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Abstract
New concepts of fλ,μ-statistical convergence for double sequences of order α̃ and
strong fλ,μ-Cesàro summability for double sequences of order α̃ are introduced for
sequences of (complex or real) numbers. Furthermore, we give the relationship
between the spaces w2

α̃,0(f ,λ,μ), w2
α̃ (f ,λ,μ) and w2

α̃,∞(f ,λ,μ). Then we express the

properties of strong fλ,μ-Cesàro summability of order ˜β which is related to strong
fλ,μ-Cesàro summability of order α̃. Also, some relations between fλ,μ-statistical
convergence of order α̃ and strong fλ,μ-Cesàro summability of order α̃ are given.
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1 Introduction
The first idea of statistical convergence goes back to the first edition of the famous Zyg-
mund’s monograph []. The statistical convergence was introduced for real and complex
sequences by Steinhaus []. Fast [] extended the usual concept of sequential limit and
called it statistical convergence. Schoenberg [] called it as D-Convergence. The idea de-
pends on a certain density of subsets of N. The natural density (or asymptotic density)
of a set A ⊂ N is defined by δ(A) = limn→∞ 

n |{k ≤ n : k ∈ A}| if the limit exists, where
|A(n)| is cardinality of the set A(n) (see []). A sequence x = (xk) of complex numbers is
said to be statistically convergent to some number � if δ({k ∈ N : |xk – �| ≥ ε}) has natural
density zero for ε > . � is necessarily unique, which is statistical limit of (xk), and written
as S- lim xk = �. The space of all statistically convergent sequences is denoted by S (see
[–]).

The order of statistical convergence of a sequence of positive linear operators was given
by Gadjiev and Orhan [], and after that Çolak [] introduced statistical convergence of
order α and strong p-Cesàro summability of order α.

Statistical convergence was introduced for double sequences by Mursaleen and Edely
[]. Besides this topic was studied by many authors (such as [, , ]). For some further
works in this direction, we refer to [–].

The concepts of convergence and statistical convergence for double sequence can be
expressed as follows.
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Let s denote the space of all double sequences, and let �∞, c and c
 be the linear spaces

of bounded, convergent and null sequences x = (xjk) with complex terms, respectively,
normed by ‖x‖(∞,) = supj,k |xjk|, where j, k ∈N = {, , . . .}.

A double sequence x = (xj,k)∞j,k= has Pringsheim limit � provided that for every ε > 
there exists N ∈ N such that |xj,k –�| < ε whenever j, k > N . In this case, we write P- lim x = �

[].
x = (xj,k)∞j,k= is bounded if there exists a positive number M such that |xj,k| < M for all j

and k, that is, ‖x‖ = supj,k≥ |xj,k| < ∞.
Let K ⊆ N × N and K(m, n) = {(j, k) : j ≤ m, k ≤ n}. The double natural density of K is

defined by

δ(K) = P- lim
m,n


mn

∣

∣K(m, n)
∣

∣ if the limit exists.

A double sequence x = (xjk)j,k∈N is said to be statistically convergent to � if for every ε > 
the set {(j, k) : j ≤ m, k ≤ n : |xjk – �| ≥ ε} has double natural density zero []. In this case,
one can write st- lim x = �, and we denote the collection of all statistically convergent
double sequences by st. Recently, Çolak and Altin [] introduced double statistically
convergent of order α, and they examined some inclusion relations.

The idea of a modulus function was introduced in  by Nakano []. Later, Ruckle
[] and Maddox [] used this concept to construct some sequence spaces. Let us remind
modulus function.

f : [,∞) → [,∞) is called a modulus function if
. f (x) =  if and only if x = ,
. f (x + y) ≤ f (x) + f (y) for every x, y ∈R

+,
. f is increasing,
. f is continuous from the right at .
Hence, f must be continuous everywhere on [,∞). A modulus function may be

bounded or unbounded. For example, f (x) = x
+x is bounded, but f (x) = xp,  < p ≤  is

unbounded.
Aizpuru et al. [] introduced and discussed the concepts of f -statistical convergence

and f -statistically Cauchy sequences, a single sequence of numbers, where f is an un-
bounded modulus function. Bhardwaj and Dhawan [] continued this work and defined
f -statistical convergence of order α. This new idea was introduced by Borgohain and Savaş
[] under the name of ’fλ-statistical convergence’. Aizpuru et al. also studied these con-
cepts for double sequences []. Mursaleen [] introduced λ-statistical convergence as
an extension of (V ,λ)-summability of Leindler [] with the help of a non-decreasing se-
quence, λ = (λn) being a non-decreasing sequence of positive numbers tending to ∞ with
λn+ ≤ λn + , λ = . The generalized de la Vallee-Poussin mean is defined by

tn(x) =

λn

∑

k∈In

xk ,

where In = [n – λn + , n].
λ-statistical convergence of double sequences has been expressed by Mursaleen et al.

