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Abstract
In this paper, we establish a link between the Szász-Durrmeyer type operators and
multiple Appell polynomials. We study a quantitative-Voronovskaya type theorem in
terms of weighted modulus of smoothness using sixth order central moment and
Grüss-Voronovskaya type theorem. We also establish a local approximation theorem
by means of the Steklov means in terms of the first and the second order modulus of
continuity and Voronovskaya type asymtotic theorem. Further, we discuss the degree
of approximation by means of the weighted spaces. Lastly, we find the rate of
approximation of functions having a derivative of bounded variation.
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1 Introduction
For f ∈ C(R+

) and x ∈ R+
 (R+

 = [,∞)), Szász [] introduced the well-known operators

Sn(f ; x) = e–nx
∞∑

k=

(nx)k

k!
f
(

k
n

)
, ()

such that Sn(|f |; x) < ∞. Several generalizations of Szász operators have been introduced in
the literature and authors have studied their approximation properties. In [], the author
considered Baskakov-Szász type operators and studied the rate of convergence for ab-
solutely continuous functions having a derivative equivalent with a function of bounded
variation. In [], the authors introduced the q-Baskakov-Durrmeyer type operators and
studied the rate of convergence and the weighted approximation properties. In [] the au-
thors proposed the β-operators based on q-integers and established some direct theorems
by means of modulus of continuity and also studied the weighted approximation and bet-
ter approximation using King type approach. For exhaustive literature on approximation
by linear positive operators one can refer to [–] and the references therein.
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Now let us recall some results on multiple Appell polynomials []. Let g(z) =
∑∞

n= anzn,
g() �= , be an analytic function in the disc |z| ≤ r, r >  and pk(x) be the Appell polyno-
mials having the generating function g(u)eux =

∑∞
k= pk(x)uk , with g() �=  and pk(x) ≥ ,

∀x ∈ R+
.

Jakimovski and Leviatan [] proposed a generalization of Szász-Mirakjan operators by
means of the Appell polynomials as follows:

Pn(f ; x) =
e–nx

g()

∞∑

k=

pk(nx)f
(

k
n

)
. ()

For g(u) = , these operators reduce to Szász-Mirakjan operators ().
A set of polynomials {pk,k (x)}∞k,k= with degree k + k for k, k ≥  is called multiple

polynomial system (multiple PS) and a multiple PS is called multiple Appell if it is gener-
ated by the relation

A(t, t)ex(t+t) =
∞∑

k=

∞∑

k=

pk,k (x)
k!k!

tk
 tk

 , ()

where A is given by

A(t, t) =
∞∑

k=

∞∑

k=

ak,k

k!k!
tk
 tk

 , ()

with A(, ) = a, �= .

Theorem . For multiple PS, {pk,k (x)}∞k,k=, the following statements are equivalent:
(a) {pk,k (x)}∞k,k= is a set of multiple Appell polynomials.
(b) There exists a sequence {ak,k}∞k,k= with a, �=  such that

pk,k (x) =
∞∑

r=

∞∑

r=

(
k

r

)(
k

r

)
ak–r,k–r xr+r .

(c) For every k + k ≥ , we have

p′
k,k (x) = kpk–,k (x) + kpk,k–(x).

Varma [] defined a sequence of linear positive operators for any f ∈ C(R+
), by

Kn(f ; x) =
e–nx

A(, )

∞∑

k=

∞∑

k=

pk,k ( nx
 )

k!k!
f
(

k + k

n

)
, ()

provided A(, ) �= , ak,k
A(,) ≥  for k, k ∈N, and the series () and() converge for |t| < R,

|t| < R (R, R > ), respectively.
For α > , ρ >  and f : R+

 → R, being integrable function, Pǎltǎnea [] defined a mod-
ification of the Szász operators by

Lρ
α(f ; x) =

∞∑

k=

sα,k(x)
∫ ∞



αρe–αρt(αρt)(k)ρ–

�(k)ρ
f (t) dt + e–αxf (), x ∈ R+

. ()
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Motivated by [], for f ∈ CE(R+
), the space of all continuous functions satisfying |f (t)| ≤

Keat (t ≥ ) for some positive constant K and a, we propose an approximation method by
linking the operators () and the multiple Appell polynomials by

Lρ
n(f ; x) =

e–nx

A(, )
∑

k

∑

k
k+k≥

pk,k ( nx
 )

k!k!

∫ ∞



nρe–nρt(nρt)(k+k)ρ–

�(k + k)ρ
f (t) dt

+
e–nx

A(, )
p,

(
nx


)
f (),

and establish a quantitative Voronovskaya type theorem, a Grüss Voronovskaya type the-
orem, a local approximation theorem by means of the Steklov mean, a Voronovskaya type
asymptotic theorem and error estimates for several weighted spaces. Lastly, we study the
rate of convergence of functions having a derivative of bounded variation.

