RESEARCH

Open Access

$f_{(\lambda,\mu)}$ -statistical convergence of order $\widetilde{\alpha}$ for double sequences

Mahmut Işik^{1*} and Yavuz Altin²

*Correspondence: misik63@yahoo.com ¹Faculty of Education, Harran University, Şanliurfa, Turkey Full list of author information is available at the end of the article

Abstract

New concepts of $f_{\lambda,\mu}$ -statistical convergence for double sequences of order $\tilde{\alpha}$ and strong $f_{\lambda,\mu}$ -Cesàro summability for double sequences of order $\tilde{\alpha}$ are introduced for sequences of (complex or real) numbers. Furthermore, we give the relationship between the spaces $w_{\tilde{\alpha},0}^2(f,\lambda,\mu)$, $w_{\tilde{\alpha}}^2(f,\lambda,\mu)$ and $w_{\tilde{\alpha},\infty}^2(f,\lambda,\mu)$. Then we express the properties of strong $f_{\lambda,\mu}$ -Cesàro summability of order $\tilde{\beta}$ which is related to strong $f_{\lambda,\mu}$ -Cesàro summability of order $\tilde{\alpha}$. Also, some relations between $f_{\lambda,\mu}$ -statistical convergence of order $\tilde{\alpha}$ and strong $f_{\lambda,\mu}$ -Cesàro summability of order $\tilde{\alpha}$ are given.

MSC: 40A05; 40C05; 46A45

Keywords: double sequences; statistical convergence; Cesàro summability

1 Introduction

The first idea of statistical convergence goes back to the first edition of the famous Zygmund's monograph [1]. The statistical convergence was introduced for real and complex sequences by Steinhaus [2]. Fast [3] extended the usual concept of sequential limit and called it statistical convergence. Schoenberg [4] called it as D-Convergence. The idea depends on a certain density of subsets of \mathbb{N} . The natural density (or asymptotic density) of a set $A \subset \mathbb{N}$ is defined by $\delta(A) = \lim_{n\to\infty} \frac{1}{n} |\{k \le n : k \in A\}|$ if the limit exists, where |A(n)| is cardinality of the set A(n) (see [5]). A sequence $x = (x_k)$ of complex numbers is said to be statistically convergent to some number ℓ if $\delta(\{k \in \mathbb{N} : |x_k - \ell| \ge \varepsilon\})$ has natural density zero for $\varepsilon > 0$. ℓ is necessarily unique, which is statistical limit of (x_k) , and written as S-lim $x_k = \ell$. The space of all statistically convergent sequences is denoted by S (see [5–20]).

The order of statistical convergence of a sequence of positive linear operators was given by Gadjiev and Orhan [21], and after that Çolak [22] introduced statistical convergence of order α and strong *p*-Cesàro summability of order α .

Statistical convergence was introduced for double sequences by Mursaleen and Edely [23]. Besides this topic was studied by many authors (such as [15, 24, 25]). For some further works in this direction, we refer to [26–30].

The concepts of convergence and statistical convergence for double sequence can be expressed as follows.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Let s^2 denote the space of all double sequences, and let ℓ_{∞}^2 , c^2 and c_0^2 be the linear spaces of bounded, convergent and null sequences $x = (x_{jk})$ with complex terms, respectively, normed by $||x||_{(\infty,2)} = \sup_{i,k} |x_{ik}|$, where $j, k \in \mathbb{N} = \{1, 2, ...\}$.

A double sequence $x = (x_{j,k})_{j,k=0}^{\infty}$ has Pringsheim limit ℓ provided that for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_{j,k} - \ell| < \varepsilon$ whenever j, k > N. In this case, we write P-lim $x = \ell$ [31].

 $x = (x_{j,k})_{j,k=0}^{\infty}$ is bounded if there exists a positive number M such that $|x_{j,k}| < M$ for all j and k, that is, $||x|| = \sup_{i,k>0} |x_{j,k}| < \infty$.

Let $K \subseteq \mathbb{N} \times \mathbb{N}$ and $K(m, n) = \{(j, k) : j \le m, k \le n\}$. The double natural density of *K* is defined by

$$\delta_2(K) = P - \lim_{m,n} \frac{1}{mn} |K(m,n)|$$
 if the limit exists.

