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Abstract
In this paper, we consider the numerical solution for the discretization of semilinear
elliptic complementarity problems. A monotone algorithm is established based on
the upper and lower solutions of the problem. It is proved that iterates, generated by
the algorithm, are a pair of upper and lower solution iterates and converge
monotonically from above and below, respectively, to the solution of the problem.
Moreover, we investigate the convergence rate for the monotone algorithm and
prove quadratic convergence of the algorithm. The monotone and quadratic
convergence results are also extended to the discrete problems of the two-sided
obstacle problems with a semilinear elliptic operator. We also present some simple
numerical experiments.
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1 Introduction
In this paper, we consider the following semilinear elliptic complementarity problem of
finding U ∈K = {V ∈ H

(�) : V ≥ ϕ, a.e. in �} such that

a(U ,V – U ) +
(
F (U , ·),V – U

) ≥ , ∀V ∈K, (.)

where � ∈ R is a bounded convex polygonal with boundary ∂�, F (V , x) is continuously
differentiable in variable V with ∂F

∂V ≥ C∗ ≥  on K× �̄, ϕ ∈ H(�) with ϕ|∂� ≤ , and

a(U ,V) =
∫

�

∇U∇V dx +
∫

�

[
( �β · ∇U )V + γUV

]
dx.

Here, �β = (β,β) ∈ (L∞(�)), γ ∈ L∞(�) and γ ≥  on �.
Problem (.) has been widely applied in many scientific, engineering or economic prob-

lems, e.g., in the diffusion problems involving Michaelis-Menten or second order irre-
versible reactions [–].

To solve problem (.), we generally apply a finite difference or finite element approxi-
mation to obtain a discrete problem. If we use standard finite difference or lumping finite
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element approximation with a Delaunay triangle triangulation (see, e.g., in [–]), the dis-
crete problem can be a finite dimensional nonlinear complementarity problem of finding
u ∈ K = {v ∈ Rn : v ≥ φ} such that

Au + f (u) ≥ , (u – φ)T(
Au + f (u)

)
= , (.)

where A = (aij) ∈ Rn×n is an M-matrix, f : Rn → Rn is a diagonal and nondecreasing mono-
tone mapping. In other words, matrix A has a nonnegative inverse A– as well as non-
positive off-diagonals, and mapping f has a form of f (v) = (fi(vi)) ∈ Rn with

f ′
i (vi) ≥ c∗

i ≥ . (.)

In this paper, we also assume that A is a positive definite matrix. That is, there exists a
positive constant σ such that, for any vector v ∈ Rn,

vT Av ≥ σvT v. (.)

These conditions can be satisfied for suitable small meshsize, see, e.g., in [, , ].
The numerical algorithms for solving problem (.) have been developing rapidly.

Among these algorithms, there are a kind of monotone algorithms based on the upper
or lower solutions of the problem. We refer to [, , , ] and the references therein for
details. These algorithms can be regarded as extensions of the monotone algorithms for
solving elliptic boundary value problems or their discretizations (see, e.g., in [, –]).
In these algorithms, any generated iterate is an upper (or lower) solution sequence which
then converges to the solution monotonically. In this paper, we extend the monotone iter-
ative approach for elliptic boundary value equation, presented in [], to complementarity
as well as two-sided obstacle problems. By using a pair of upper and lower solutions as two
initial iterates, one can construct two monotone sequences which converge monotonically
from above and below, respectively, to the solutions of the problems. Especially, the initial
iterative solutions in the monotone iterative algorithms can be obtained directly by solv-
ing two discrete linear complementarity problems without any knowledge of the exact
solution. Quadratic convergence is also proved for the algorithms.

The structure of the paper is as follows. In Section , we provide two procedures, in
which only a pair of linear complementarity problems are needed to be solved. Following
these procedures, we can obtain a pair of upper and lower solutions of the nonlinear com-
plementarity problem we are concerned with. In Sections  and , we propose a monotone
iterative algorithm and deal with the quadratic convergence of the monotone iterates, re-
spectively. In Section , we extend the results obtained in Sections - to the two-sided
obstacle problem. In Section , we present some simple numerical experiments.

2 Upper and lower solutions and their initializations
The approach presented in this paper is based on the upper and lower solutions of the
problems. In this section, we introduce the definitions of upper and lower solutions of
problem (.) and discuss their properties.

