = f (t)g�(t) + f �(t)gσ (t).

Definition  The function f : T → R is said to be rd-continuous if it is continuous at all
dense points t ∈ T and its left-sided limits exist at all left-dense points t ∈ T.
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Definition  Let f be an rd-continuous function. Then g : T →R is called the antideriva-
tive of f on T if it is differentiable on T and satisfies g�(t) = f (t) for any t ∈ T

k . In this case,
we have

∫ b

a
f (s)�s = g(b) – g(a).

Theorem  If a, b, c ∈ T with a < c < b, α ∈R and f , g are rd-continuous, then
(i)

∫ b
a [f (t) + g(t)]�t =

∫ b
a f (t)�t +

∫ b
a g(t)�t.

(ii)
∫ b

a αf (t)�t = α
∫ b

a f (t)�t.
(iii)

∫ b
a f (t)�t = –

∫ a
b f (t)�t.

(iv)
∫ b

a f (t)�t =
∫ c

a f (t)�t +
∫ b

c f (t)�t.
(v) | ∫ b

a f (t)�t| ≤ ∫ b
a |f (t)|�t.

(vi)
∫ b

a f (t)g�(t)�t = (fg)(b) – (fg)(a) –
∫ b

a f �(t)gσ (t)�t.

Definition  Let hk : T →R, k ∈N be functions that are recursively defined as

h(t, s) = 

and

hk+(t, s) =
∫ t

s
hk(τ , s)�τ for all s, t ∈ T.

– When T = R, then for all s, t ∈ T,

hk(t, s) =
(t – s)k

k!
.

– When T = Z, then for all s, t ∈ T,

hk(t, s) =
(

t – s
k

)

=
k

∏

i=

t – s +  – i
i

.

– When T = qN with q > , then for all s, t ∈ T,

hk(t, s) =
(t – s)k

q

[k]!
for k ∈N,

where [k]q := qk –
q– for q ∈ R \ {} and k ∈N, [k]! :=

∏k
j=[j]q for k ∈N,

(t – s)k
q :=

k–
∏

j=

(

t – qjs
)

for k ∈ N.

3 Main results
In this section, we will state and prove two Ostrowski-Grüss type inequalities with a pa-
rameter λ. For this, we will need the following lemma which is given in [, Lemma ] but
with some typos. We present here the correct version.
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Lemma  (Generalized Montgomery identity with a parameter) Suppose that
. a, b ∈ T, λ ∈ [, ], Ik : a = x < x < · · · < xk– < xk = b is a partition of the interval

[a, b] for x, x, . . . , xk ∈ T;
. αj ∈ T (j = , , . . . , k + ) is k +  points so that α = a, αj ∈ [xj–, xj] (j = , . . . , k) and

αk+ = b;
. f : [a, b] →R is a differentiable function.

Then we have the following equation:

∫ b

a
K(t, Ik)f �(t)�t +

∫ b

a
f σ (t)�t

= ( – λ)
k

∑

j=

(αj+ – αj)f (xj) + λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


, ()

where

K(t, Ik) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t – (α – λ
α–a

 ), t ∈ [a,α),

t – (α + λ
α–α

 ), t ∈ [α, x),

t – (α – λ
α–α

 ), t ∈ [x,α),
...

t – (αk– + λ
αk –αk–

 ), t ∈ [αk–, xk–),

t – (αk – λ
αk –αk–

 ), t ∈ [xk–,αk),

t – (αk + λ
αk+–αk

 ), t ∈ [αk , b].

()

3.1 Generalized Ostrowski-Grüss type inequality with a parameter I
We now state and prove our first result.

Theorem  Suppose that
. a, b ∈ T, λ ∈ [, ], Ik : a = x < x < · · · < xk– < xk = b is a partition of the interval

[a, b] for x, x, . . . , xk ∈ T;
. αj ∈ T (j = , , . . . , k + ) is k +  points so that α = a, αj ∈ [xj–, xj] (j = , . . . , k) and

αk+ = b;
. f : [a, b] →R is differentiable, f � is rd-continuous, and there exist γ ,� ∈R such

that γ ≤ f �(t) ≤ � for all t ∈ [a, b].
Then we have the following inequality:

∣
∣
∣
∣
∣
( – λ)

k
∑

j=

(αj+ – αj)f (xj) + λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


–

∫ b

a
f σ (t)�t

–
� + γ



k–
∑

j=

[

h

(

αj+,αj+ – λ
αj+ – αj



)

– h

(

xj,αj+ – λ
αj+ – αj



)]

–
� + γ



k–
∑

j=

[

h

(

xj+,αj+ + λ
αj+ – αj+



)

– h

(

αj+,αj+ + λ
αj+ – αj+



)]
∣
∣
∣
∣
∣
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≤ � – γ



k–
∑

j=

[

h

(

xj,αj+ – λ
αj+ – αj



)

+ h

(

αj+,αj+ – λ
αj+ – αj



)

+ h

(

αj+,αj+ + λ
αj+ – αj+



)

+ h

(

xj+,αj+ + λ
αj+ – αj+



)]

. ()

Inequality () is sharp in the sense that the constant / on the right-hand side cannot be
replaced by a smaller one.