[].
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2 fλ,μ-double statistical convergence of order α̃

In this section, we introduce fλ,μ-double statistical convergence of order α̃ for double se-
quences.

Throughout this paper, we take s, t, u, v ∈ (, ] as otherwise indicated. We will write α̃

instead of (s, t) and ˜β instead of (u, v). Also, we define the following:

α̃ 
 ˜β ⇐⇒ s ≤ u and t ≤ v,

α̃ ≺ ˜β ⇐⇒ s < u and t < v,

α̃ ∼= ˜β ⇐⇒ s = u and t = v,

α̃ ∈ (, ] ⇐⇒ s, t ∈ (, ],

˜β ∈ (, ] ⇐⇒ u, v ∈ (, ],

α̃ ∼=  in case s = t = ,

˜β ∼=  in case u = v = ,

α̃ �  in case s >  and t > .

Furthermore, we write S
α̃

(f ,λ,μ) to denote S
(s,t)(f ,λ,μ) and S

˜β
(f ,λ,μ) to denote

S
(u,v)(f ,λ,μ) in the section below.
We begin with the following definitions.
Let λ = (λn) and μ = (μm) be two non-decreasing sequences of positive real numbers

tending to ∞ with λn+ ≤ λn + , λ = ;μn+ ≤ μn + , μ =  and α̃ ∈ (, ] be given.
Let K ⊆ N × N be a two-dimensional set of positive integers and f be an unbounded

modulus function. Then δ
f 
α̃

(λ,μ)-double density of K is defined as

δ
f 
α̃

(K) = lim
n,m→∞


f (λs

nμ
t
m)

f
(∣

∣

{

(j, k) ∈ In × Im : (i, j) ∈ K
}∣

∣

)

if the limit exists.

Definition . Let λ = (λn) and μ = (μm) be two non-decreasing sequences of positive
real numbers as above and α̃ ∈ (, ] be given.

(xjk) is said to be fλ,μ-statistically convergent of order α̃ if there is a complex number �

such that, for every ε > ,

lim
n,m→∞


f (λs

nμ
t
m)

f
(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣

)

= .

In this case we write S
α̃

(f ,λ,μ)- limj,k xjk = �, and we denote the set of all fλ,μ-statistically
convergent double sequences of order α̃ by S

α̃
(f ,λ,μ), where f is an unbounded modulus

function.

In the case of f (x) = x, α̃ ∼=  and λn = n, μm = m, fλ,μ-statistical convergence of or-
der α̃ reduces to the statistical convergence of double sequences []. If x = (xjk) is fλ,μ-
statistically convergent of order α̃ to the number �, then � is determined uniquely. fλ,μ-
double statistical convergence of order α̃ is well defined for α̃ ∈ (, ] but it is not well
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defined for α̃ � . For this, let us define x = (xjk) as follows:

xjk =

⎧

⎨

⎩

, if j + k even,

, if j + k odd.

Since limt→∞ f (t)
t > , we have

lim
n,m→∞


f (λs

nμ
t
m)

f
(∣

∣

{

(j, k) ∈ In × Im : |xjk – | ≥ ε
}∣

∣

) ≤ lim
n,m→∞

f ([|λs
nμ

t
m|]) + 

f (λs
nμ

t
m)

= 

and

lim
n,m→∞


f (λs

nμ
t
m)

∣

∣

{

(j, k) ∈ In × Im : |xjk – | ≥ ε
}∣

∣ ≤ lim
n,m→∞

f ([|λs
nμ

t
m|]) + 

f (λs
nμ

t
m)

= 

for α̃ � , that is, s >  and t > , so that x = (xjk) is fλ,μ-statistically convergent of order α̃

both to  and , i.e., S
α̃

(f ,λ,μ)- lim xjk =  and S
α̃

(f ,λ,μ)- lim xjk = . But this is impossible.

Theorem . Let f be an unbounded modulus function and α̃ ∈ (, ]. Let x = (xjk), y = (yjk)
be any two sequences of complex numbers. Then

(i) If S
α̃

(f ,λ,μ)- lim xjk = � and c ∈ C, then S
α̃

(f ,λ,μ)- lim cxjk = c�;
(ii) If S

α̃
(f ,λ,μ)- lim xjk = �o and S

α̃
(f ,λ,μ)- lim yjk = �, then

S
α̃

(f ,λ,μ)- lim(xjk + yjk) = � + �.