A double sequence $x = (x_{jk})_{j,k \in \mathbb{N}}$ is said to be statistically convergent to ℓ if for every $\varepsilon > 0$ the set $\{(j,k) : j \le m, k \le n : |x_{jk} - \ell| \ge \varepsilon\}$ has double natural density zero [23]. In this case, one can write st_2 - lim $x = \ell$, and we denote the collection of all statistically convergent double sequences by st_2 . Recently, Çolak and Altin [27] introduced double statistically convergent of order α , and they examined some inclusion relations.

The idea of a modulus function was introduced in 1953 by Nakano [32]. Later, Ruckle [33] and Maddox [34] used this concept to construct some sequence spaces. Let us remind modulus function.

 $f:[0,\infty) \to [0,\infty)$ is called a modulus function if

- 1. f(x) = 0 if and only if x = 0,
- 2. $f(x + y) \leq f(x) + f(y)$ for every $x, y \in \mathbb{R}^+$,
- 3. f is increasing,
- 4. *f* is continuous from the right at 0.

Hence, f must be continuous everywhere on $[0,\infty)$. A modulus function may be bounded or unbounded. For example, $f(x) = \frac{x}{1+x}$ is bounded, but $f(x) = x^p$, 0 is unbounded.

Aizpuru *et al.* [35] introduced and discussed the concepts of *f*-statistical convergence and *f*-statistically Cauchy sequences, a single sequence of numbers, where *f* is an unbounded modulus function. Bhardwaj and Dhawan [36] continued this work and defined *f*-statistical convergence of order α . This new idea was introduced by Borgohain and Savaş [37] under the name of ' f_{λ} -statistical convergence'. Aizpuru *et al.* also studied these concepts for double sequences [38]. Mursaleen [39] introduced λ -statistical convergence as an extension of (V, λ)-summability of Leindler [40] with the help of a non-decreasing sequence, $\lambda = (\lambda_n)$ being a non-decreasing sequence of positive numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$. The generalized de la Vallee-Poussin mean is defined by

$$t_n(x)=\frac{1}{\lambda_n}\sum_{k\in I_n}x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

 λ -statistical convergence of double sequences has been expressed by Mursaleen *et al.* [41].

2 $f_{\lambda,\mu}$ -double statistical convergence of order $\widetilde{\alpha}$

In this section, we introduce $f_{\lambda,\mu}$ -double statistical convergence of order $\tilde{\alpha}$ for double sequences.

Throughout this paper, we take $s, t, u, v \in (0, 1]$ as otherwise indicated. We will write $\tilde{\alpha}$ instead of (s, t) and $\tilde{\beta}$ instead of (u, v). Also, we define the following:

$$\begin{split} \widetilde{\alpha} &\leq \widetilde{\beta} &\iff s \leq u \quad \text{and} \quad t \leq v, \\ \widetilde{\alpha} &\prec \widetilde{\beta} &\iff s < u \quad \text{and} \quad t < v, \\ \widetilde{\alpha} &\cong \widetilde{\beta} &\iff s = u \quad \text{and} \quad t = v, \\ \widetilde{\alpha} &\in (0,1] \iff s, t \in (0,1], \\ \widetilde{\beta} &\in (0,1] \iff u, v \in (0,1], \\ \widetilde{\beta} &\in (0,1] \iff u, v \in (0,1], \\ \widetilde{\alpha} &\cong 1 \quad \text{in case } s = t = 1, \\ \widetilde{\beta} &\cong 1 \quad \text{in case } s = t = 1, \\ \widetilde{\alpha} &\succ 1 \quad \text{in case } s > 1 \quad \text{and} \quad t > 1. \end{split}$$

Furthermore, we write $S^2_{\alpha}(f,\lambda,\mu)$ to denote $S^2_{(s,t)}(f,\lambda,\mu)$ and $S^2_{\beta}(f,\lambda,\mu)$ to denote $S^2_{(\mu,\nu)}(f,\lambda,\mu)$ in the section below.

We begin with the following definitions.

Let $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$ be two non-decreasing sequences of positive real numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 0$; $\mu_{n+1} \leq \mu_n + 1$, $\mu_1 = 0$ and $\widetilde{\alpha} \in (0, 1]$ be given.