Proof To proceed, we will need to make the following computations. For this, we apply
the items of Theorem , where applicable, to get

∫ b

a
K(t, Ik)�t =

k–
∑

j=

{∫ αj+

xj

[

t –
(

αj+ – λ
αj+ – αj



)]

�t

+
∫ xj+

αj+

[

t –
(

αj+ + λ
αj+ – αj+



)]

�t
}

=
k–
∑

j=

{∫ αj+–λ
αj+–αj



xj

[

t –
(

αj+ – λ
αj+ – αj



)]

�t

+
∫ αj+

αj+–λ
αj+–αj



[

t –
(

αj+ – λ
αj+ – αj



)]

�t

+
∫ αj++λ

αj+–αj+


αj+

[

t –
(

αj+ + λ
αj+ – αj+



)]

�t

+
∫ xj+

αj++λ
αj+–αj+



[

t –
(

αj+ + λ
αj+ – αj+



)]

�t
}

=
k–
∑

j=

{

–
∫ xj

αj+–λ
αj+–αj



[

t –
(

αj+ – λ
αj+ – αj



)]

�t

+
∫ αj+

αj+–λ
αj+–αj



[

t –
(

αj+ – λ
αj+ – αj



)]

�t

–
∫ αj+

αj++λ
αj+–αj+



[

t –
(

αj+ + λ
αj+ – αj+



)]

�t

+
∫ xj+

αj++λ
αj+–αj+



[

t –
(

αj+ + λ
αj+ – αj+



)]

�t
}

=
k–
∑

j=

[

h

(

αj+,αj+ – λ
αj+ – αj



)

– h

(

xj,αj+ – λ
αj+ – αj



)

+ h

(

xj+,αj+ + λ
αj+ – αj+



)

– h

(

αj+,αj+ + λ
αj+ – αj+



)]

. ()

Following a similar approach, one gets

∫ b

a

∣
∣K(t, Ik)

∣
∣�t =

k–
∑

j=

[

h

(

xj,αj+ – λ
αj+ – αj



)

+ h

(

αj+,αj+ – λ
αj+ – αj



)

+ h

(

αj+,αj+ + λ
αj+ – αj+



)

+ h

(

xj+,αj+ + λ
αj+ – αj+



)]

. ()
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Next we let � = �+γ

 . From assumption , γ ≤ f �(t) ≤ � for all t ∈ [a, b] implies that
γ – � ≤ f �(t) – � ≤ � – � for all t ∈ [a, b]. This further implies that |f �(t) – �| ≤ �–γ

 for
all t ∈ [a, b]. Hence,

max
t∈[a,b]

∣
∣f �(t) – �

∣
∣ ≤ � – γ


. ()

Using Lemma , we obtain

∫ b

a
K(t, Ik)f �(t)�t = ( – λ)

k
∑

j=

(αj+ – αj)f (xj)

+ λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


–

∫ b

a
f σ (t)�t. ()

From relations () and (), we get

∣
∣
∣
∣

∫ b

a
K(t, Ik)

(

f �(t) – �
)

�t
∣
∣
∣
∣
≤ � – γ



∫ b

a

∣
∣K(t, Ik)

∣
∣�t, ()

and

∫ b

a
K(t, Ik)

(

f �(t) – �
)

�t = ( – λ)
k

∑

j=

(αj+ – αj)f (xj)

+ λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


–

∫ b

a
f σ (t)�t

–
� + γ



∫ b

a
K(t, Ik)�t. ()

The desired inequality follows by using equations (), (), and () in inequality (). �

Remark  By setting λ =  in Theorem , we regain Theorem .

3.2 Generalized Ostrowski-Grüss type inequality with a parameter II
Next, we present a generalization of Theorem  to k points.

Theorem  Suppose that
. a, b ∈ T, λ ∈ [, ], Ik : a = x < x < · · · < xk– < xk = b is a partition of the interval

[a, b] for x, x, . . . , xk ∈ T;
. αj ∈ T (j = , , . . . , k + ) is k +  points so that α = a, αj ∈ [xj–, xj] (j = , . . . , k) and

αk+ = b;
. f : [a, b] →R is differentiable.