2 Basic results
In order to prove the main results of the paper, we shall need the following auxiliary results.

Lemma . For Kn(ti; x), i = , , , , , we have

(i) Kn(; x) = ,

(ii) Kn(t; x) = x +
At (, ) + At (, )

nA(, )
,

(iii) Kn
(
t; x

)
= x +

x
n

{
 +


A(, )

(
At (, ) + At (, )

)}

+


nA(, )
{

At (, ) + At (, ) + Att (, ) + Att (, ) + Att (, )
}

,

(iv) Kn
(
t; x

)
= x +

x

n

{
 +


A(, )

(
At (, ) + At (, )

)}
+

x
n

{


+


A(, )
(
At (, ) + At (, ) + Att (, ) + Att (, ) + Att (, )

)}

+


nA(, )
{

At (, ) + At (, ) + Att (, ) + Att (, )

+ Att (, ) + Attt (, ) + Attt (, ) + Attt (, ) + Attt (, )
}

,

(v) Kn
(
t; x

)
= x +

x

n

{
 +


A(, )

(
At (, ) + At (, )

)}
+

x

n

{


+


A(, )
(
At (, ) + At (, ) + Att (, ) + Att (, ) + Att (, )

)}

+
x

n

{
 +


A(, )

(
At (, ) + At (, ) + Att (, ) + Att (, )

+ Att (, ) + Attt (, ) + Attt (, ) + Attt (, )

+ Attt (, )
)}

+


nA(, )
{

At (, ) + At (, ) + Att (, )

+ Att (, ) + Att (, ) + Attt (, ) + Attt (, )
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+ Attt (, ) + Attt (, ) + Atttt (, ) + Atttt (, )

+ Atttt (, ) + Atttt (, ) + Atttt (, )
}

.

The values of the moments Kn(ti; x) for i = , ,  are given in [] while the values of
Kn(ti; x) for i = ,  have been obtained by us after simple calculations and hence the details
are omitted.

Lemma . For the sequence of linear positive operators Lρ
n(ti; x), i = , , , , , we find

(i) Lρ
n(; x) = ,

(ii) Lρ
n(t; x) = x +

At (, ) + At (, )
nA(, )

,

(iii) Lρ
n
(
t; x

)
= x +

x
n

{(
 +


ρ

)
+


A(, )

(
At (, ) + At (, )

)}

+


nA(, )

{(
 +


ρ

)(
At (, ) + At (, )

)
+ Att (, )

+ Att (, ) + Att (, )
}

,

(iv) Lρ
n
(
t; x

)
= x +

x

n

{(
 +


ρ

)
+


A(, )

(
At (, ) + At (, )

)}

+
x

n

{(
 +


ρ

+

ρ

)
+


A(, )

(

(

 +

ρ

)(
At (, ) + At (, )

)

+ Att (, ) + Att (, ) + Att (, )
)}

+


nA(, )

{(
 +


ρ

+

ρ

)(
At (, ) + At (, )

)

+ 
(

 +

ρ

)(
Att (, ) + Att (, ) + Att (, )

)
+ Attt (, )

+ Attt (, ) + Attt (, ) + Attt (, )
}

,

(v) Lρ
n
(
t; x

)
= x +

x

n

{

(

 +

ρ

)
+


A(, )

(
At (, ) + At (, )

)}

+
x

n

{(
 +


ρ

+

ρ

)
+


A(, )

(

(

 +

ρ

)(
At (, ) + At (, )

)

+ Att (, ) + Att (, ) + Att (, )
)}

+
x
n

{(
 +


ρ

+

ρ +


ρ

)

+


A(, )

((
 +


ρ

+

ρ

)(
At (, ) + At (, )

)

+ 
(

 +

ρ

)(
Att (, ) + Att (, ) + Att (, )

)
+ Attt (, )

+ Attt (, ) + Attt (, ) + Attt (, )
)}
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+


nA(, )

{(
 +


ρ

+

ρ +


ρ

)(
At (, ) + At (, )

)

+
(

 +

ρ

+

ρ

)(
Att (, ) + Att (, ) + Att (, )

)

+ 
(

 +

ρ

)(
Attt (, ) + Attt (, ) + Attt (, ) + Attt (, )

)

+ Atttt (, ) + Atttt (, ) + Atttt (, )

+ Atttt (, ) + Atttt (, )
}

.

Consequently,

Lρ
n
(
(t – x); x

)
=

x
n

(
 +


ρ

)
+


nA(, )

{(
 +


ρ

)(
At (, ) + At (, )

)

+ Att (, ) + Att (, ) + Att (, )
}

≤ C
n

(
 +


ρ

)
( + x)

= δ
n,ρ(x) (say), ()

where

C = max

(
,

|At (, )| + |At (, )| + |At,t (, )| + |At,t (, )| + |At,t (, )|
|A(, )|

)

and

Lρ
n
(
(t – x); x

)
=

x

n

{
 +


ρ

+

ρ

}
+

x
n

[(
 +


ρ

+

ρ +


ρ

)

+


A(, )

{(
 +


ρ

+

ρ

)(
At (, ) + At (, )

)

+ 
(

 +

ρ

)(
Att (, ) + Att (, ) + Att (, )

)

– Attt (, ) – Attt (, )
}]

.

The expression for Lρ
n((t – x); x) has not been included in Lemma . because it is very

lengthy and complicated. It will be required to prove the quantitative Voronovskaya type
theorem.

Remark . From Lemma ., we obtain

lim
n→∞ nLρ

n
(
(t – x); x

)
=

At (, ) + At (, )
A(, )

, ()

lim
n→∞ nLρ

n
(
(t – x); x

)
= x

(
 +


ρ

)
, ()
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lim
n→∞ nLρ

n
(
(t – x); x

)
= x

(
 +


ρ

+

ρ

)
, ()

lim
n→∞ nLρ

n
(
(t – x); x

)
= x

(
 +


ρ

+

ρ +


ρ

)
. ()

3 Main results
Theorem . Let f ∈ CE(R+

). Then limn→∞ Lρ
n(f ; x) = f (x) uniformly on each compact sub-

set of R+
.