Let $K \subseteq \mathbb{N} \times \mathbb{N}$ be a two-dimensional set of positive integers and f be an unbounded modulus function. Then $\delta_{\tilde{\alpha}}^{f^2}(\lambda, \mu)$ -double *density* of K is defined as

$$\delta_{\tilde{\alpha}}^{f^2}(K) = \lim_{n,m\to\infty} \frac{1}{f(\lambda_n^s \mu_m^t)} f\left(\left|\left\{(j,k) \in I_n \times I_m : (i,j) \in K\right\}\right|\right) \quad \text{if the limit exists.}$$

Definition 2.1 Let $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$ be two non-decreasing sequences of positive real numbers as above and $\tilde{\alpha} \in (0, 1]$ be given.

 (x_{jk}) is said to be $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\alpha}$ if there is a complex number ℓ such that, for every $\varepsilon > 0$,

$$\lim_{n,m\to\infty}\frac{1}{f(\lambda_n^s\mu_m^t)}f(\left|\left\{(j,k)\in I_n\times I_m:|x_{jk}-\ell|\geq\varepsilon\right\}\right|)=0.$$

In this case we write $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ - $\lim_{j,k} x_{jk} = \ell$, and we denote the set of all $f_{\lambda,\mu}$ -statistically convergent double sequences of order $\tilde{\alpha}$ by $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$, where f is an unbounded modulus function.

In the case of f(x) = x, $\tilde{\alpha} \cong 1$ and $\lambda_n = n$, $\mu_m = m$, $f_{\lambda,\mu}$ -statistical convergence of order $\tilde{\alpha}$ reduces to the statistical convergence of double sequences [23]. If $x = (x_{jk})$ is $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\alpha}$ to the number ℓ , then ℓ is determined uniquely. $f_{\lambda,\mu}$ -double statistical convergence of order $\tilde{\alpha}$ is well defined for $\tilde{\alpha} \in (0,1]$ but it is not well

defined for $\tilde{\alpha} > 1$. For this, let us define $x = (x_{ik})$ as follows:

$$x_{jk} = \begin{cases} 1, & \text{if } j + k \text{ even,} \\ 0, & \text{if } j + k \text{ odd.} \end{cases}$$

Since $\lim_{t\to\infty} \frac{f(t)}{t} > 0$, we have

$$\lim_{n,m\to\infty}\frac{1}{f(\lambda_n^s\mu_m^t)}f\big(\big|\big\{(j,k)\in I_n\times I_m:|x_{jk}-1|\geq\varepsilon\big\}\big|\big)\leq\lim_{n,m\to\infty}\frac{f([|\lambda_n^s\mu_m^t|])+1}{f(2\lambda_n^s\mu_m^t)}=0$$

and

$$\lim_{n,m\to\infty}\frac{1}{f(\lambda_n^s\mu_m^t)}\left|\left\{(j,k)\in I_n\times I_m:|x_{jk}-0|\geq\varepsilon\right\}\right|\leq \lim_{n,m\to\infty}\frac{f([|\lambda_n^s\mu_m^t|])+1}{f(2\lambda_n^s\mu_m^t)}=0$$

for $\tilde{\alpha} > 1$, that is, s > 1 and t > 1, so that $x = (x_{jk})$ is $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\alpha}$ both to 1 and 0, i.e., $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ - $\lim x_{jk} = 1$ and $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ - $\lim x_{jk} = 0$. But this is impossible.

Theorem 2.2 Let f be an unbounded modulus function and $\tilde{\alpha} \in (0,1]$. Let $x = (x_{jk}), y = (y_{jk})$ be any two sequences of complex numbers. Then

- (i) If $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ $\lim x_{ik} = \ell_0$ and $c \in \mathbb{C}$, then $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ $\lim cx_{ik} = c\ell_0$;
- (ii) If $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ $\lim x_{jk} = \ell_o$ and $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ $\lim y_{jk} = \ell_1$, then $S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ $\lim (x_{jk} + y_{jk}) = \ell_0 + \ell_1$.