Nonlinear complementarity problem (.) is equivalent to the following system of non-
smooth equations:

min
{

Au + f (u), u – φ
}

= . (.)
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According to (.), let

S =
{

v ∈ Rn : min
{

Av + f (v), v – φ
} ≥ 

}

and

S– =
{

v ∈ Rn : min
{

Av + f (v), v – φ
} ≤ 

}
.

Then S and S– are called the upper and lower solution sets of problem (.), respectively.
Besides, any element of S (S–) is called an upper (lower) solution of problem (.). It is
well known that the solution of the problem is the minimal (maximal) element of upper
(lower) solution set (see, e.g., in [, , ]).

It is obvious that v ∈ S is equivalent to

Av + f (v) ≥ , v ≥ φ,

that is, v ∈ K and Av + f (v) ≥ . On the other hand, v ∈ S– is equivalent to (Av + f (v))i ≤ 
holds for each index i satisfying vi > φi. Therefore, a lower solution v may not belong to a
feasible set K . For instance, any v satisfying Av + f (v) ≤  is in S–. Let

S̃– =
{

v ∈ K : min
{

Av + f (v), v – φ
} ≤ 

}
.

That is, S̃– consists of lower solutions in K . Since the solution of problem (.) is in K , in
the sequel, we will consider the lower solution in S̃–. Obviously, φ is a candidate of such
lower solutions.

Lemma . For any w ∈ Rn, let ū be a solution of the following linear complementarity
problem (LCP) of finding ū ∈ K such that

(
A + 	∗)ū ≥ ḡ, (ū – φ)T[(

A + 	∗)ū – ḡ
]

= , (.)

where 	∗ = diag(c∗
 , c∗

, . . . , c∗
n) ∈ Rn×n is a nonnegative diagonal matrix and

ḡ =
∣∣Aw + f (w)

∣∣ +
(
A + 	∗)w.

Then ū ∈ S.

Proof Assuming that ū satisfies (.) and |Aw + f (w)| + Aw + f (w) ≥ ,

Aū + f (ū) =
(
A + 	∗)ū – ḡ

+
∣
∣Aw + f (w)

∣
∣ + Aw + f (w)

+ f (ū) – f (w) + 	∗(w – ū)

≥
∫ 



[
f ′(w + tz) – 	∗]z dt, (.)
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where z = ū – w. It follows from (.) again that

(
A + 	∗)z ≥ ∣∣Aw + f (w)

∣∣ ≥ . (.)

Since A is an M-matrix, so is A + 	∗ (see, e.g., in [, ]). That is, (A + 	∗)– ≥ . This
together with (.) implies z ≥ , and hence by (.),

∫ 
 [f ′(w + tz) –	∗]z dt ≥ . Therefore,

by (.), we get

Aū + f (ū) ≥ ,

which together with ū ∈ K implies ū ∈ S. �

For the lower solution, we have a similar result as follows.

Lemma . For any w ∈ Rn, let u be a solution of the following LCP of finding u ∈ K such
that

(
A + 	∗)u ≤ g, (u – φ)T[(

A + 	∗)u – g
]

= , (.)

where

g = –
∣∣Aw + f (w)

∣∣ +
(
A + 	∗)w.

Then u ∈ S̃–.

Problems (.) and (.) can be regarded as lower and upper obstacle problems with
variables ū and –u, respectively. According to Lemmas . and ., we can obtain a pair
of upper and lower solutions of nonlinear complementarity problem (.) by solving two
linear complementarity problems (.) and (.). As for linear complementarity problems,
there are many classic and efficient iterative or direct algorithms to solve them. We refer
to [, –] for further discussions.

3 Monotone iterative algorithm for complementarity problem
In this section, we propose an algorithm for solving the nonlinear complementarity prob-
lem (.) and discuss its monotone convergence. Firstly, we present the algorithm as fol-
lows.