Proof Considering Lemma ., it follows that limn→∞ Lρ
n(ti; x) = xi, i = , , , uniformly

on every compact subset of R+
. Applying the Bohman Korovkin theorem, we obtain the

desired result. �

For f ∈ CB(R+
), the space of bounded and continuous functions on R+

 endowed with
the norm ‖f ‖ = supx∈R+


|f (x)|, the first and second order modulus of continuity are, re-

spectively, defined as

ω(f ; δ) = sup
<|h|≤δ

sup
x,x+h∈R+



∣∣f (x + h) – f (x)
∣∣,

ω(f ; δ) = sup
<|h|≤δ

sup
x,x+h,x+h∈R+



∣∣f (x + h) – f (x + h) + f (x)
∣∣, δ > .

Further, for f ∈ CB(R+
), the Steklov mean of second order [] is defined as

fh(x) =

h

∫ h




∫ h




[
f (x + u + v) – f

(
x + (u + v)

)]
du dv, h > . ()

Hence

f (x) – fh(x) =

h

∫ h/



∫ h/


�

u+vf (x) du dv, and

f ′′
h (x) =


h

(
�

h/f (x) – �
hf (x)

)
.

Thus, it follows that

‖fh – f ‖ ≤ ω(f , h). ()

Further, f ′
h, f ′′

h ∈ CB(R+
) and

∥∥f ′
h
∥∥ ≤ 

h
ω(f , h),

∥∥f ′′
h
∥∥ ≤ 

h ω(f , h). ()

Theorem . For f ∈ CB(R+
) and x ∈ R+

, we have

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ ω
(
f ; δn,ρ(x)

)
+




ω
(
f ; δn,ρ(x)

)
,

where δn,ρ(x) is defined by equation ().
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Proof Using the Steklov mean fh defined by (), we may write

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ ∣∣Lρ
n
(
(f – fh); x

)∣∣ +
∣∣Lρ

n
(
fh(t) – fh(x); x

)∣∣

+
∣∣fh(x) – f (x)

∣∣. ()

Applying Lemma ., we have

∥∥Lρ
n(f )

∥∥ ≤ ‖f ‖, ()

Using inequality () and equation (), we have

∣∣Lρ
n
(
(f – fh); x

)∣∣ ≤ ‖f – fh‖
≤ ω(f , h).

Now by Taylor’s expansion and applying the Cauchy-Schwarz inequality, we have

∣∣Lρ
n
(
fh(t) – fh(x); x

)∣∣ ≤ ∣∣Lρ
n
(
(t – x)f ′

h(x); x
)∣∣ +

∣∣∣∣L
ρ
n

(∫ t

x
(t – u)f ′′

h (u) du; x
)∣∣∣∣

≤ ∥∥f ′
h
∥∥∣∣Lρ

n
(|t – x|; x

)∣∣ +
∥∥f ′′

h
∥∥Lρ

n

(∣∣∣∣
∫ t

x
|t – u|du

∣∣∣∣; x
)

=
∥∥f ′

h
∥∥
√
Lρ

n
(
(t – x); x

)
+



∥∥f ′′

h
∥∥Lρ

n
(
(t – x); x

)
.

Applying Lemma ., equations (), () and choosing h as δn,ρ(x), we get the required
result. �

Theorem . For f ∈ C
E(R+

), we obtain

lim
n→∞ n

[
Lρ

n(f ; x) – f (x)
]

=
At (, ) + At (, )

A(, )
f ′(x) +

x


(
 +


ρ

)
f ′′(x),

uniformly in x ∈ [, a], a > .

Proof By Taylor’s expansion of f for some fixed x ∈ [, a], we obtain

f (t) – f (x) = (t – x)f ′(x) +



(t – x)f ′′(x) + ξ (t, x)(t – x), ()

where ξ (t, x) ∈ CE(R+
) and limt→x ξ (t, x) = .

Hence by linearity of the operators Lρ
n , from equation (), we get

n
[
Lρ

n(f ; x) – f (x)
]

= nLρ
n(t – x; x)f ′(x) +




nLρ
n
(
(t – x); x

)
f ′′(x)

+ nLρ
n
(
ξ (t, x)(t – x); x

)
. ()

Applying the Cauchy-Schwarz inequality in the last term of equation (), we have

nLρ
n
(
ξ (t, x)(t – x); x

) ≤
√

nLρ
n
(
(t – x); x

)
Lρ

n
(
ξ (t, x); x

)
. ()
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From Remark ., it follows that

lim
n→∞ nLρ

n
(
(t – x); x

)
= x

(
 +


ρ

+

ρ

)
, ()

uniformly in x ∈ [, a].
Further, let ξ (t, x) = ν(t, x), x ≥ , then ν(t, x) ∈ CE(R+

) and hence from Theorem ., we
get

lim
n→∞Lρ

n
(
ξ (t, x); x

)
= lim

n→∞Lρ
n
(
ν(t, x); x

)
= ν(x, x) = , ()

Hence from equation (), we obtain

lim
n→∞

(
nLρ

n
(
ξ (t, x)(t – x); x

))
= , ()

uniformly in x ∈ [, a]. Now taking the limit n → ∞ in () and using Remark ., we get
the desired result. This completes the proof. �

4 Weighted approximation
Let θ (x) ≥  be a weight function on R+

. We consider the weighted space defined on R+
:

Bθ

(
R+


)

:=
{

f :
∣∣f (x)

∣∣ ≤ Mf θ (x),∀x ∈ R+
 and Mf > 

}
.