Theorem 2.3 Let f be an unbounded modulus function and $\tilde{\alpha}, \tilde{\beta}$ be two real numbers such that $0 \leq \tilde{\alpha} \leq \tilde{\beta} \leq 1$. Then $S^2_{\tilde{\alpha}}(f, \lambda, \mu) \subseteq S^2_{\tilde{\beta}}(f, \lambda, \mu)$ and strict inclusion may occur.

Proof Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ be given such that $\tilde{\alpha} \leq \tilde{\beta}$. Since *f* is increasing, we have

$$\frac{1}{f(\lambda_n^u \mu_m^v)} f\left(\left|\left\{(j,k) \in I_n \times I_m : |x_{jk} - \ell| \ge \varepsilon\right\}\right|\right)$$
$$\leq \frac{1}{f(\lambda_n^s \mu_m^t)} f\left(\left|\left\{(j,k) \in I_n \times I_m : |x_{jk} - \ell| \ge \varepsilon\right\}\right|\right)$$

for every $\varepsilon > 0$, and this gives $S^2_{\tilde{\alpha}}(f, \lambda, \mu) \subseteq S^2_{\tilde{\beta}}(f, \lambda, \mu)$. To show that the strict inclusion may occur, consider a sequence $x = (x_{ik})$ defined by

$$x_{jk=} \begin{cases} jk, & \text{if } n - [|\lambda_n|] + 1 \le j \le n \text{ and } m - [|\mu_m|] + 1 \le k \le m, \\ 0, & \text{otherwise} \end{cases}$$

and we take $f(x) = x^p$, $(0 and hence <math>x \in S^2_{\tilde{\beta}}(f, \lambda, \mu)$ for $\tilde{\beta} \in (\frac{1}{2}, 1]$, (i.e., $\frac{1}{2} < u \le 1$ and $\frac{1}{2} < v \le 1$), but $x \notin S^2_{\tilde{\alpha}}(f, \lambda, \mu)$ for $\tilde{\alpha} \in (0, \frac{1}{2}]$ (i.e., $0 < s \le \frac{1}{2}$ and $0 < t \le \frac{1}{2}$).

The following results can be easily derived from Theorem 2.3.

Corollary 2.4 If $x = (x_{jk})$ is $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\alpha}$ to ℓ , for some $\tilde{\alpha}$ such that $\tilde{\alpha} \in (0,1]$, then it is $f_{\lambda,\mu}$ -statistically convergent to ℓ , and the inclusion is strict.

Corollary 2.5 Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$ be given. Then

- (i) $S^2_{\widetilde{\alpha}}(f,\lambda,\mu) = S^2_{\widetilde{\beta}}(f,\lambda,\mu) \text{ if } \widetilde{\alpha} \cong \widetilde{\beta}.$
- (ii) $S^2_{\widetilde{\alpha}}(f,\lambda,\mu) = S^2(f,\lambda,\mu) \text{ if } \widetilde{\alpha} \cong 1.$

3 Strongly double Cesàro summability of order $\widetilde{\alpha}$ defined by a modulus function

In this section, we give the relationships between the spaces $w_{\tilde{\alpha},0}^2(f,\lambda,\mu), w_{\tilde{\alpha}}^2(f,\lambda,\mu)$ and $w_{\tilde{\alpha},\infty}^2(f,\lambda,\mu)$.

Definition 3.1 Let *f* be a modulus function and $\tilde{\alpha}$ be a positive real number. We have

$$\begin{split} w_{\tilde{\alpha},0}^{2}(f,\lambda,\mu) &= \left\{ x = (x_{jk}) \in s^{2} : \lim_{n,m \to \infty} \frac{1}{(\lambda_{n}\mu_{m})^{\tilde{\alpha}}} \sum_{j \in J_{n}} \sum_{k \in I_{n}} f\left(|x_{jk}|\right) = 0 \right\}, \\ w_{\tilde{\alpha}}^{2}(f,\lambda,\mu) &= \left\{ x = (x_{jk}) \in s^{2} : \lim_{n,m \to \infty} \frac{1}{(\lambda_{n}\mu_{m})^{\tilde{\alpha}}} \sum_{j \in J_{n}} \sum_{k \in I_{n}} f\left(|x_{jk}-\ell|\right) = 0 \right\}, \\ w_{\tilde{\alpha},\infty}^{2}(f,\lambda,\mu) &= \left\{ x = (x_{jk}) \in s^{2} : \sup_{n,m} \frac{1}{(\lambda_{n}\mu_{m})^{\tilde{\alpha}}} \sum_{j \in J_{n}} \sum_{k \in I_{n}} f\left(|x_{jk}|\right) < \infty \right\}. \end{split}$$

