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Abstract
In this paper, we present a family of conjugate gradient projection methods for
solving large-scale nonlinear equations. At each iteration, it needs low storage and
the subproblem can be easily solved. Compared with the existing solution methods
for solving the problem, its global convergence is established without the restriction
of the Lipschitz continuity on the underlying mapping. Preliminary numerical results
are reported to show the efficiency of the proposed method.
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1 Introduction
Consider the following nonlinear equations problem of finding x ∈ C such that

F(x) = , (.)

where F : Rn → Rn is a continuous nonlinear mapping and C is a nonempty closed convex
set of Rn. The problem finds wide applications in areas such as ballistic trajectory compu-
tation and vibration systems [, ], the power flow equations [–], economic equilibrium
problem [–], etc.

Generally, there are two categories of solution methods for solving the problem. The first
one is first-order methods including the trust region method, the Levenberg-Marquardt
method and the projection method. The second one is second-order methods including
the Newton method and quasi-Newton method. For the first method, Zhang et al. []
proposed a spectral gradient method for problem (.) with C = Rn, and Wang et al. []
proposed a projection method for problem (.). Later, Yu et al. [] proposed a spectral
gradient projection method for constrained nonlinear equations. Compared with the pro-
jection method in [], the methods [, ] need the Lipschitz continuity of the underlying
mapping F(·), but the former needs to solve a linear equation at each iteration, and its vari-
ants [, ] also inherit the shortcoming. Different from the above, in this paper, we con-
sider the conjugate gradient method for solving the non-monotone problem (.). To this
end, we briefly review the well-known conjugate gradient method for the unconstrained
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optimization problem

min
x∈Rn

f (x).

The conjugate gradient method generates the sequence of iterates recurrently by

xk+ = xk + αkdk , k = , , , . . . ,

where xk is the current iterate, αk >  is the step-size determined by some line search, and
dk is the search direction defined by

dk =

⎧
⎨

⎩

–gk if k = ,

–gk + βkdk– if k ≥ ,

in which gk = ∇f (xk) and βk >  is a parameter. The famous conjugate gradient meth-
ods include the Fletcher-Reeves (FR) method, the Polak-Ribière-Polyak (PRP) method,
the Liu-Storey (LS) method, the Dai-Yuan (DY) method. Recently, Sun et al. [] and Li et
al. [] proposed two variants of PRP method which possesses the following property:

|βk| ≤ t
‖gk‖

‖dk–‖ , ∀k ≥ ,

where t >  is a constant.
In this paper, motivated by the projection methods in [, ] and the conjugate gradient

methods in [, ], we propose a new family of conjugate gradient projection methods for
solving nonlinear problem (.). The new designed method is derivative-free as it does not
need to compute the Jacobian matrix or its approximation of the underlying function (.).
Further, the new method does not need to solve any linear equations at each iteration, thus
it is suitable to solve large scale problem (.).

The remainder of this paper is organized as follows. Section  describes the new method
and presents its convergence. The numerical results are reported in Section . Some con-
cluding remarks are drawn in the last section.

2 Algorithm and convergence analysis
Throughout this paper, we assume that the mapping F(·) is monotone, or more generally
pseudo-monotone, on Rn in the sense of Karamardian []. That is, it satisfies that

〈
F(y), y – x∗〉 ≥ , for all y ∈ Rn, x∗ ∈ S, (.)

where 〈·, ·〉 denotes the usual inner product in Rn. Further, we use PC(x) to denote the
projection of point x ∈ Rn onto the convex set C, which satisfies the following property:

∥
∥PC(x) – PC(y)

∥
∥ ≤ ‖x – y‖ –

∥
∥PC(x) – x + y – PC(y)

∥
∥, ∀x, y ∈ Rn. (.)

Now, we describe the new conjugate gradient projection method for nonlinear con-
strained equations.
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Algorithm .

Step . Given an arbitrary initial point x ∈ Rn, parameters  < ρ < ,σ > , t > ,β > , ε >
, and set k := .