Further, let

Cθ

(
R+


)

:=
{

f ∈ Bθ

(
R+


)

: f is a continuous function on R+

}

and

C∗
θ

(
R+


)

:=
{

f ∈ Cθ

(
R+


)

: lim
x→∞

f (x)
θ (x)

= Kf < ∞
}

.

We define the norm in the space Bθ (R+
) as

‖f ‖θ = sup
x∈R+



|f (x)|
θ (x)

.

The usual modulus of continuity of the function f on [, p] is defined as

ωp(f ; δ) = sup
|t–x|≤δ

sup
t,x∈[,p]

∣∣f (t) – f (x)
∣∣. ()

Let us denote ‖ · ‖C[a,b] as the supremum norm on [a, b]. Throughout the paper we have
taken θ (x) =  + x.

Theorem . For x ∈ [, c] and f ∈ Cθ (R+
), we have

∥∥Lρ
n(f ; ·) – f

∥∥
C[,c] ≤ Mf

(
 + c)η

n,ρ + ωc+(f ;ηn,ρ),

where η
n,ρ = maxx∈[,c](Lρ

n((t – x); x)).
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Proof Let x ∈ [, c] and t > c +  then t – x > . Then, for f ∈ Cθ (R+
), we have

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + t + x)

= Mf
(
 + x + (t – x) + x(t – x)

)

≤ Mf (t – x)( + x + x
) ≤ Mf

(
 + x)(t – x). ()

For x ∈ [, c] and t ∈ [, c + ], we have

∣∣f (t) – f (x)
∣∣ ≤ ωc+

(
f ; |t – x|) ≤

(
 +

|t – x|
δ

)
ωc+(f ; δ). ()

From equations () and (), for x ∈ [, c] and t ≥ , we have

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + x)(t – x) +

(
 +

|t – x|
δ

)
ωc+(f ; δ).

Applying the Cauchy-Schwarz inequality and choosing δ = √
ηn,ρ , we get

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ Mf
(
 + x)Lρ

n
((

t – x); x
)

+
(

 +

δ
Lρ

n
(|t – x|; x

))
ωc+(f ; δ)

≤ Mf
(
 + c)η

n,ρ(c) + ωc+
(
f ;ηn,ρ(c)

)
.

This completes the proof. �

Theorem . For f ∈ Cθ (R+
), we have

lim
n→∞ sup

x∈R+


|Lρ
n(f ; x) – f (x)|
( + x)+η

= ,

where η is some positive constant.

Proof Since |f (x)| ≤ ‖f ‖θ ( + x), for fixed y > , we may write

sup
x∈R+



|Lρ
n(f ; x) – f (x)|
( + x)+η

≤ sup
x∈[,y]

|Lρ
n(f ; x) – f (x)|
( + x)+η

+ sup
x∈(y,∞)

|Lρ
n(f ; x) – f (x)|
( + x)+η

≤ ∥∥Lρ
n(f ; ·) – f

∥∥
C[,y] +

‖f ‖θ

( + y)η

+ ‖f ‖θ sup
x∈(y,∞)

|Lρ
n( + t; x)|

( + x)+η
. ()

Using Theorem ., for a given ε > , there exists k ∈N such that

∣∣Lρ
n
(
 + t; x

)
–  + x∣∣ <

ε

‖f ‖θ

, ∀n ≥ k.

or

Lρ
n
(
 + t; x

)
<  + x +

ε

‖f ‖θ

, ∀n ≥ k.
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Hence,

‖f ‖θ

Lρ
n( + t; x)

( + x)+η
<

‖f ‖θ

( + x)+η

(
 + x +

ε

‖f ‖θ

)

<
‖f ‖θ

( + y)η
+

ε


, ∀n ≥ k.

Therefore,

‖f ‖θ sup
x∈[y,∞)

Lρ
n( + t; x)

( + x)+η
≤ ‖f ‖θ

( + y)η
+

ε


, for all n ≥ k. ()

Let us choose y so large that

‖f ‖θ

( + y)η
≤ ε


. ()

Also, in view of Theorem ., for ε >  there exists a n ≥ l such that

∥∥Lρ
n(f ; ·) – f

∥∥
C[,y] <

ε


, n ≥ l. ()

Taking m = max(k, l) and combining equations ()-(), we get

sup
x∈R+



|Lρ
n(f ; x) – f (x)|
( + x)+η

< ε, n ≥ m.

This completes the proof. �

Following [], the weighted modulus of continuity ω(g; δ) for g ∈ Cθ (R+
) is defined as

ω(g; δ) = sup
<|h|≤δ,x∈R+



|g(x + h) – g(x)|
( + h)( + x)

. ()

Also, for g ∈ C∗
θ (R+

), the weighted modulus of continuity has the following properties:

lim
δ→

ω(g; δ) = 

and

ω(g;λδ) ≤ ( + λ)
(
 + δ)ω(g; δ), λ > . ()

For g ∈ Cθ (R+
), from equations () and ()

∣∣g(t) – g(x)
∣∣ ≤ (

 + (t – x))( + x)ω
(
g; |t – x|)

≤ 
(

 +
|t – x|

δ

)(
 + δ)ω(g; δ)

(
 + (t – x))( + x). ()
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Theorem . For f ∈ C∗
θ (R+

), we have

sup
x∈R+



|Lρ
n(f ; x) – f (x)|

( + x) ≤ Cω

(
f ;

√

n

)
,

where C is a positive constant independent of n.