Theorem 3.2

- (i) Let f be a modulus function. For $\tilde{\alpha} > 0$, we have $w_{\tilde{\alpha},0}^2(f,\lambda,\mu) \subset w_{\tilde{\alpha},\infty}^2(f,\lambda,\mu)$.
- (ii) Let f be a modulus function. For $\tilde{\alpha} \geq 1$, we have $w_{\tilde{\alpha}}^2(f, \lambda, \mu) \subset w_{\tilde{\alpha}, \infty}^2(f, \lambda, \mu)$.

Proof (i) The proof of (i) is trivial.

(ii) Let $x \in w_{\tilde{\alpha}}^2(f, \lambda, \mu)$. By the definition of modulus function (ii) and (iii), we have

$$\frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}f(|x_{jk}|) \leq \frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}f(|x_{jk}-\ell|) + f(|\ell|)\frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}1,$$

and since $\tilde{\alpha} \succeq 1$ and $x \in w_{\tilde{\alpha}}^2(f, \lambda, \mu)$, we have $x \in w_{\tilde{\alpha}, \infty}^2(f, \lambda, \mu)$, which completes the proof. \Box

Theorem 3.3 For any modulus function f and $\tilde{\alpha} \geq 1$, we have $w_{\tilde{\alpha}}^2(\lambda,\mu) \subset w_{\tilde{\alpha}}^2(f,\lambda,\mu)$, $w_{\tilde{\alpha},0}^2(\lambda,\mu) \subset w_{\tilde{\alpha},0}^2(f,\lambda,\mu)$ and $w_{\tilde{\alpha},\infty}^2(\lambda,\mu) \subset w_{\tilde{\alpha},\infty}^2(f,\lambda,\mu)$.

Proof We give the proof only when $w^2_{\tilde{\alpha},\infty}(\lambda,\mu) \subset w^2_{\tilde{\alpha},\infty}(f,\lambda,\mu)$ and the rest of cases will follow similarly. Let $x \in w^2_{\tilde{\alpha},\infty}(\lambda,\mu)$, so that

$$\sup_{n,m}\frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}|x_{jk}|<\infty.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t < \delta$. Now we write

$$\frac{1}{(\lambda_n \mu_m)^{\tilde{\alpha}}} \sum_{j \in J_n} \sum_{k \in I_n} f(|x_{jk}|) = \sum_1 + \sum_2,$$

where the first summation is over $|x_{jk}| \le \delta$ and the second is over $|x_{jk}| > \delta$. Then $\sum_{1 \le \varepsilon} \frac{1}{(\lambda_{ij} u_{ij})^{\tilde{\alpha}-1}}$ and, for $|x_{jk}| > \delta$, we use the fact that

$$|x_{jk}| < \frac{|x_{jk}|}{\delta} < 1 + \left[\left| \frac{|x_{jk}|}{\delta} \right| \right],$$

where [|t|] denotes the integer part of *t*. Given $\varepsilon > 0$, by the definition of *f*, we have

$$f(|x_{jk}|) \le \left(1 + \left[\left|\frac{|x_{jk}|}{\delta}\right|\right]\right) f(1) \le 2f(1)\frac{|x_{jk}|}{\delta}$$

for $|x_{jk}| > \delta$ and hence $\sum_{2} \le 2f(1)\delta^{-1}\sum_{j\in J_n}\sum_{k\in I_n}|x_{jk}|$, which together with $\sum_{1} \le \varepsilon \frac{1}{(\lambda_n \mu_m)^{\tilde{\alpha}-1}}$ yields

$$\frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}f(|x_{jk}|) \leq \varepsilon \cdot \frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}-1}} + 2f(1)\delta^{-1}\frac{1}{(\lambda_n\mu_m)^{\tilde{\alpha}}}\sum_{j\in J_n}\sum_{k\in I_n}|x_{jk}|.$$

