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Abstract
In this paper, we formulate new Abel-Gontscharoff type identities involving new
Green functions for the ‘two-point right focal’ problem. We use Fink’s identity and a
new Abel-Gontscharoff-type Green’s function for a ‘two-point right focal’ to
generalize the refinement of Jensen’s inequality given in (Horváth and Pečarić in
Math. Inequal. Appl. 14: 777-791, 2011) from convex function to higher order convex
function. Also we formulate the monotonicity of the linear functional obtained from
these identities using the recent theory of inequalities for n-convex function at a
point. Further we give the bounds for the identities related to the generalization of
the refinement of Jensen’s inequality using inequalities for the Cebyšev functional.
Some results relating to the Grüss and Ostrowski-type inequalities are constructed.

MSC: Primary 26D07; 26D15; 26D20; 26D99

Keywords: convex function; Jensen’s inequality; Fink’s identity; Abel-Gontscharoff
interpolating polynomial; Green function for ‘two-point right focal’ problem

1 Introduction and preliminary results
Divided difference is a helpful tool when we are dealing with functions that have different
degrees of smoothness. In [], p., the divided difference is given as follows.

Definition  Let g be a real valued function defined on [α,β]. For r +  distinct points
u, u, . . . , ur ∈ [α,β], the rth order divided difference is defined recursively by

[ui; g] = g(ui) i = , , . . . , r,

and

[u, u, . . . , ur ; g]

=
[u, u, . . . , ur ; g] – [u, u, . . . , ur–; g]

ur – u
.
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This is equivalent to

[u, u, . . . , ur ; g] =
r∑

j=

g(uj)
w′(uj)

,

where w(u) =
∏r

j=(u – uj).

We can include the case when some or all points are the same. In this case

[u, u, . . . , u︸ ︷︷ ︸
l–times

; f ] =
f (l–)(u)
(l – )!

, ()

where f (l–) is supposed to exist. The r-convex function is characterized by the rth order
divided difference as follows (see [], p.).

Definition  A function g : [α,β] → R is called an r-convex function (r ≥ ) on [α,β] if
and only if

[u, u, . . . , ur ; g] ≥  ()

for all (r + ) distinct choices in [α,β].

If the inequality is reversed then g is r-concave on [α,β].
In [], p., the following criterion is given to check the n-convexity of the function.

Theorem . If f (n) exists, then f is n-convex if and only if f (n) ≥ .

In [, ] (see also [], p.), Horváth and Pečarić give a refinement of Jensen’s inequality
for convex function. They define some essential notions to prove the refinement given as
follows:

Let X be a set, and

P(X) := power set of X,

|X| := number of elements of X,

N := set of natural numbers with .

Consider q ≥  and r ≥  be fixed integers. Define the functions

Fr,s : {, . . . , q}r → {, . . . , q}r–  ≤ s ≤ r,

Fr : {, . . . , q}r → P
({, . . . , q}r–),

and

Tr : P
({, . . . , q}r) → P

({, . . . , q}r–),
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by

Fr,s(i, . . . , ir) := (i, i, . . . , is–, is+, . . . , ir)  ≤ s ≤ r,

Fr(i, . . . , ir) :=
r⋃

s=

{
Fr,s(i, . . . , ir)

}
,

and

Tr(I) =

⎧
⎨

⎩
φ, I = φ;
⋃

(i,...,ir)∈I Fr(i, . . . , ir), I �= φ.
()

Next let the function

αr,i : {, . . . , q}r →N  ≤ i ≤ q

defined by

αr,i(i, . . . , ir) is the number of occurrences of i in the sequence (i, . . . , ir).

For each I ∈ P({, . . . , q}r) let

αI,i :=
∑

(i,...,ir)∈I

αr,i(i, . . . , ir)  ≤ i ≤ q.

(H) Let n, m be fixed positive integers such that n ≥ , m ≥  and let Im be a subset of
{, . . . , n}m such that

αIm ,i ≥   ≤ i ≤ n. ()

Introduce the sets Il ⊂ {, . . . , n}l (m –  ≥ l ≥ ) inductively by

Il– := Tl(Il) m ≥ l ≥ .

Obviously the set I = {, . . . , n} by (H) and this ensures that αI,i =  ( ≤ i ≤ n). From (H)
we have αIl ,i ≥  (m –  ≥ l ≥ ,  ≤ i ≤ n).