Algorithm . Let the initials u()
 ∈ S and u()

– ∈ S̃–. For k ≥ , we calculate a pair of
iterates by solving the following linear complementarity problems of finding u(k)

α ∈ K , α =
, –, respectively, such that

⎧
⎨

⎩
A(k)(u(k)

α – u(k–)
α ) + r(u(k–)

α ) ≥ ,

(u(k)
α – φ)T [A(k)(u(k)

α – u(k–)
α ) + r(u(k–)

α )] = ,
(.)

where

r
(
u(k–)

α

)
= Au(k–)

α + f
(
u(k–)

α

)
, α = , –, (.)
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A(k) = A + 	(k–), and 	(k–) is a diagonal matrix with diagonals

λ
(k–)
i = max

{
f ′
i (vi) :

(
u(k–)

–
)

i ≤ vi ≤ (
u(k–)


)

i

} ≥ c∗
i , i = , , . . . , n. (.)

Direct algorithms with a polynomial computational complexity are fruitful for subprob-
lems (.). Especially, there are a lot of polynomial algorithms for linear complementarity
problems with an M-matrix. We refer to [–] for more details.

By Lemmas . and ., for any w ∈ Rn, ū and u, generated by (.) and (.), are in S

and S̃–, respectively. So, we may let the initials in Algorithm . be obtained by solving
(.) and (.). That is,

u()
 = ū and u()

– = u.

Remark . Noting that A is an M-matrix and 	(k–) is a diagonal matrix with nonnega-
tive diagonals, A(k) is also an M-matrix. Therefore, similar to S and S̃–, we can define the
upper and lower solution sets of problem (.), respectively, as follows:

S(k,α)
 =

{
v ∈ Rn : min

{
A(k)(v – u(k–)

α

)
+ r

(
u(k–)

α

)
, v – φ

} ≥ 
}

, (.)

S̃(k,α)
– =

{
v ∈ K : min

{
A(k)(v – u(k–)

α

)
+ r

(
u(k–)

α

)
, v – φ

} ≤ 
}

. (.)

Moreover, the solutions u(k)
α of problems (.), α = , –, are the minimal and maximal

elements of S(k,α)
 and S̃(k,α)

– , respectively.

Lemma . Let u(k)
α , α = , –, be the solutions of problems (.), respectively. If u(k–)

 ≥
u(k–)

– , u(k)
 ≥ u(k)

– .

Proof For any v ∈ Rn, we have v = v+ + v–, where v+ = max{v, } ≥  and v– = min{v, } ≤ .
Let z(k) = u(k)

– – u(k)
 . It is sufficient to prove that (z(k))+ = . By (.) and (z(k))+ ≥ , we have

((
z(k))+)T[

A(k)(u(k)
 – u(k–)


)

+ r
(
u(k–)


)] ≥ . (.)

If ((z(k))+)i > , (u(k)
– )i > (u(k)

 )i ≥ φi. Then, by (.), we have

[
A(k)(u(k)

– – u(k–)
–

)
+ r

(
u(k–)

–
)]

i = .

Thereby,

((
z(k))+)T[

A(k)(u(k)
– – u(k–)

–
)

+ r
(
u(k–)

–
)]

=
n∑

i=

((
z(k))+)

i

[
A(k)(u(k)

– – u(k–)
–

)
+ r

(
u(k–)

–
)]

i

= .

This together with (.) gives

((
z(k))+)T[

A(k)(u(k)
 – u(k–)


)

+ r
(
u(k–)


)

– A(k)(u(k)
– – u(k–)

–
)

– r
(
u(k–)

–
)] ≥ .
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By the use of (.), we have then

((
z(k))+)T[

–A(k)z(k) + 	(k–)(u(k–)
– – u(k–)


)

+ f
(
u(k–)


)

– f
(
u(k–)

–
)] ≥ .

Hence,

((
z(k))+)T Az(k)

≤ ((
z(k))+)T A(k)z(k)

≤ ((
z(k))+)T[

	(k–)z(k–) + f
(
u(k–)


)

– f
(
u(k–)

–
)]

=
n∑

i=

((
z(k))+)

i

[
λ

(k–)
i –

∫ 


f ′
i
(
η

(k–)
i (t)

)
dt

]
(
z(k–))

i, (.)

where

η(k–)(t) = u(k–)
– + t

(
u(k–)

 – u(k–)
–

)
.

Since u(k–)
 ≥ u(k–)

– , we have then

z(k–) ≤  and u(k–)
– ≤ η(k–)(t) ≤ u(k–)

 .