Then we have the following inequality:

∣
∣
∣
∣

 – λ

b – a

k
∑

j=

(αj+ – αj)f (xj) +
λ

b – a

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)



–


b – a

∫ b

a
f σ (t)�t –

(
f (b) – f (a)

(b – a)

∫ b

a
K(t, Ik)�t

)∣
∣
∣
∣
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≤
[


b – a

∫ b

a
K(t, Ik)�t –

(


b – a

∫ b

a
K(t, Ik)�t

)] 


×
[


b – a

∫ b

a

(

f �(t)
)

�t –
(

f (b) – f (a)
b – a

)] 


, ()

where K(t, Ik) is defined by ().

Proof We start by making the following computations:

∫ b

a

∫ b

a

(

K(t, Ik) – K(s, Ik)
)(

f �(t) – f �(s)
)

�t�s

= (b – a)
∫ b

a
K(t, Ik)f �(t)�t – 

(∫ b

a
K(t, Ik)�t

)(∫ b

a
f �(s)�s

)

.

This implies that


b – a

∫ b

a
K(t, Ik)f �(t)�t –

(


b – a

∫ b

a
K(t, Ik)�t

)(


b – a

∫ b

a
f �(s)�s

)

=


(b – a)

∫ b

a

∫ b

a

(

K(t, Ik) – K(s, Ik)
)(

f �(t) – f �(s)
)

�t�s. ()

Following the same process, one gets the following identities:


b – a

∫ b

a
K(t, Ik)�t –

(


b – a

∫ b

a
K(t, Ik)�t

)

=


(b – a)

∫ b

a

∫ b

a

(

K(t, Ik) – K(s, Ik)
)

�t�s ()

and


b – a

∫ b

a

(

f �(t)
)

�t –
(


b – a

∫ b

a
f �(t)�t

)

=


(b – a)

∫ b

a

∫ b

a

(

f �(t) – f �(s)
)

�t�s. ()

From Lemma , we have

∫ b

a
K(t, Ik)f �(t)�t

= ( – λ)
k

∑

j=

(αj+ – αj)f (xj) + λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


–

∫ b

a
f σ (t)�t. ()



Nwaeze et al. Journal of Inequalities and Applications  (2017) 2017:245 Page 9 of 12

Using the Cauchy-Schwarz inequality on time scales, we get

∣
∣
∣
∣


(b – a)

∫ b

a

∫ b

a

(

K(t, Ik) – K(s, Ik)
)(

f �(t) – f �(s)
)

�t�s
∣
∣
∣
∣

≤
[


(b – a)

∫ b

a

∫ b

a

(

K(t, Ik) – K(s, Ik)
)

�t�s
] 



×
[


(b – a)

∫ b

a

∫ b

a

(

f �(t) – f �(s)
)

�t�s
] 


. ()

Inequality () is achieved by applying ()-() and the definition of definite integral
(given in Section  above) to (). �

Remark  Let λ =  and k =  in Theorem . If, in addition, we assume that x ∈ [a, b],
α = α = x = a; α = α = x = b; and x = x, then we recapture Theorem .

4 Application to different time scales
In this section, we apply our theorems to different time scales to obtain completely new
inequalities. We start with Theorem .

Corollary  Let T = R. Then we have

∣
∣
∣
∣
∣
( – λ)

k
∑

j=

(αj+ – αj)f (xj) + λ

k
∑

j=

(αj+ – αj)
f (αj) + f (αj+)


–

∫ b

a
f (t) dt

–
� + γ



k–
∑

j=

[
λ(αj+ – αj)


–

(xj – λαj + (λ – )αj+)



]

–
� + γ



k–
∑

j=

[
(xj+ – λαj+ + (λ – )αj+)


–

λ(αj+ – αj+)



]
∣
∣
∣
∣
∣

≤ � – γ



k–
∑

j=

[
λ(αj+ – αj)


+

(xj – λαj + (λ – )αj+)



+
(xj+ – λαj+ + (λ – )αj+)


+

λ(αj+ – αj+)



]

. ()

Proof The proof follows by applying Theorem  and using the facts that f σ (t) = f (t) and
h(t, s) = (t–s)

 (from the first item of Definition  for the case k = ). �

Corollary  Let T = Z, a = , and b = n. Suppose also
. Ik := {j, j, . . . , jk} ⊂ Z, where  = j < j < · · · < jk = n, is a partition of the set

[, n] ∩Z;
. {α,α, . . . ,αk} ⊂ Z is a set of k +  points such that α = , αi ∈ [ji–, ji] for

i = , , . . . , k and αk+ = b;
. f (k) = xk .
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∣
∣
∣
∣
∣
( – λ)

k
∑

i=

(αi+ – αi)xji + λ

k
∑

i=

(αi+ – αi)
xαi + xαi+


–

n
∑

j=

xj

–
� + γ



[

n –
k–
∑

j=

(ji+ – ji)(αi+ +  – λαi+)