For m ≥ l ≥ , and, for any (j, . . . , jl–) ∈ Il–, let

HIl (j, . . . , jl–) :=
{(

(i, . . . , il), k
) × {, . . . , l}|Fl,k(i, . . . , il) = (j, . . . , jl–)

}
.

With the help of these sets they define the functions ηIm ,l : Il → N (m ≥ l ≥ ) inductively
by

ηIm ,m(i, . . . , im) :=  (i, . . . , im) ∈ Im;

ηIm ,l–(j, . . . , jl–) :=
∑

((i,...,il),k)∈HIl (j,...,jl–)

ηIm ,l(i, . . . , il).
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They define some special expressions for  ≤ l ≤ m, as follows:

Am,l = Am,l(Im, x, . . . , xn, p, . . . , pn; f )

:=
(m – )!
(l – )!

∑

(i,...,il)∈Il

ηIm ,l(i, . . . , il)

( l∑

j=

pij

αIm ,ij

)
f
(∑l

j=
pij

αIm ,ij
xij

∑l
j=

pij
αIm ,ij

)
()

and prove the following theorem.

Theorem . Assume (H), and let f : I → R be a convex function where I ⊂R is an inter-
val. If x, . . . , xn ∈ I and p, . . . , pn are positive real numbers such that

∑n
i= pi = , then

f

( n∑

s=

psxs

)
≤ Am,m ≤ Am,m– ≤ · · · ≤ Am, ≤ Am, =

n∑

s=

psf (xs). ()

In [], A. M. Fink gave the following result.
If f : [α,α] →R, where [α,α] is an interval, is a function such that f (n–) is absolutely

continuous then the following identity holds:

f (z) =
n

α – α

∫ α

α

f (ζ ) dζ

+
n–∑

λ=

n – λ

λ!

(
f (λ–)(α)(z – α)λ – f (λ–)(α)(z – α)λ

α – α

)

+


(n – )!(α – α)

∫ α

α

(z – ζ )n–Fα
α (ζ , z)f (n)(ζ ) dζ , ()

where

Fα
α (ζ , z) =

⎧
⎨

⎩
ζ – α, α ≤ ζ ≤ z ≤ α;

ζ – α, α ≤ z < ζ ≤ α.
()

The complete reference about Abel-Gontscharoff polynomial and theorem for ‘two-
point right focal’ problem is given in [].

The Abel-Gontscharoff polynomial for ‘two-point right focal’ interpolating polynomial
for n =  can be given as

f (z) = f (α) + (z – α)f ′(α) +
∫ α

α

G(z, w)f ′′(w) dw, ()

where

G(z, w) =

⎧
⎨

⎩
α – w, α ≤ w ≤ z;

α – z, z ≤ w ≤ α.
()
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In the next section, we will present our main results by introducing some new types of
Green functions defined as

G(z, w) =

⎧
⎨

⎩
α – z, α ≤ w ≤ z;

α – w, z ≤ w ≤ α,
()

G(z, w) =

⎧
⎨

⎩
z – α, α ≤ w ≤ z;

w – α, z ≤ w ≤ α,
()

G(z, w) =

⎧
⎨

⎩
α – w, α ≤ w ≤ z;

α – z, z ≤ w ≤ α,
()

which enables us to introduce some new Abel-Gontscharoff-type identities, stated in the
following lemma.

Lemma . Let f : [α,α] → R be a twice differentiable function and Gk (k = , , ) be the
‘two-point right focal problem’-type Green functions defined by ()-(). Then the following
identities hold:

f (z) = f (α) – (α – z)f ′(α) –
∫ α

α

G(z, w)f ′′(w) dw, ()

f (z) = f (α) – (α – α)f ′(α) + (z – α)f ′(α) +
∫ α

α

G(z, w)f ′′(w) dw, ()

f (z) = f (α) + (α – α)f ′(α) – (α – z)f ′(α) +
∫ α

α

G(z, w)f ′′(w) dw. ()

Proof The proofs of these identities requires some simple integration scheme, therefore
we just give the proof of () only as follows:

∫ α

α

G(z, w)f ′′(w) dw =
∫ z

α

G(z, w)f ′′(w) dw +
∫ α

z
G(z, w)f ′′(w) dw

=
∫ z

α

(α – w)f ′′(w) dw +
∫ α

z
(α – z)f ′′(w) dw

= (α – z)f ′(z) – (α – α)f ′(α) + f (z) – f (α) + (α – z)f ′(α)

– (α – z)f ′(z)

= (α – z)f ′(α) – (α – α)f ′(α) – f (α) + f (z).