Theorem . Let f be an unbounded modulus function and α̃, β̃ be two real numbers such
that  
 α̃ 
 ˜β 
 . Then S

α̃
(f ,λ,μ) ⊆ S

β̃
(f ,λ,μ) and strict inclusion may occur.

Proof Let α̃, β̃ ∈ (, ] be given such that α̃ ≤ β̃ . Since f is increasing, we have


f (λu

nμ
v
m)

f
(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣

)

≤ 
f (λs

nμ
t
m)

f
(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣

)

for every ε > , and this gives S
α̃

(f ,λ,μ) ⊆ S
β̃

(f ,λ,μ). To show that the strict inclusion may
occur, consider a sequence x = (xjk) defined by

xjk=

⎧

⎨

⎩

jk, if n – [|λn|] +  ≤ j ≤ n and m – [|μm|] +  ≤ k ≤ m,

, otherwise

and we take f (x) = xp, ( < p ≤ ) and hence x ∈ S
β̃

(f ,λ,μ) for β̃ ∈ ( 
 , ], (i.e., 

 < u ≤  and

 < v ≤  ), but x /∈ S

α̃
(f ,λ,μ) for α̃ ∈ (, 

 ] (i.e.,  < s ≤ 
 and  < t ≤ 

 ). �

The following results can be easily derived from Theorem ..

Corollary . If x = (xjk) is fλ,μ-statistically convergent of order α̃ to �, for some α̃ such that
α̃ ∈ (, ], then it is fλ,μ-statistically convergent to �, and the inclusion is strict.
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Corollary . Let α̃, ˜β ∈ (, ] be given. Then
(i) S

α̃(f ,λ,μ) = S
˜β
(f ,λ,μ) if α̃ ∼= ˜β .

(ii) S
α̃(f ,λ,μ) = S(f ,λ,μ) if α̃ ∼= .

3 Strongly double Cesàro summability of order α̃ defined by a modulus
function

In this section, we give the relationships between the spaces w
α̃,(f ,λ,μ), w

α̃
(f ,λ,μ) and

w
α̃,∞(f ,λ,μ).

Definition . Let f be a modulus function and α̃ be a positive real number. We have

w
α̃,(f ,λ,μ) =

{

x = (xjk) ∈ s : lim
n,m→∞


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk|

)

= 
}

,

w
α̃(f ,λ,μ) =

{

x = (xjk) ∈ s : lim
n,m→∞


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk – �|) = 

}

,

w
α̃,∞(f ,λ,μ) =

{

x = (xjk) ∈ s : sup
n,m


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk|

)

< ∞
}

.

Theorem .
(i) Let f be a modulus function. For α̃ � , we have w

α̃,(f ,λ,μ) ⊂ w
α̃,∞(f ,λ,μ).

(ii) Let f be a modulus function. For α̃ � , we have w
α̃

(f ,λ,μ) ⊂ w
α̃,∞(f ,λ,μ).

Proof (i) The proof of (i) is trivial.
(ii) Let x ∈ w

α̃
(f ,λ,μ). By the definition of modulus function (ii) and (iii), we have


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk|

) ≤ 
(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk – �|) + f

(|�|) 
(λnμm)α̃

∑

j∈Jn

∑

k∈In

,

and since α̃ �  and x ∈ w
α̃

(f ,λ,μ), we have x ∈ w
α̃,∞(f ,λ,μ), which completes the proof.�

Theorem . For any modulus function f and α̃ � , we have w
α̃

(λ,μ) ⊂ w
α̃

(f ,λ,μ),
w

α̃,(λ,μ) ⊂ w
α̃,(f ,λ,μ) and w

α̃,∞(λ,μ) ⊂ w
α̃,∞(f ,λ,μ).

Proof We give the proof only when w
α̃,∞(λ,μ) ⊂ w

α̃,∞(f ,λ,μ) and the rest of cases will
follow similarly. Let x ∈ w

α̃,∞(λ,μ), so that

sup
n,m


(λnμm)α̃

∑

j∈Jn

∑

k∈In

|xjk| < ∞.