Proof By the linearity and positivity of the operators Lρ
n , we get

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤Lρ
n
(∣∣f (t) – f (x)

∣∣; x
)

Using equation () and the Cauchy-Schwarz inequality, we get

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ 
(
 + δ)ω(f ; δ)

(
 + x)Lρ

n

((
 +

|t – x|
δ

)(
 + (t – x)); x

)

≤ 
(
 + δ)ω(f ; δ)

(
 + x)

{
Lρ

n(; x) + Lρ
n
(
(t – x); x

)

+

δ
Lρ

n
(|t – x|; x

)
+


δ
Lρ

n
(|t – x|(t – x); x

)}

≤ 
(
 + δ)ω(f ; δ)

(
 + x)

{
Lρ

n(; x) + Lρ
n
(
(t – x); x

)

+

δ

√
Lρ

n
(
(t – x); x

)
+


δ

√
Lρ

n
(
(t – x); x

)√
Lρ

n
(
(t – x); x

)}
. ()

Using Lemma ., we obtain

Lρ
n
(
(t – x); x

) ≤ C

n

(
 + x) ()

and

Lρ
n
(
(t – x); x

) ≤ C


n

(
 + x), ()

for some positive constants C and C dependent on ρ and A(t, t). Now combining equa-
tions ()-() and taking δ =

√

n , we have

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ 
(

 +

n

)
ω

(
f ;

√

n

)(
 + x)

{
 + C


n

(
 + x)

+
√

C

√(
 + x

)
+

√
C

√(
 + x

)√
C

√(
 + x

)}
.

Hence, we get

sup
x∈R+



|Lρ
n(f ; x) – f (x)|

( + x) ≤ Cω

(
f ;

√

n

)
,

where C = ( + MC +
√

C +
√

C
√

C). This completes the proof. �
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5 Quantitative Voronovskaya theorems
In the following result, we discuss a quantitative Voronovskaja type theorem by using the
weighted modulus of smoothness ω(f ; δ). Recently, many researchers [–] have made
remarkable contributions in this area.

Theorem . For f , f ′, f ′′ in C∗
θ (R+

) and any x ∈ R+
, we have

∣∣∣∣n
(
Lρ

n(f ; x) – f (x)
)

– f ′(x)
(

At (, ) + At (, )
A(, )

)
–

f ′′(x)
!

[
x
n

(
 +


ρ

)

+


nA(, )

{(
 +


ρ

)(
At (, ) + At (, )

)

+ Att (, ) + Att (, ) + Att (, )
}]∣∣∣∣

= O()ω
(

f ′′;
√
n

)
, as n → ∞.

Proof Let x, t ∈ R+
, then, by Taylor’s expansion, we have

f (t) = f (x) + f ′(x)(t – x) +
f ′′(x)

!
(t – x) + E(t, x),

where E(t, x) = f ′′(ϕ)–f ′′(x)
! (t – x) and ϕ lies between t and x.

Now, we get

∣∣∣∣L
ρ
n(f ; x) – f (x) – f ′(x)Lρ

n
(
(t – x); x

)
–

f ′′(x)
!

Lρ
n
(
(t – x); x

)∣∣∣∣ ≤Lρ
n
(∣∣E(t, x)

∣∣; x
)
.

Multiplying by n on both sides of the above inequality and using Lemma ., we obtain

∣∣∣∣n
(
Lρ

n(f ; x) – f (x)
)

– f ′(x)
(

At (, ) + At (, )
A(, )

)
–

f ′′(x)
!

[
x
n

(
 +


ρ

)

+


nA(, )

{(
 +


ρ

)(
At (, ) + At (, )

)

+ Att (, ) + Att (, ) + Att (, )
}]∣∣∣∣

≤ nLρ
n
(∣∣E(t, x)

∣∣; x
)
. ()

Using the property of weighted modulus of smoothness given by (), we get

∣∣∣∣
f ′′(ϕ) – f ′′(x)

!

∣∣∣∣ ≤ 

ω

(
f ′′; |ϕ – x|)( + (ϕ – x))( + x)

≤ 

ω

(
f ′′; |t – x|)( + (t – x))( + x)

≤
(

 +
(|t – x|)

δ

)(
 + δ)ω

(
f ′′; δ

)

×(
 + (t – x))( + x).
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Also,

∣∣∣∣
f ′′(ϕ) – f ′′(x)

!

∣∣∣∣ ≤
⎧
⎨

⎩
( + δ)( + x)ω(f ′′; δ), |t – x| ≤ δ,

( + δ)( + x) (t–x)

δ ω(f ′′; δ), |t – x| ≥ δ.

Now for  < δ < , we obtain

∣∣∣∣
f ′′(ϕ) – f ′′(x)

!

∣∣∣∣ ≤ 
(
 + x)ω

(
f ′′; δ

)(
 +

(t – x)

δ

)
.

Therefore, we get

∣∣E(t, x)
∣∣ ≤ 

(
 + x)ω

(
f ′′; δ

)(
(t – x) +

(t – x)

δ

)
.