This together with (.) implies that the right-hand side of the equality in (.) is non-
positive, and then

 ≥ ((
z(k))+)T Az(k) =

((
z(k))+)T A

(
z(k))+ +

((
z(k))+)T A

(
z(k))–,

which implies

((
z(k))+)T A

(
z(k))+ ≤ –

((
z(k))+)T A

(
z(k))–

= –
n∑

i,j=

aij
((

z(k))+)
i

((
z(k))–)

j

= –
∑

i�=j

aij
((

z(k))+)
i

((
z(k))–)

j

≤ ,

where the last equality is from ((z(k))+)i((z(k))–)i = , and the last inequality is from
((z(k))+)i((z(k))–)j ≤  and aij ≤  for i �= j. By the positive definite assumption of matrix
A, we conclude (z(k))+ = , and the proof is then complete. �

The following theorem gives the monotone convergence of Algorithm ..

Theorem . Algorithm . is well defined and the sequences {u(k)
α }, α = , –, generated

by (.), converge monotonically to the unique solution u of problem (.):

u(k–)
– ≤ u(k)

– ≤ · · · ≤ u ≤ · · · ≤ u(k)
 ≤ u(k–)

 . (.)
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Moreover, {u(k)
 } ⊂ S, {u(k)

– } ⊂ S̃–.

Proof It follows immediately from u()
– ∈ S̃– and u()

 ∈ S that

u()
– ≤ u ≤ u()

 .

Assume that u(k–)
 ∈ S and u(k–)

– ∈ S̃–. Then, by (.), (.) and (.), we have that

A(k)(u(k–)
 – u(k–)


)

+ r
(
u(k–)


)

= Au(k–)
 + f

(
u(k–)


) ≥ ,

and for indices i satisfying (u(k–)
– )i > φi,

[
A(k)(u(k–)

– – u(k–)
–

)
+ r

(
u(k–)

–
)]

i =
[
Au(k–)

– + f
(
u(k–)

–
)]

i ≤ .

That is, u(k–)
 ∈ S(k,)

 and u(k–)
– ∈ S̃(k,–)

– , where S(k,)
 and S̃(k,–)

– are defined by (.) and
(.), respectively. Therefore, by Remark ., we have

u(k)
 ≤ u(k–)

 and u(k)
– ≥ u(k–)

– . (.)

Let z(k)
α = u(k)

α – u(k–)
α , α = , –. (.) implies

z(k)
– ≥  ≥ z(k)

 . (.)

From (.), we have

Au(k)
α + f

(
u(k)

α

)

= A(k)(u(k)
α – u(k–)

α

)
+ r

(
u(k–)

α

)
+ f

(
u(k)

α

)
– f

(
u(k–)

α

)
– 	(k–)z(k)

α

= A(k)(u(k)
α – u(k–)

α

)
+ r

(
u(k–)

α

)

+
∫ 



[
f ′(u(k–)

α + tz(k)
α

)
– 	(k–)]z(k)

α dt, (.)

where

f ′(u(k–)
α + tz(k)

α

)
= diag

(
f ′
i
((

u(k–)
α

)
i + t

(
z(k)
α

)
i

))
.

By Lemma . and (.), for t ∈ [, ], we have

u(k–)
– ≤ u(k)

– ≤ u(k)
 ≤ u(k–)

 + tz(k)
 ≤ u(k–)



and

u(k–)
– ≤ u(k–)

– + tz(k)
– ≤ u(k)

– ≤ u(k)
 ≤ u(k–)

 .

And then, by (.), we get

f ′
i
((

u(k–)
α

)
i + t

(
z(k)
α

)
i

) ≤ λi, ∀i = , , . . . , n. (.)
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It then follows from (.) and (.)-(.) that

Au(k)
 + f

(
u(k)


) ≥ A(k)(u(k)

 – u(k–)


)
+ r

(
u(k–)


) ≥ ,

which implies u(k)
 ∈ S. On the other hand, if (u(k)

– )i > φi, we have by (.) and (.)-(.)
that

[
Au(k)

– + f
(
u(k)

–
)]

i =
∫ 



[
f ′
i
((

u(k–)
–

)
i + t

(
z(k)

–
)

i

)
– λi

](
z(k)

–
)

i dt ≤ ,

which implies u(k)
– ∈ S̃–. By the principle of induction, we obtain (.) as well as {u(k)

 } ⊂ S

and {u(k)
– } ⊂ S̃–. Furthermore, by (.), sequences u(k)

 and u(k)
– are monotone and bounded.