+ λ

k–
∑

i=

αi+(αi+ – ji+) + λ

k–
∑

i=

αi(ji – αi+)

]∣
∣
∣
∣
∣

≤ � – γ



k–
∑

i=

[

ji
(

ji + (λ – )αi+ – λαi – 
)

+ 
(

λ
αi+ – αi+


+




)

– 

+ ji+
(

ji+ + (λ – )αi+ – λαi+ – 
)

+ 
(

λ
αi+ – αi


–




)

+ αi+

(

( – λ)αi+ + λ
αi+ + αi


+ 

)]

. ()

Proof The intended inequality follows by applying Theorem  and the fact that h(t, s) =
(t–s)(t–s–)

 . �

Remark  By setting λ =  in Corollaries  and , we recover Corollaries  and  of
the paper []. For λ ∈ (, ], we get new inequalities.

Next, we turn our attention to Theorem .

Corollary  If T = R, then the inequality in Theorem  becomes
∣
∣
∣
∣
∣

 – λ

b – a

k
∑

i=

(αi+ – αi)f (xi) +
λ

b – a

k
∑

i=

(αi+ – αi)
f (αi) + f (αi+)



–


b – a

∫ b

a
f (t) dt –

(
f (b) – f (a)

(b – a)

∫ b

a
K(t, Ik) dt

)
∣
∣
∣
∣
∣

≤
[


b – a

∫ b

a
K(t, Ik) dt –

(


b – a

∫ b

a
K(t, Ik) dt

)] 


×
[


b – a

∫ b

a

(

f ′(t)
) dt –

(
f (b) – f (a)

b – a

)] 


. ()

Corollary  Let T = Z, a = , and b = n. Suppose also
. Ik := {j, j, . . . , jk} ⊂ Z, where  = j < j < · · · < jk = n, is a partition of the set

[, n] ∩Z;
. {α,α, . . . ,αk} ⊂ Z is a set of k +  points such that α = , αi ∈ [ji–, ji] for

i = , , . . . , k and αk+ = b;
. f (k) = xk .

We have the inequality
∣
∣
∣
∣
∣

 – λ

n

k
∑

i=

(αi+ – αi)xji +
λ

n

k
∑

i=

(αi+ – αi)
xαi + xαi+



–

n

n
∑

j=

xj –

(

xn – x

n

n–
∑

j=

K(j, Ik)

)∣
∣
∣
∣
∣
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≤
[


n

n–
∑

j=

K(j, Ik) –

(


n

n–
∑

j=

K(j, Ik)

)] 


×
[


n

n–
∑

j=

(xj+ – xj) –
(

xn – x

n

)
] 



. ()

Corollary  Let T = qN , q > , a = qm, b = qn with m, n ∈ N and m < n. Suppose that
. Ik : qm = qj < qj < · · · < qjk = qn is a partition of the set [qm, qn] ∩ qN for

j, j, . . . , jk ∈N;
. qαi ∈ qN (i = , , . . . , k + ) is a set of k +  points such that qα = qm,

qαi ∈ [qji– , qji ] ∩ qN (i = , , . . . , k) and qαk+ = qn;
. f : [qm, qn] →R is differentiable.

Then we have the inequality

∣
∣
∣
∣
∣

 – λ

qn – qm

k
∑

i=

(

qαi+ – qαi
)

f
(

qji
)

+
λ

qn – qm

k
∑

i=

(

qαi+ – qαi
) f (qαi ) + f (qαi+ )



–


qn – qn

∫ qn

qm
f (qt) dqt –

(
f (qn) – f (qm)

(qn – qm)

∫ qn

qm
K(t, Ik) dqt

)
∣
∣
∣
∣
∣

≤
[


qn – qm

∫ qn

qm
K(t, Ik) dqt –

(


qn – qm

∫ qn

qm
K(t, Ik) dqt

)] 


×
[


qn – qm

∫ qn

qm

(
f (qt) – f (t)

(q – )t

)

dqt –
(

f (qn) – f (qm)
qn – qm

)] 


. ()

5 Conclusion
In this paper, we proved two Ostrowski-Grüss type inequalities for k points on time scales.
Our results contain a parameter λ such that for λ = , our first theorem boils down to The-
orem . The second theorem extends and generalizes Theorem  to k points. By choosing
different values of λ in [, ] and k ∈N, one can generate loads of interesting new inequal-
ities that can come handy in approximation or numerical analysis. Finally, we applied our
results to the continuous, discrete, and quantum time scales to obtain more results in this
direction.
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