Since $\tilde{\alpha} \ge 1$ and $x \in w^2_{\tilde{\alpha},\infty}(\lambda,\mu)$, we have $x \in w^2_{\tilde{\alpha},\infty}(f,\lambda,\mu)$ and the proof is complete. \Box

Theorem 3.4 Let f be a modulus function f and $\tilde{\alpha} > 0$. If $\lim_{t\to\infty} \frac{f(t)}{t} > 0$, then $w_{\tilde{\alpha}}^2(f, \lambda, \mu) \subset w_{\tilde{\alpha}}^2(\lambda, \mu)$.

Proof Following the proof of Proposition 1 of Maddox [42], we have $l = \lim_{t\to\infty} \frac{f(t)}{t} = \inf\{\frac{f(t)}{t} : t > 0\}$. By the definition of l, we have $f(t) \ge lt$ for all $t \ge 0$. Since l > 0, we get $t \le l^{-1}f(t)$ for all $t \ge 0$, and so

$$rac{1}{(\lambda_n\mu_m)^{\widetilde{lpha}}}{\displaystyle\sum_{j\in J_n}}{\displaystyle\sum_{k\in I_n}}|x_{jk}-\ell|\leq l^{-1}rac{1}{(\lambda_n\mu_m)^{\widetilde{lpha}}}{\displaystyle\sum_{j\in J_n}}{\displaystyle\sum_{k\in I_n}}fig(|x_{jk}-\ell|ig),$$

from where it follows that $x \in w_{\tilde{\alpha}}^2(f, \lambda, \mu)$ whenever $x \in w_{\tilde{\alpha}}^2(\lambda, \mu)$.

Theorem 3.5 For any modulus f such that $\lim_{t\to\infty} \frac{f(t)}{t} > 0$ and $\tilde{\alpha} \geq 1$. Then $w_{\tilde{\alpha}}^2(\lambda, \mu) = w_{\tilde{\alpha}}^2(f, \lambda, \mu)$.

4 Relation between $f_{\lambda,\mu}$ -statistical convergence of order $\tilde{\alpha}$ and strongly double Cesàro summability of order $\tilde{\alpha}$ defined by a modulus function

In this section, we give the relationship between the strong $f_{\lambda,\mu}$ -Cesàro summability of order $\tilde{\alpha}$ and $f_{\lambda,\mu}$ -statistical convergence of order $\tilde{\beta}$.

Lemma 4.1 Let f be an unbounded function such that there is a positive constant c such that $f(xy) \ge cf(x)f(y)$ for all $x \ge 0$, $y \ge 0$ [42].

Theorem 4.2 Let $0 \prec \tilde{\alpha} \preceq \tilde{\beta} \preceq 1$ and f be an unbounded modulus function such that there is a positive constant c such that $f(xy) \ge cf(x)f(y)$ for all $x \ge 0$, $y \ge 0$ and $\lim_{t\to\infty} \frac{f(t)}{t} > 0$. If a sequence $x = (x_{jk})$ is strongly $f_{\lambda,\mu}$ -Cesàro summable of order $\tilde{\alpha}$ with respect to f to ℓ , then it is $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\beta}$ to ℓ . *Proof* For any sequence $x = (x_{jk})$ and $\varepsilon > 0$, using the definition of modulus function (ii) and (iii), we have

$$\sum_{j \in J_n} \sum_{k \in I_n} f(|x_{jk} - L|) \ge f\left(\sum_{j \in J_n} \sum_{k \in I_n} |x_{jk} - \ell|\right) \ge f\left(\left|\left\{(j, k) \in I_n \times I_m : |x_{jk} - \ell| \ge \varepsilon\right\} \middle| \varepsilon\right)\right.$$
$$\ge cf\left(\left|\left\{(j, k) \in I_n \times I_m : |x_{jk} - \ell| \ge \varepsilon\right\} \middle| f(\varepsilon)\right)\right.$$

and since $\tilde{\alpha} \preceq \tilde{\beta}$

$$\frac{1}{n^{s}m^{t}}\sum_{j=1}^{n}\sum_{k=1}^{m}f(|x_{jk}-\ell|)$$

$$\geq \frac{1}{n^{s}m^{t}}cf(|\{(j,k)\in I_{n}\times I_{m}:|x_{jk}-\ell|\geq \varepsilon\}|f(\varepsilon))$$