Simplifying we get the result ().
We define the following functionals by taking the differences of refinement of Jensen’s

inequality given in ():

�(f ) = Am,r – f

( n∑

s=

psxs

)
, r = , . . . , m, ()

�(f ) = Am,r – Am,k ,  ≤ r < k ≤ m. ()
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Under the assumptions of Theorem ., we have

�i(f ) ≥ , i = , . ()

Inequalities () are reversed if f is concave on I . �

2 Main results
Theorem . Assume (H), and let f : I = [α,α] → R be a function such that for m ≥ 
(an integer) f (m–) is absolutely continuous. Also, let x, . . . , xn ∈ I , p, . . . , pn, be positive real
numbers such that

∑n
i= pi = . Assume that Fα

α , Gk (k = , , , ) and �i (i = , ) are the
same as defined in (), ()-() and ()-(), respectively. Then:

(i) For k = , ,  we have the following identities:

�i(f ) = (m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
Gk(·, w)

)
dw

+


α – α

∫ α

α

�i
(
Gk(·, w)

)

×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ – f (λ+)(α)(w – α)λ

)
dw

+


(m – )!(α – α)

∫ α

α

f (m)(ζ )

×
(∫ α

α

�i
(
Gk(·, w)

)
(w – ζ )m–Fα

α (ζ , w) dw
)

dζ , i = , . ()

(ii) For k =  we have

�i(f ) = (–)(m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
G(·, w)

)
dw

+
(–)

α – α

∫ α

α

�i
(
G(·, w)

)

×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ – f (λ+)(α)(w – α)λ

)
dw

+
(–)

(m – )!(α – α)

∫ α

α

f (m)(ζ )

×
(∫ α

α

�i
(
G(·, w)

)
(w – ζ )m–Fα

α (ζ , w) dw
)

dζ , i = , . ()

Proof (i) Using Abel-Gontsharoff-type identities (), (), () in �i(f ), i = , , and using
properties of �i(f ), we get

�i(f ) =
∫ α

α

�i
(
Gk(·, w)

)
f ′′(w) dw, i = , . ()
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From identity (), we get

f ′′(w) = (m – )
(

f ′(α) – f ′(α)
α – α

)

+
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ)(α)(w – α)λ– – f (λ)(α)(w – α)λ–

α – α

)

+


(m – )!(α – α)

∫ α

α

(w – ζ )m–Fα
α (ζ , w)f (m)(ζ ) dζ . ()

Using () and () and applying Fubini’s theorem we get the result () for k = , , .
(ii) Substituting Abel-Gontschroff-type inequality () in �i(f ), i = , , and following

similar steps to (i), we get (). �

Theorem . Assume (H), and let f : I = [α,α] → R be a function such that for m ≥ 
(an integer) f (m–) is absolutely continuous. Also, let x, . . . , xn ∈ I , p, . . . , pn are positive real
numbers such that

∑n
i= pi = . Assume that Fα

α , Gk (k = , , , ) and �i (i = , ) are the
same as defined in (), ()-() and ()-(), respectively. For m ≥  assume that

∫ α

α

�i
(
Gk(·, ζ )

)
(w – ζ )m–Fα

α (ζ , w) dw ≥ , ζ ∈ [α,α], ()

for k = , , . If f is an m-convex function, then
(i) For k = , , , the following holds:

�i(f ) ≥ (m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
Gk(·, w)

)
dw

+


α – α

∫ α

α

�i
(
Gk(·, w)

)

×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ

– f (λ+)(α)(w – α)λ
)

dw, i = , . ()

(ii) For k = , we have

�i(f ) ≤ (–)(m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
G(·, w)

)
dw

+
(–)

α – α

∫ α

α

�i
(
G(·, w)

)

×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ

– f (λ+)(α)(w – α)λ
)

dw, i = , . ()

Proof (i) Since f (m–) is absolutely continuous on [α,α], f (m) exists almost everywhere.
Also, by Theorem ., we have f (m)(ζ ) ≥  for a.e. on [α,α]. So, applying Theorem .,
we obtain ().