Therefore, they are convergent. Let lim u(k)
α = uα , α = , –. By (.), we have uα ≥ φ and

r(uα) ≥ , (uα – φ)T r(uα) = ,

which implies u = u– = u by (.). We then complete the proof. �

4 Quadratic convergence rate of the monotone algorithm
Introduce the notations

c = mini
{
min

{
f ′
i (vi) : u()

– ≤ vi ≤ u()


}} ≥ mini c∗
i (.)

and

c = max
i

{
max

{∣∣f ′′
i (vi)

∣∣ : u()
– ≤ vi ≤ u()


}}

. (.)

Here, we have assumed that f is twice continuously differentiable. The following theorem
gives the quadratic convergence of Algorithm ..

Theorem . Let the sequences {u(k)
α }, α = , –, be generated by Algorithm .. Then the

following estimate holds:

∥∥u(k)
 – u(k)

–
∥∥ ≤ c

σ + c

∥∥u(k–)
 – u(k–)

–
∥∥, (.)

where ‖v‖ =
√

vT v.

Proof The linear complementarity problems (.) can be reformulated as the following
variational inequality problems of finding u(k)

α ∈ K , α = , –, respectively, such that

(
A(k)(u(k)

α – u(k–)
α

)
+ r

(
u(k–)

α

)
, vα – u(k)

α

) ≥ , ∀vα ∈ K ,

where (v, w) = vT w. Letting v = u(k)
– and v– = u(k)

 in above variational forms, we get

(
A(k)(u(k)

 – u(k–)


)
+ r

(
u(k–)


)
, u(k)

– – u(k)


) ≥ 
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and

(
A(k)(u(k)

– – u(k–)
–

)
+ r

(
u(k–)

–
)
, u(k)

 – u(k)
–

) ≥ .

Denoting u(k)
– – u(k)

 by z(k) and adding above two inequalities, we obtain

(
–A(k)z(k) + A(k)z(k–) + r

(
u(k–)


)

– r
(
u(k–)

–
)
, z(k)) ≥ .

Then, by (.), we have

(
–A(k)z(k) + 	(k–)z(k–) + f

(
u(k–)


)

– f
(
u(k–)

–
)
, z(k)) ≥ .

That is,

(
A(k)z(k), z(k)) ≤ (

	(k–)z(k–) + f
(
u(k–)


)

– f
(
u(k–)

–
)
, z(k)). (.)

Taking into account (.), we conclude that

(
	(k–)z(k–) + f

(
u(k–)


)

– f
(
u(k–)

–
)
, z(k))

=
(

diag

(
λ

(k–)
i –

∫ 


f ′
i
(
ξ

(k–)
i (t)

)
dt

)
z(k–), z(k)

)

=
(

diag

(∫ 



[
f ′
i
(
ξ

(k–)
i

(
s(k–)

i
))

– f ′
i
(
ξ

(k–)
i (t)

)]
dt

)
z(k–), z(k)

)
, (.)

where

ξ (k–)(t) = u(k–)
– + t

(
u(k–)

 – u(k–)
–

)

and

s(k–)
i ∈ [, ], i = , , . . . , n.

Therefore, by (.),

∣∣
∣∣

∫ 



[
f ′
i
(
ξ

(k–)
i

(
s(k–)

i
))

– f ′
i
(
ξ

(k–)
i (t)

)]
dt

∣∣
∣∣

≤ c

∫ 



∣∣s(k–)
i – t

∣∣dt
∣∣z(k–)

i
∣∣

≤ c
∣
∣z(k–)

i
∣
∣.

This together with (.), (.) as well as (.) and (.) implies

(σ + c)
∥∥z(k)∥∥ ≤ (

A(k)z(k), z(k)) ≤ c
∥∥z(k–)∥∥∥∥z(k)∥∥.

That is, (.) holds. The proof is then completed. �
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By estimate (.), the quadratic convergence holds true for the difference u(k)
 – u(k)

– be-
tween the upper and lower iterative solutions. This is not like the usual quadratic conver-
gence estimate. Nevertheless, similar to the proof of Theorem ., we can get

(
A(k)(u(k)

α – u(k–)
α

)
+ r

(
u(k–)

α

)
, u – u(k)

α

) ≥ 

and

(
Au + f (u), u(k)

α – u
) ≥ .