$$\geq \frac{1}{n^{u}m^{v}}cf(|\{(j,k)\in I_{n}\times I_{m}:|x_{jk}-\ell|\geq \varepsilon\}|f(\varepsilon))$$

$$= \frac{1}{n^{u}m^{v}f(n^{u}m^{v})}cf(|\{(j,k)\in I_{n}\times I_{m}:|x_{jk}-\ell|\geq \varepsilon\}|f(\varepsilon))f(n^{u}m^{v}),$$

where, using the fact that $\lim_{t\to\infty} \frac{f(t)}{t} > 0$ and $x \in w^2_{\tilde{\alpha}}(f, \lambda, \mu)$, it follows that $x \in S^2_{\tilde{\beta}}(\lambda, \mu)$ and the proof is complete.

If we take $\widetilde{\beta} \cong \widetilde{\alpha}$ in Theorem 4.2, we have the following.

Corollary 4.3 Let f be an unbounded modulus function $f(xy) \ge cf(x)f(y)$, where c is a positive constant for all $x \ge 0$, $y \ge 0$ and $\lim_{t\to\infty} \frac{f(t)}{t} > 0$ and $\tilde{\alpha} \in (0,1]$. If a sequence is strongly $f_{\lambda,\mu}$ -Cesàro summable of order $\tilde{\alpha}$ with respect to f to ℓ , then it is $f_{\lambda,\mu}$ -statistically convergent of order $\tilde{\alpha}$ to ℓ .

5 Conclusions

In this study, we define $f_{\lambda,\mu}$ -statistical convergence for double sequences of order $\tilde{\alpha}$, where *f* is an unbounded modulus function. Besides this we also study strong $f_{\lambda,\mu}$ -Cesàro summability for double sequences of order $\tilde{\alpha}$ and give inclusion relations. These results are the generalizations of the studies by Meenakshi *et al.* [43].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details

¹Faculty of Education, Harran University, Şanlıurfa, Turkey. ²Department of Mathematics, Fırat University, Elazığ, Turkey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 June 2017 Accepted: 12 September 2017 Published online: 04 October 2017