(ii) Similar to (i). �
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3 Bounds for identities related to generalization of refinement of Jensen’s
inequality

For two Lebesgue integrable functions f, f : [α,α] → R, we consider the Čebyšev func-
tional

	(f, f) =


α – α

∫ α

α

f(t)f(t) dt

–


α – α

∫ α

α

f(t) dt · 
α – α

∫ α

α

f(t) dt, ()

where the integrals are assumed to exist.
In [], the following theorems are given.

Theorem . Let f : [α,α] → R be a Lebesgue integrable function and f : [α,α] → R

be an absolutely continuous function with (· – α)(· – α)[f ′
] ∈ L[α,α]. Then we have the

inequality

∣∣	(f, f)
∣∣ ≤ √


[
	(f, f)

] 
 √

β – α

(∫ α

α

(x – α)(α – x)
[
f ′
(x)

] dx
) 


. ()

The constant √
 in () is the best possible.

Theorem . Let f : [α,α] →R be an absolutely continuous with f ′
 ∈ L∞[α,α] and let

f : [α,α] → R is monotonic non-decreasing on [α,α]. Then we have the inequality

∣∣	(f, f)
∣∣ ≤ 

(α – α)
‖f ′

 ‖∞
∫ α

α

(x – α)(α – x)
[
f ′
(x)

] df(x). ()

The constant 
 in () is the best possible.

Now we consider Theorem . and Theorem . to generalize results given in previous
section. Let us first denote for ζ ∈ [α,α]

K(ζ ) =
∫ α

α

�i
(
Gk(·, w)

)
(w – ζ )n–Fα

α (ζ , w) dw, k = , , , ()

K̂(ζ ) = (–)
∫ α

α

�i
(
G(·, w)

)
(w – ζ )n–Fα

α (ζ , w) dw, i = , . ()

Theorem . Assume (H), let m ≥  be an integer, and f : [α,α] →R be such that f (m) is
absolutely continuous with (· – α)(α – ·)[f (m+)] ∈ L[α,α]. Let p, . . . , pn be positive real
numbers such that

∑n
i= pi = . Also, assume Fα

α and �i (i = , ) are the same as defined
in () and ()-(), respectively. Then:

(i) For Gk(·, w) (k = , , ) as defined in (), () and (), respectively, we have

�i(f ) = (m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
Gk(·, w)

)
dw

+


α – α

∫ α

α

�i
(
Gk(·, w)

)
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×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ – f (λ+)(α)(w – α)λ

)
dw

+
f (m–)(α) – f (m–)(α)

(m – )!(α – α)

∫ α

α

K(ζ ) dζ + R
m(α,α; f ), i = , , ()

where the remainder R
m(α,α; f ) satisfies the bound

∣∣R
m(α,α; f )

∣∣ ≤ √
(m – )!

[
	(K, K)

] 


× √
α – α

(∫ α

α

(ζ – α)(α – ζ )
[
f (m+)(ζ )

] dζ

) 


. ()

(ii) For G(z, w) as defined in (), we have

�i(f ) = (–)(m – )
(

f ′(α) – f ′(α)
α – α

)∫ α

α

�i
(
G(·, w)

)
dw

+
(–)

α – α

∫ α

α

�i
(
G(·, w)

)

×
m–∑

λ=

(
m –  – λ

λ!

)(
f (λ+)(α)(w – α)λ – f (λ+)(α)(w – α)λ

)
dw

+
f (m–)(α) – f (m–)(α)

(m – )!(α – α)

∫ α

α

K(ζ ) dζ + R
m(α,α; f ), i = , , ()

where the remainder R
m(α,α; f ) satisfies the bound

∣∣R
m(α,α; f )

∣∣ ≤ √
(m – )!

[
	(K̂, K̂)

] 


× √
α – α

(∫ α

α

(ζ – α)(α – ζ )
[
f (m+)(ζ )

] dζ

) 


.

Proof (i) Setting f �→ K and f �→ f (m) in Theorem ., we get

∣∣∣∣


α – α

∫ α

α

K(ζ )f (m)(ζ ) dζ –


α – α

∫ α

α

K(ζ ) dζ · 
α – α

∫ α

α

f (m)(ζ ) dζ

∣∣∣∣

≤ √

[
	(K, K)

] 
 √

α – α

(∫ α

α

(ζ – α)(α – ζ )
[
f (m+)(ζ )

] dζ

) 


.