Let ε >  and choose δ with  < δ <  such that f (t) < ε for  ≤ t < δ. Now we write


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk|

)

=
∑



+
∑



,
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where the first summation is over |xjk| ≤ δ and the second is over |xjk| > δ. Then
∑

 ≤
ε · 

(λnμm)α̃– and, for |xjk| > δ, we use the fact that

|xjk| <
|xjk|
δ

<  +
[∣

∣

∣

∣

|xjk|
δ

∣

∣

∣

∣

]

,

where [|t|] denotes the integer part of t. Given ε > , by the definition of f , we have

f
(|xjk|

) ≤
(

 +
[∣

∣

∣

∣

|xjk|
δ

∣

∣

∣

∣

])

f () ≤ f ()
|xjk|
δ

for |xjk| > δ and hence
∑

 ≤ f ()δ–∑
j∈Jn

∑

k∈In |xjk|, which together with
∑

 ≤ ε 
(λnμm)α̃–

yields


(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk|

) ≤ ε · 
(λnμm)α̃– + f ()δ– 

(λnμm)α̃
∑

j∈Jn

∑

k∈In

|xjk|.

Since α̃ ≥  and x ∈ w
α̃,∞(λ,μ), we have x ∈ w

α̃,∞(f ,λ,μ) and the proof is complete. �

Theorem . Let f be a modulus function f and α̃ � . If limt→∞ f (t)
t > , then w

α̃
(f ,

λ,μ) ⊂ w
α̃

(λ,μ).

Proof Following the proof of Proposition  of Maddox [], we have l = limt→∞ f (t)
t =

inf{ f (t)
t : t > }. By the definition of l, we have f (t) ≥ lt for all t ≥ . Since l > , we get

t ≤ l–f (t) for all t ≥ , and so


(λnμm)α̃

∑

j∈Jn

∑

k∈In

|xjk – �| ≤ l– 
(λnμm)α̃

∑

j∈Jn

∑

k∈In

f
(|xjk – �|),

from where it follows that x ∈ w
α̃

(f ,λ,μ) whenever x ∈ w
α̃

(λ,μ). �

Theorem . For any modulus f such that limt→∞ f (t)
t >  and α̃ � . Then w

α̃
(λ,μ) =

w
α̃

(f ,λ,μ).

4 Relation between fλ,μ-statistical convergence of order α̃ and strongly double
Cesàro summability of order α̃ defined by a modulus function

In this section, we give the relationship between the strong fλ,μ-Cesàro summability of
order α̃ and fλ,μ-statistical convergence of order ˜β .

Lemma . Let f be an unbounded function such that there is a positive constant c such
that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥  [].

Theorem . Let  ≺ α̃ 
 β̃ 
  and f be an unbounded modulus function such that there
is a positive constant c such that f (xy) ≥ cf (x)f (y) for all x ≥ , y ≥  and limt→∞ f (t)

t > . If
a sequence x = (xjk) is strongly fλ,μ-Cesàro summable of order α̃ with respect to f to �, then
it is fλ,μ-statistically convergent of order β̃ to �.
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Proof For any sequence x = (xjk) and ε > , using the definition of modulus function (ii)
and (iii), we have

∑

j∈Jn

∑

k∈In

f
(|xjk – L|) ≥ f

(

∑

j∈Jn

∑

k∈In

|xjk – �|
)

≥ f
(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣ε
)

≥ cf
(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣f (ε)
)

and since α̃ 
 β̃


nsmt

n
∑

j=

m
∑

k=

f
(|xjk – �|)

≥ 
nsmt cf

(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣f (ε)
)

≥ 
numv cf

(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣f (ε)
)

=


numvf (numv)
cf

(∣

∣

{

(j, k) ∈ In × Im : |xjk – �| ≥ ε
}∣

∣f (ε)
)

f
(

numv),

where, using the fact that limt→∞ f (t)
t >  and x ∈ w

α̃
(f ,λ,μ), it follows that x ∈ S

β̃
(λ,μ)

and the proof is complete. �

If we take ˜β ∼= α̃ in Theorem ., we have the following.

Corollary . Let f be an unbounded modulus function f (xy) ≥ cf (x)f (y), where c is a
positive constant for all x ≥ , y ≥  and limt→∞ f (t)

t >  and α̃ ∈ (, ]. If a sequence is
strongly fλ,μ-Cesàro summable of order α̃ with respect to f to �, then it is fλ,μ-statistically
convergent of order α̃ to �.

5 Conclusions
In this study, we define fλ,μ-statistical convergence for double sequences of order α̃,
where f is an unbounded modulus function. Besides this we also study strong fλ,μ-Cesàro
summability for double sequences of order α̃ and give inclusion relations. These results
are the generalizations of the studies by Meenakshi et al. [].
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