Now by the linearity and positivity of the operatorLρ
n and using Remark ., for any x ∈ R+

,
we obtain

Lρ
n
(∣∣E(t, x)

∣∣; x
) ≤ 

(
 + x)ω

(
f ′′; δ

){
Lρ

n
(
(t – x); x

)
+


δ L

ρ
n
(
(t – x); x

)}

≤ 
(
 + x)ω

(
f ′′; δ

){
O

(

n

)
+ O

(


n

)}
.

Choosing δ = √
n , we obtain

Lρ
n
(∣∣E(t, x)

∣∣; x
) ≤ 

(
 + x)ω

(
f ′′; n– 


)
O

(

n

)
. ()

Hence combining () and (), we reach the required result. �

6 Grüss-Voronovskaya-type theorem
For the first time Gal and Gonska [], studied the Grüss Voronovskaya type theorem for
the Bernstein, Păltănea and Bernstein-Faber operators by means of the Grüss inequality
which concerns the non-multiplicavity of these operators. For more papers in this direc-
tion we refer the reader to (cf. [–] etc.) Next, we study the non-multiplicativity of the
positive linear operator Lρ

n .

Theorem . For f ′(x), g ′(x), f ′′(x), g ′′(x), (fg)′(x), (fg)′′(x) ∈ C∗
θ (R+

), we have the following
equality:

lim
n→∞ n

{
Lρ

n(fg; x) – Lρ
n(f ; x)Lρ

n(g; x)
}

= x
(

 +

ρ

)
f ′(x)g ′(x).

Proof We have

(fg)′′(x) = f ′′(x)g(x) + f ′(x)g ′(x) + g ′′(x)f (x).
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By making an appropriate arrangement, we get

n
{
Lρ

n
(
(fg); x

)
– Lρ

n(f ; x)Lρ
n(g; x)

}

= n
{
Lρ

n
(
(fg); x

)
– f (x)g(x) – (fg)′(x)Lρ

n(t – x; x) –
(fg)′′(x)

!
Lρ

n
(
(t – x); x

)

– g(x)
(
Lρ

n(f ; x) – f (x) – f ′(x)
)
Lρ

n(t – x; x) –
f ′′(x)

!
Lρ

n
(
(t – x); x

)

– Lρ
n(f ; x)

(
Lρ

n(g; x) – g(x) – (g)′(x)
)
Lρ

n(t – x; x) –
(g)′′(x)

!
Lρ

n
(
(t – x); x

)

+ 
Lρ

n((t – x); x)
!

f ′(x))(g)′(x)) + (g)′′(x))
Lρ

n((t – x); x)
!

(
f (x) – Lρ

n(f ; x)
)

+ (g)′(x))Lρ
n(t – x; x)

(
f (x) – Lρ

n(f ; x)
)}

.

Applying Theorem ., for each x ∈ R+
, Lρ

n(f ; x) → f (x) as n → ∞ and for f ′′ ∈ C∗
θ (R+

),
x ∈ R+

, by Theorem ., we have

lim
n→∞

(
Lρ

n(f ; x) – f (x) – f ′(x)Lρ
n
(
(t – x); x

)
–

f ′′(x)
!

Lρ
n
(
(t – x); x

))
= .

Therefore, using Remark ., we get the desired result. �

7 Rate of approximation of functions having derivative of bounded variation
In the last decade, the degree of approximation for the functions having a derivative of
bounded variation has been studied by several researchers. Ispir et al. [] considered the
Kantorovich modification of Lupas operators based on Polya distributions and studied the
rate of approximation of the functions having a derivative of bounded variation. For other
significant contributions in this direction cf. [, –] etc. Motivated by these studies,
we shall discuss the rate of approximation of functions with a derivative of bounded vari-
ation on R+

 for the operators Lρ
n .

Let DBV(R+
) be the subspace of Bθ (R+

) of all absolutely continuous functions f having
a derivative f ′ equivalent with a function of bounded variation on every finite subinterval
of R+

. We observe that the functions f ∈ DBV(R+
) possess a representation

f (x) =
∫ x


g(t) dt + f (),

where g ∈ BV (R+
), i.e., g is a function of bounded variation on every finite subinterval

of R+
.

In order to discuss the approximation of functions with derivatives of bounded variation,
we express the operators Lρ

n in an integral form as follows:

Lρ
n(f ; x) =

∫ ∞


Kρ

n (x, t)f (t) dt, ()
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where the kernel Kρ
n (x, t) is given by

Kρ
n (x, t) =

e–nx

A(, )
∑

k k+k≥

∑

k

pk,k ( nx
 )

k!k!
nρe–nρt(nρt)(k+k)ρ–

�(k + k)ρ

+
e–nx

A(, )
p,

(
nx


)
δ(t),

δ(t) being the Dirac-delta function.

Lemma . For a fixed x ∈ R+
 and sufficiently large n, we have

(i) ξρ
n (x, y) =

∫ y


Kρ

n (x, t) dt ≤ C( + 
ρ

)( + x)
n


(x – y) ,  ≤ y < x,

(ii)  – ξρ
n (x, z) =

∫ ∞

z
Kρ

n (x, t) dt ≤ C( + 
ρ

)( + x)
n


(z – x) , x < z < ∞.