Hence, we have


(m – )!(α – α)

∫ α

α

K(ζ )f (m) dζ =
f (m–)(α) – f (m–)(α)

(m – )!(α – α)

∫ α

α

K(ζ ) dζ + R
m(α,α; f ),

where the remainder satisfies the estimation (). Using identity () we get ().
(ii) Similar to the above part. �

The Grüss-type inequalities can be obtained by using Theorem ..
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Theorem . Assume (H), let m ≥  be an integer, f : [α,α] →R be a function such that
f (m) is absolutely continuous function and f (m+) ≥  a.e. on [α,α] and let the functions K
and K̂ are defined as in () and (). Then we have:

(i) Identity () where the remainder satisfies the estimation

∣∣R
m(α,α; f )

∣∣ ≤ 
(m – )!

‖K′‖∞

×
[

f (m–)(α) + f (m–)(α)


–
f (m–)(α) – f (m–)(α)

α – α

]
. ()

(ii) Identity () where the remainder satisfies the estimation

∣∣R
m(α,α; f )

∣∣ ≤ 
(m – )!

‖K̂′‖∞

×
[

f (m–)(α) + f (m–)(α)


–
f (m–)(α) – f (m–)(α)

α – α

]
. ()

Proof (i) Setting f �→ K and f �→ f (m) in Theorem ., we get

∣∣∣∣


α – α

∫ α

α

K(ζ )f (m)(ζ ) dζ –


α – α

∫ α

α

K(ζ ) dζ · 
α – α

∫ α

α

f (m)(ζ ) dζ

∣∣∣∣

≤ 

∥∥K′∥∥∞


α – α

∫ α

α

(ζ – α)(α – ζ )
[
f (m+)(ζ )

] dζ . ()

Since
∫ α

α

(ζ – α)(α – ζ )
[
f (m+)(ζ )

] dζ =
∫ α

α

[ζ – α – α]f m(ζ ) dζ

= (α – α)
[
f (m–)(α) + f (m–)(α)

]
– 

(
f (m–)(α) – f (m–)(α)

)
, ()

using (), () and (), we have ().
(ii) Similar to above part. �

Theorem . Assume (H), let f : I = [α,α] → R be a function such that f (m–) is abso-
lutely continuous, let x, . . . , xn ∈ I , p, . . . , pn are positive real numbers such that

∑n
i= pi = .

Also, let Fα
α , Gk (k = , , , ) and �i (i = , ) are the same as defined in (), ()-()

and ()-(), respectively. Moreover, assume (p, q) is a pair of conjugate exponents that is
 ≤ p, q ≤ ∞, 

p + 
q = . Let |f (m)|p : [α,α] →R be a Riemann integrable function. Then:

(i) For k = , , , we have

∣∣∣∣∣�i(f ) –
∫ α

α

[
(m – )

(
f ′(α) – f ′(α)

α – α

)

+


α – α

m–∑

λ=

(
m –  – λ

λ

)

× (
f (λ+)(α)(w – α) – f (λ+)(α)(w – α)

)
]
�i

(
Gk(·, w)

)
dw

∣∣∣∣∣
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≤ 
(α – α)(m – )!

∥∥f (m)∥∥
p

×
(∫ α

α

∣∣∣∣
∫ α

α

�i
(
Gk(·, w)

)
(w – ζ )m–Fα

α (ζ , w) dw
∣∣∣∣
q) 

q
, i = , . ()

(ii) For k = , we have

∣∣∣∣∣�i(f ) –
∫ α

α

[
(–)(m – )

(
f ′(α) – f ′(α)

α – α

)

+


α – α

m–∑

λ=

(
m –  – λ

λ

)

× (
f (λ+)(α)(w – α) – f (λ+)(α)(w – α)

)
]
�i

(
G(·, w)

)
dw

∣∣∣∣∣

≤ (–)
(α – α)(m – )!

∥∥f (m)∥∥
p

×
(∫ α

α

∣∣∣∣
∫ α

α

�i
(
G(·, w)

)
(w – ζ )m–Fα

α (ζ , w) dw
∣∣∣∣
q) 

q
, i = , . ()

Proof Similar to the proof of Theorem . in []. �

Remark . Similar to Section  and Section  of [], the n-exponential convexity, mean
value theorems and related monotonic Cauchy means (along with examples) can be con-
structed for the functional defined as the difference between the R.H.S. and the L.H.S. of
the generalized inequalities () and ().
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