And then,

(
–A(k)(u – u(k)

α

)
+ 	(k–)(u – u(k–)

α

)
+ f

(
u(k–)

α

)
– f (u), u – u(k)

α

) ≥ .

Noting that u(k)
– ≤ u ≤ u(k)

 , we can obtain the following standard estimates in a similar
way.

Theorem . Let the sequences {u(k)
α }, α = , –, be generated by (.). Then the following

estimates hold:

∥
∥u(k)

 – u
∥
∥ ≤ c

σ + c

∥
∥u(k–)

 – u
∥
∥, (.)

if f ′′
i (vi) ≥  for u()

– ≤ vi ≤ u()
 , and

∥
∥u(k)

– – u
∥
∥ ≤ c

σ + c

∥
∥u(k–)

– – u
∥
∥, (.)

if f ′′
i (vi) ≤  for u()

– ≤ vi ≤ u()
 .

Estimates (.) and (.) indicate that when fi(vi) (i = , , . . . , n) have convex (or concav-
ity ) property in a neighborhood of the solution of problem (.), the maximal (or minimal)
sequence, generated by (.), converges quadratically to the solution of the problem.

5 Extensions to a two-sided obstacle problem
In this section, we extend the results obtained in the previous sections to the case of a
two-sided obstacle problem. Consider the discrete two-sided obstacle problem of finding
u ∈ K such that

⎧
⎪⎪⎨

⎪⎪⎩

(Au + f (u))i ≥  if ui = φi,

(Au + f (u))i =  if φi < ui < ψi,

(Au + f (u))i ≤  if ui = ψi,

(.)

where A and f are defined as before, K = {v ∈ Rn : φ ≤ v ≤ ψ} with φ < ψ .
Problem (.) is equivalent to the following system of nonsmooth equations:

max
{
min

{
Au + f (u), u – φ

}
, u – ψ

}
=  (.)
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and the following variational inequality problem of finding u ∈ K such that

(
Au + f (u), v – u

) ≥ , ∀v ∈ K . (.)

According to (.), we define the upper and lower solution sets of problem (.), respec-
tively, as follows:

S =
{

v ∈ K : max
{

v – ψ , min
{

Av + f (v), v – φ
}} ≥ 

}
,

which is equivalent to

S =
{

v ∈ K :
(
Av + f (v)

)
i ≥ , if vi < ψi

}
, (.)

and

S– =
{

v ∈ K : max
{

v – ψ , min
{

Av + f (v), v – φ
}} ≤ 

}
,

which is equivalent to

S– =
{

v ∈ K :
(
Av + f (v)

)
i ≤ , if vi > φi

}
. (.)

Similar to the case of complementarity problem, the solution of problem (.) is the min-
imal (maximal) element of S (S–).

Obviously, φ and ψ are candidates of S and S–, respectively. In the following, we present
two schemes, which can produce an upper or a lower solution of problem (.) from any
w ∈ Rn.

Scheme . Let w ∈ Rn.

Step . Solve the following LCP of finding ū ≥ φ such that

(
A + 	∗)ū ≥ ḡ, (ū – φ)T[(

A + 	∗)ū – ḡ
]

= , (.)

where 	∗ and ḡ are the same as those given in Section .
Step . Let

τi =

⎧
⎨

⎩
 if ūi ≤ ψi,

ψi – ūi if ūi > ψi

and � = diag(τ, τ, . . . , τn). Define

˜̄u = ū + �e,

where e ∈ Rn is the vector of ones.
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By Scheme ., ˜̄u ≤ ū and ˜̄u ∈ K . Moreover, if ˜̄ui < ψi,

(
A ˜̄u + f ( ˜̄u)

)
i =

(
Aū + f (ū)

)
i +

n∑

j=

aijτj + fi( ˜̄ui) – fi(ūi) ≥
∑

j �=i

aijτj ≥ ,

where the first inequality is from Lemma ., τi =  and ūi = ˜̄ui, the second inequality is
from the definition of M-matrix and τj ≤  for each j.

Thereby, we obtain the following result.

Lemma . Let ˜̄u be produced by Scheme .. Then ˜̄u ∈ S, where S is defined by (.).

Similarly, we can obtain a lower solution of the problem by the following scheme.

Scheme . Let w ∈ Rn.