Proof (i) Using Lemma ., we get

ξρ
n (x, y) =

∫ y


Kρ

n (x, t) dt ≤
∫ y



(
x – t
x – y

)

Kρ
n (x, t) dt

≤ Lρ
n
(
(t – x); x

)
(x – y)–

≤ C( + 
ρ

)( + x)
n


(x – y) .

The proof of (ii) is similar; hence the details are omitted. �

Theorem . Let f ∈ DBV(R+
). Then, for every x ∈ R+

 and sufficiently large n, we have

∣∣Lρ
n(f ; x) – f (x)

∣∣

≤ 

(
f ′(x+) + f ′(x–)

)(At (, ) + At (, )
nA(, )

)
+



∣∣f ′(x+) – f ′(x–)

∣∣
√

C
n

(
 +


ρ

)
( + x)

+
C
n

(
 +


ρ

)
( + x)

x

∣∣f (x) – f (x) – xf ′(x+)
∣∣ +

x√
n

x+x/
√

n∨

x

(
f ′
x
)

+
C
n

(
 +


ρ

)(
 +


x

) [
√

n]∑

k=

x+x/
√

k∨

x
f ′
x +

C
n

(
 +


ρ

)
( + x)

(
M + |f (x)|

x + M
)

+
∣∣f ′(x+)

∣∣
√

C
n

(
 +


ρ

)
( + x),

where
∨b

a f (x) denotes the total variation of f (x) on [a, b] and f ′
x is defined by

f ′
x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

f ′(t) – f ′(x–),  ≤ t < x,

, t = x,

f ′(t) – f ′(x+) x < t < ∞.

()
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Proof Since Lρ
n(; x) = , using (), for every x ∈ (, ) we get

Lρ
n(f ; x) – f (x) =

∫ ∞


Kρ

n (x, t)
(
f (t) – f (x)

)
dt

=
∫ ∞


Kρ

n (x, t)
∫ t

x
f ′(u) du dt. ()

For any f ∈ DBV(R+
), from () we may write

f ′(v) =
(
f ′)

x(v) +


(
f ′(x+) + f ′(x–)

)
+



(
f ′(x+) – f ′(x–)

)
sgn(v – x)

+ Ex(v)
[

f ′(v) –


(
f ′(x+) + f ′(x–)

)]
, ()

where

Ex(u) =

⎧
⎨

⎩
, v = x,

, v �= x.

We get

∫ ∞



(∫ t

x

(
f ′(u) –



(
f ′(x+) + f ′(x–)

))
Ex(v) dv

)
Kρ

n (x, t) dt = . ()

Using Lemma . and applying the Cauchy-Schwarz inequality, we obtain

∫ ∞



(∫ t

x



(
f ′(x+) + f ′(x–)

)
dv

)
Kρ

n (x, t) dt

=


(
f ′(x+) + f ′(x–)

)∫ ∞


(t – x)Kρ

n (x, t) dt

=


(
f ′(x+) + f ′(x–)

)
Lρ

n
(
(t – x); x

)
=



(
f ′(x+) + f ′(x–)

)(At (, ) + At (, )
nA(, )

)
()

and

∫ ∞


Kρ

n (x, t)
(∫ t

x



(
f ′(x+) – f ′(x–)

)
sgn(v – x) dv

)
dt

≤ 

∣∣f ′(x+) – f ′(x–)

∣∣(Lρ
n
(
(t – x); x

))/

≤ 

∣∣f ′(x+) – f ′(x–)

∣∣
√

C
n

(
 +


ρ

)
( + x). ()

Using Lemma . and equations ()-(), we obtain

∣∣Lρ
n(f ; x) – f (x)

∣∣ ≤ 

(
f ′(x+) + f ′(x–)

)(At (, ) + At (, )
nA(, )

)

+


∣∣f ′(x+) – f ′(x–)

∣∣
√

C
n

(
 +


ρ

)
( + x) + |I| + |I|, ()



Neer and Agrawal Journal of Inequalities and Applications  (2017) 2017:244 Page 17 of 20

where

I =
∫ x



∫ t

x

((
f ′)

x(v) dv
)
Kρ

n (x, t) dt

and

I =
∫ 

x

∫ t

x

((
f ′)

x(v) dv
)
Kρ

n (x, t) dt.

Since we know
∫ b

a dtξ
ρ
n (x, t) ≤ , for all [a, b] ⊆ R+

, using integration by parts and applying
Lemma . and substituting y = x – x/

√
n, we get

I =
∣∣∣∣
∫ x



∫ t

x

((
f ′)

x(v) dv
)

dtξ
ρ
n (x, t)

∣∣∣∣

=
∣∣∣∣
∫ x


ξρ

n (x, t)
(
f ′)

x(t) dt
∣∣∣∣

≤
∫ y



∣∣(f ′)
x(t)

∣∣∣∣ξρ
n (x, t)

∣∣dt +
∫ x

y

∣∣(f ′)
x(t)

∣∣∣∣ξρ
n (x, t)

∣∣dt

≤ C
n

(
 +


ρ

)
( + x)

∫ y



x∨

t

((
f ′)

x

)
(x – t)– dt +

∫ x

y

x∨

t

((
f ′)

x

)
dt

≤ C
n

(
 +


ρ

)
( + x)

∫ x–x/
√

n



x∨

t

((
f ′)

x

)
(x – t)– dt +

x√
n

x∨

x–x/
√

n

((
f ′)

x

)
.