References

- 1. Zygmund, A: Trigonometric Series. Vol. I, II. Cambridge University Press, Cambridge (1977)
- 2. Steinhaus, H: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73-74 (1951)
- 3. Fast, H: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
- 4. Schoenberg, IJ: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361-375 (1959)
- 5. Šalát, T: On statistically convergent sequences of real numbers. Math. Slovaca 30, 139-150 (1980)
- Altin, Y, Altinok, H, Çolak, R: Statistical convergence of order α for difference sequences. Quaest. Math. 38(4), 505-514 (2015)
- Altin, Y, Koyunbakan, H, Yilmaz, E: Uniform statistical convergence on time scales. J. Appl. Math. 2014, Article ID 471437 (2014)
- Belen, C, Mohiuddine, SA: Generalized weighted statistical convergence and application. Appl. Math. Comput. 219(18), 9821-9826 (2013)
- Et, M, Mohiuddine, SA, Alotaibi, A: On λ-statistical convergence and strongly λ-summable functions of order α. J. Inequal. Appl. 2013, Article ID 469 (2013)
- 10. Et, M, Çolak, R, Altin, Y: Strongly almost summable sequences of order α. Kuwait J. Sci. Eng. 41(2), 35-47 (2014)
- Et, M, Şengül, H: Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α. Filomat 28(8), 1593-1602 (2014)
- Connor, JS: On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 32, 194-198 (1989)
- 13. Fridy, J: On statistical convergence. Analysis 5, 301-313 (1985)
- 14. Maddox, IJ: Statistical convergence in a locally convex space. Math. Proc. Camb. Philos. Soc. 104(1), 141-145 (1988)
- 15. Móricz, F: Statistical convergence of multiple sequences. Arch. Math. 81, 82-89 (2003)
- Mohiuddine, SA, Alotaibi, A, Mursaleen, M: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012, Article ID 719729 (2012)
- Rath, D, Tripathy, BC: Matrix maps on sequence spaces associated with sets of integers. Indian J. Pure Appl. Math. 27(2), 197-206 (1996)
- 18. Şengül, H, Et, M: On lacunary statistical convergence of order $\bar{\alpha}$. Acta Math. Sci. Ser. B Engl. Ed. **34**(2), 473-482 (2014)
- 19. Tripathy, BC: On statistical convergence. Proc. Est. Acad. Sci., Phys. Math. 47(4), 299-303 (1998)
- Tripathy, BC: Matrix transformation between some classes of sequences. J. Math. Anal. Appl. 206(2), 448-450 (1997)
 Gadjiev, AD, Orhan, C: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32(1), 129-138
- (2002)
 22. Çolak, R: Statistical convergence of order α. In: Modern Methods in Analysis and Its Applications, pp. 121-129. Anamaya Pub., New Delhi (2010)
- Mursaleen, M, Edely, OHH: Statistical convergence of double sequences. J. Math. Anal. Appl. 288, 223-231 (2003). doi:10.1016/j.jmaa.2003.08.004
- Tripathy, BC, Sarma, B: Statistically convergent difference double sequence spaces. Acta Math. Sin. Engl. Ser. 24(5), 737-742 (2008)
- 25. Tripathy, BC: Statistically convergent double sequences. Tamkang J. Math. 34(3), 231-237 (2003)
- 26. Bhunia, S, Das, P, Pal, SK: Restricting statistical convergence. Acta Math. Hung. 134(1-2), 153-161 (2012)
- Mursaleen, M, Mohiuddine, SA: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 41(5), 2414-2421 (2009)
- Mursaleen, M, Çakan, C, Mohiuddine, SA, Savaş, E: Generalized statistical convergence and statistical core of double sequences. Acta Math. Sin. Engl. Ser. 26(11), 2131-2144 (2010)
- Mursaleen, M, Mohiuddine, SA: Convergence Methods for Double Sequences and Applications. Springer, New Delhi (2014). doi:10.1007/978-81-322-1611-7
- 31. Pringsheim, A: Zur Theorie der zweifach unendlichen Zahlenfolgen. Math. Ann. 53, 289-321 (1900)
- 32. Nakano, H: Concave modulars. J. Math. Soc. Jpn. 5, 29-49 (1953)
- 33. Ruckle, WH: FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25, 973-978 (1973)
- 34. Maddox, IJ: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100, 161-166 (1986)
- 35. Aizpuru, A, Listán-García, MC, Rambla-Barreno, F: Density by moduli and statistical convergence. Quaest. Math. 37(4), 525-530 (2014)
- Bhardwaj, VK, Dhawan, S: f-statistical convergence of order α and strong Cesàro summability of order α with respect to a modulus. J. Inequal. Appl. 2015, 332 (2015). doi:10.1186/s13660-015-0850-x
- 37. Borgohain, S, Savaş, E: Note on f_{λ} -statistical convergence. https://arxiv.org/pdf/1506.05451.pdf
- Aizpuru, A, Listán-García, MC, Rambla-Barreno, F: Double density by moduli and statistical convergence. Bull. Belg. Math. Soc. Simon Stevin 19(4), 663-673 (2012)
- 39. Mursaleen, M: λ-statistical convergence. Math. Slovaca 50(1), 111-115 (2000)
- Leindler, L: Über die de la Vallée-Pousinsche Summierbarkeit allgemeiner Orthogonalreihen. Acta Math. Acad. Sci. Hung. 16, 375-387 (1965)
- Mursaleen, M, Çakan, C, Mohiuddine, SA, Savas, E: Generalized statistical convergence and statistical core of double sequences. Acta Math. Sin. Engl. Ser. 26(11), 2131-2144 (2010)
- Maddox, JJ: Inclusions between FK spaces and Kuttner's theorem. Math. Proc. Camb. Philos. Soc. 101(3), 523-527 (1987)
- 43. Meenakshi, C, Kumar, V, Saroa, MS: Some remarks on statistical summability of order $\bar{\alpha}$ defined by generalized De la Vallée-Poussin mean. Bol. Soc. Parana. Mat. **33**(1), 147-156 (2015)