Step . Solve the following LCP of finding u ≤ ψ such that

(
A + 	∗)u ≤ g, (u – ψ)T[(

A + 	∗)u – ḡ
]

= , (.)

where 	∗ and g are the same as those given in Section .
Step . Let

τi =

⎧
⎨

⎩
 if ūi ≥ φi,

φi – ui if ūi < φi

and � = diag(τ, τ, . . . , τn). Define

ũ = u + �e.

Similar to Lemma ., we have the following result.

Lemma . Let ũ be produced by Scheme .. Then ˜̄u ∈ S–, where S– is defined by (.).

By Schemes . and ., we can obtain a pair of upper and lower solutions of two-sided
obstacle problem (.) by solving two affine upper and lower obstacle problems (.) and
(.), instead of solving one two-sided obstacle problem. To our knowledge, as for the two-
sided obstacle problem, direct algorithms with polynomial computational complexity are
few.

Algorithm . Let the initials u()
 ∈ S and u()

– ∈ S–. For k ≥ , we calculate a pair of
iterates by solving the following affine two-sided obstacle problems of finding u(k)

α ∈ K ,
α = , –, respectively, such that

⎧
⎪⎪⎨

⎪⎪⎩

[A(k)(u(k)
α – u(k–)

α ) + r(u(k–)
α )]i ≥  if (u(k)

α )i = φi,

[A(k)(u(k)
α – u(k–)

α ) + r(u(k–)
α )]i =  if φi < (u(k)

α )i < ψi,

[A(k)(u(k)
α – u(k–)

α ) + r(u(k–)
α )]i ≤  if (u(k)

α )i = ψi,

(.)

where matrix A(k) and mapping r are the same as those in Algorithm ..
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Similar to Lemma ., the following lemma holds.

Lemma . Let u(k)
α , α = , –, be the solutions of problems (.), respectively. If u(k–)

 ≥
u(k–)

– , u(k)
 ≥ u(k)

– .

According to Lemma ., we have the following monotone and quadratic convergence
similar to Theorems ., . and ..

Theorem . Let the sequences {u(k)
α }, α = , –, be generated by Algorithm .. Then the

iterates converge to the solution u of problem (.). Moreover, {u(k)
 } ⊂ S, {u(k)

– } ⊂ S–, and

u(k–)
– ≤ u(k)

– ≤ · · · ≤ u ≤ · · · ≤ u(k)
 ≤ u(k–)

 ,
∥∥u(k)

 – u(k)
–

∥∥ ≤ c

σ + c

∥∥u(k–)
 – u(k–)

–
∥∥,

where the constants are the same as those in Theorem .. Moreover,

∥∥u(k)
 – u

∥∥ ≤ c

σ + c

∥∥u(k–)
 – u

∥∥,

if f ′′
i (vi) ≥  for u()

– ≤ vi ≤ u()
 , and

∥∥u(k)
– – u

∥∥ ≤ c

σ + c

∥∥u(k–)
– – u

∥∥,

if f ′′
i (vi) ≤  for u()

– ≤ vi ≤ u()
 .

6 Numerical experiments
In this section, we present numerical experiments in order to investigate the performance
of the proposed algorithms. The programs are coded in Visual C++ . and run on a com-
puter with . GHz CPU. We consider the following two problems.

Problem  We consider the following nonlinear complementarity problem which is the
same as Problem . in []:

u ≥ , F(u) ≥ , uT F(u) = .

Here F(u) = Au + D(u) + f , where

A =


h

⎛

⎜
⎜⎜⎜
⎜
⎝

H –I

–I H
. . .

. . . . . . –I
–I H

⎞

⎟
⎟⎟⎟
⎟
⎠



Zeng et al. Journal of Inequalities and Applications  (2017) 2017:238 Page 14 of 16

Table 1 Comparisons of ω

ω iter ω iter ω iter

0.9 225 1.1 152 1.3 101
1.5 64 1.7 36 1.9 22

and

H =

⎛

⎜⎜⎜
⎜⎜
⎝

 –

– 
. . .

. . . . . . –
– 

⎞

⎟⎟⎟
⎟⎟
⎠

,

h = √
n+ , D(x) = (Di) : Rn → Rn being a given diagonal mapping with Di : R → R, for i =

, , . . . , n, that is, component Di of D is a function of the ith variable ui only. Set Di(ui) =
λeui and obtain a diagonal mapping D(u) = (Di(ui)). In our test, we fix λ = ., and let
fi = max{, vi – .} × wi–., where wi and vi are random numbers in [, ], i = , , . . . , n.