Substituting v = x/(x – t), we get

C
n

(
 +


ρ

)
( + x)

∫ x–x/
√

n


(x – t)–

x∨

t

((
f ′)

x

)
dt

=
C
n

(
 +


ρ

)
( + x)x–

∫ √
n



x∨

x–x/u

((
f ′)

x

)
dv

≤ C
n

(
 +


ρ

)
( + x)x–

[
√

n]∑

k=

∫ k+

k

x∨

x–x/k

((
f ′)

x

)
dv

≤ C
n

(
 +


ρ

)(
 +


x

) [
√

n]∑

k=

x∨

x–x/k

((
f ′)

x

)
.

Thus,

|I| ≤ C
n

(
 +


ρ

)(
 +


x

) [
√

n]∑

k=

x∨

x–x/k

((
f ′)

x

)
+

x√
n

x∨

x–x/
√

n

((
f ′)

x

)
. ()
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Again, using integration by parts, applying the Cauchy-Schwarz inequality, Lemma . and
substituting z = x + ( – x)/

√
n, we get

|I| =
∣∣∣∣
∫ ∞

x

∫ t

x

((
f ′)

x(v) dv
)
Kρ

n (x, t) dt
∣∣∣∣

=
∣∣∣∣
∫ x

x

∫ t

x

((
f ′)

x(v) dv
)
dt

(
 – ξρ

n (x, t)
)

+
∫ ∞

x

∫ t

x

((
f ′)

x(v) dv
)
Kρ

n (x, t) dt
∣∣∣∣

=
∣∣∣∣

[∫ t

x

((
f ′)

x(v) dv
)(

 – ξρ
n (x, t)

)]x

x

∣∣∣∣ +
∣∣∣∣
∫ x

x

(
f ′)

x(t)
(
 – ξρ

n (x, t)
)

dt
∣∣∣∣

+
∣∣∣∣
∫ ∞

x

∫ t

x

((
f ′(v) – f ′(x+)

)
dv

)
Kρ

n (x, t) dt
∣∣∣∣

≤
∣∣∣∣
∫ x

x

((
f ′)

x(v) dv
)(

 – ξρ
n (x, x)

)∣∣∣∣ +
∣∣∣∣
∫ x

x

(
f ′)

x(t)
(
 – ξρ

n (x, t)
)

dt
∣∣∣∣

+
∣∣∣∣
∫ ∞

x
f (t)Kρ

n (x, t) dt
∣∣∣∣ +

∣∣f (x)
∣∣
∣∣∣∣
∫ ∞

x
Kρ

n (x, t) dt
∣∣∣∣

+
∣∣f ′(x+)

∣∣
∣∣∣∣
∫ ∞

x

(
(t – x)

)
Kρ

n (x, t) dt
∣∣∣∣

≤ C
n

(
 +


ρ

)
( + x)

x

∣∣∣∣
∫ x

x
(
(
f ′(v) – f (x+)

)
dv

∣∣∣∣ +
∣∣∣∣
∫ x+x/

√
n

x
f ′
x(t) dt

∣∣∣∣

+
C
n

(
 +


ρ

)
( + x)

∣∣∣∣
∫ x

x+x/
√

n
(t – x)–f ′

x(t) dt
∣∣∣∣ +

∣∣∣∣
∫ ∞

x
f (t)Kρ

n (x, t) dt
∣∣∣∣

+
∣∣f (x)

∣∣
∣∣∣∣
∫ ∞

x
Kρ

n (x, t) dt
∣∣∣∣ +

∣∣f ′(x+)
∣∣
(∫ ∞

x
(t – x)Kρ

n (x, t) dt
)/

. ()

By substituting t = x + x
u and proceeding in a similar way to I, we get

|I| ≤ C
n

(
 +


ρ

)
( + x)

x

∣∣f (x) – f (x) – xf ′(x+)
∣∣ +

x√
n

x+x/
√

n∨

x

(
f ′
x
)

+
C
n

(
 +


ρ

)(
 +


x

) [
√

n]∑

k=

x+x/
√

k∨

x
f ′
x +

∫ ∞

x
M

(
 + t)Kρ

n (x, t) dt

+
∣∣f (x)

∣∣
∣∣∣∣
∫ ∞

x
Kρ

n (x, t) dt
∣∣∣∣ +

∣∣f ′(x+)
∣∣
√

C
n

(
 +


ρ

)
( + x). ()

Now for t ≥ x, we may write t ≤ (t – x) and x ≤ t – x. Now using Lemma ., we ob-
tain

∫ ∞

x
M

(
 + t)Kρ

n (x, t) dt +
∣∣f (x)

∣∣
∫ ∞

x
Kρ

n (x, t) dt

≤ M
x

∫ ∞

x
(t – x)Kρ

n (x, t) dt + M
∫ ∞

x
(t – x)Kρ

n (x, t) dt
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+
|f (x)|

x

∫ ∞

x
(t – x)Kρ

n (x, t) dt

≤ C
n

(
 +


ρ

)
( + x)

(
M + |f (x)|

x + M
)

. ()

Collecting the estimates ()-(), we get the required result. �

8 Conclusion
A link between Szász-Durrmeyer type operators and multiple Appell polynomials has
been established. The quantitative Voronovskaya type theorem and the Grüss-
Voronovskaya type theorem have been proved. A local approximation result and the
weighted approximation theorem have been discussed besides the approximation of func-
tions whose derivatives are locally of bounded variation.
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