Problem  We discuss the following nonlinear complementarity problem:

u ≥ , F(u) ≥ , uT F(u) = .

Here F(u) = Au+ D(u) + f , with A being the same as in Problem . The vector f is generated
from a uniform distribution in the interval (–, ). Let D(u) = (Di) : Rn → Rn be a given
diagonal mapping with Di : R → R, for i = , , . . . , n. The components of D(x) are Di(u) =
arctan(ui).

We compare different algorithms from the point of view of iteration numbers and cpu
times (seconds). Here, we consider three algorithms: Algorithm ., denoted by (AL); the
semismooth equation approach proposed in [], denoted by SSN; and primal-dual algo-
rithm proposed in [], denoted by PDA.

In the algorithm AL, we choose initial point u()
– =  and u()

 to be obtained by Lemma .
for all problems. All subproblems are solved by PSOR and the tolerance in PSOR is chosen
to be equal to – in ‖ · ‖ norm. In order to determine the relaxation parameter ω, we
consider the following nonlinear complementarity problem:

u ≥ , F(u) ≥ , uT F(u) = .

Here F(u) = Au + D(u) + f , where A is the same in Problems  and , D(u) = (Di) : Rn → Rn

being a given diagonal mapping like in Problem . Set Di(ui) = u
i , and let fi = –. Fix h = 

 ,
and use AL to solve the above problem. We change the ω, and present the result in Table .
From the table, we can see that the relaxation parameter ω = . is a good choice, and we
use this in all problems.

The termination criterion of the algorithm AL is chosen to be ‖u(k)
 – u(k)

– ‖ ≤ –. In the
algorithm SSN, we choose initial point u = , tolerance ε = –, p = , ρ = ., β = .
and Hk ∈ ∂B� is defined by the procedure proposed in []. In the algorithm PDA, we
fix c =  and choose the initial point u = . The stopping criterion is that the active sets
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Table 2 Comparisons of iteration numbers and execution times for Problem 1

h AL SSN PDA

iter cpu iter cpu iter cpu
1
10 2 0.013 3 0.01 2 0.001
1
20 2 0.678 3 0.603 2 0.012
1
40 2 9.246 3 37.883 2 0.187
1
60 2 237.486 3 434.057 2 0.932

Table 3 Comparisons of iteration numbers and execution times for Problem 2

h AL SSN PDA

iter cpu iter cpu iter cpu
1
10 2 0.1 5 0.019 1 0.001
1
20 2 0.775 5 1.011 1 0.037
1
40 2 12.768 7 89.629 4 8.653
1
60 3 444.401 22 3,177.98 11 1,024.21

are not changed between two iterations. In this algorithm, the subproblems are systems
of nonlinear equations, which are solved by Newton iteration. The numerical results are
listed in Tables -, where ‘iter’ denotes the iteration number for the algorithm converging
to the solution and ‘cpu’ denotes the execution time.

From Tables -, we can easily see that the iteration numbers of Algorithm . are sta-
ble, which may also mean that the initials obtained by (.) may be a good solution guess.
While for SSN and PDA, the iteration numbers increase when the dimensions of Prob-
lem  become large. As we can see from Table , the algorithm we proposed seems to be
more effective for solving large-scale problems. The main reason may be as follows. Al-
gorithm . takes only a few iterations for all problems, and in each iteration it only needs
to solve two linear complementarity problems. These subproblems are solved by PSOR
rapidly. For SSN, it takes a lot of time to solve the system of linear equations to obtain
directions, especially for large-scale problems. For PDA, by using the active set strategy,
in each iteration, it only needs to solve a reduced system of linear equations, where the
dimension is much less than the original one. Therefore, the execution time for PDA is
also less compared with SSN.

7 Conclusions
In this paper, we have considered the numerical solution for the discretization of semi-
linear elliptic complementarity problems. Based on the upper and lower solutions of the
problem, we have proposed a monotone algorithm and proved that iterates are a pair of
upper and lower solution iterates and converge monotonically from above and below, re-
spectively, to the solution of the problem. Moreover, we have established quadratic conver-
gence of the algorithm. The limited numerical results showed that the proposed algorithm
is effective.
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