Step . If ‖F(xk)‖ < ε, stop; otherwise go to Step .
Step . Compute

dk =

⎧
⎨

⎩

–F(xk) if k = ,

–( + βk
F(xk )�dk–
‖F(xk )‖ )F(xk) + βkdk– if k ≥ ,

(.)

where βk is such that

|βk| ≤ t
‖F(xk)‖
‖dk–‖ , ∀k ≥ . (.)

Step . Find the trial point yk = xk + αkdk , where αk = βρmk and mk is the smallest nonneg-
ative integer m such that

–
〈
F
(
xk + βρmdk

)
, dk

〉 ≥ σβρm‖dk‖. (.)

Step . Compute

xk+ = PHk

[
xk – ξkF(yk)

]
, (.)

where

Hk =
{

x ∈ Rn|hk(x) ≤ 
}

,

with

hk(x) =
〈
F(yk), x – yk

〉
, (.)

and

ξk =
〈F(yk), xk – yk〉

‖F(yk)‖ .

Set k := k +  and go to Step .

Obviously, Algorithm . is different from the methods in [, ].
Now, we give some comment on the searching direction dk defined by (.). We claim

that it is derived from Schmidt orthogonalization. In fact, in order to make dk = –F(xk) +
βkdk– satisfy the property

F(xk)�dk = –
∥
∥F(xk)

∥
∥, (.)

we only need to ensure that βkdk– is vertical to F(xk). As a matter of fact, by Schmidt
orthogonalization, we have

dk = –
(

 + βk
F(xk)�dk–

‖F(xk)‖

)

F(xk) + βkdk–.
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Equality (.) together with the Cauchy-Schwarz inequality implies that ‖dk‖ ≥ ‖F(xk)‖.
In addition, by (.) and (.), we have

‖dk‖ ≤ ∥
∥F(xk)

∥
∥ + |βk| ‖F(xk)‖‖dk–‖

‖F(xk)‖

∥
∥F(xk)

∥
∥ + |βk|‖dk–‖

≤ ∥
∥F(xk)

∥
∥ + t

∥
∥F(xk)

∥
∥ + t

∥
∥F(xk)

∥
∥

= ( + t)
∥
∥F(xk)

∥
∥.

Therefore, for all k ≥ , it holds that

∥
∥F(xk)

∥
∥ ≤ ‖dk‖ ≤ ( + t)

∥
∥F(xk)

∥
∥. (.)

Furthermore, it is easy to see that the line search (.) is well defined if F(xk) = .
For parameter βk defined by (.), it has many choices such as βS

k = ‖F(xk)‖/‖dk–‖, or
[, ]

βNWYL
k =

〈F(xk), F(xk) – ‖F(xk )‖
‖F(xk–)‖ F(xk–)〉

|F(xk)�dk–| + t‖F(xk)‖‖dk–‖ ,

βNPRP
k =

〈F(xk), F(xk) – F(xk–)〉
max{t‖dk–‖,‖F(xk–)‖} .

From the structure of Hk , the orthogonal projection onto Hk has a closed-form expres-
sion. That is,

PHk (x) =

⎧
⎨

⎩

x – 〈F(yk ),x–yk〉
‖F(yk )‖ F(yk) if 〈F(yk), x – yk〉 > ,

x if 〈F(yk), x – yk〉 ≤ .

Lemma . For function hk(x) defined by (.), let x∗ ∈ S∗, it holds that

hk(xk) ≥ σ‖xk – yk‖ and hk
(
x∗) ≤ . (.)

In particular, if xk = yk , then hk(xk) > .

Proof From xk – yk = –αkdk and the line search (.), we have

hk(xk) =
〈
F(yk), xk – yk

〉

= –αk
〈
F(yk), dk

〉 ≥ α
kσ‖dk‖ = σ‖xk – yk‖.

On the other hand, from condition (.), we can obtain

hk
(
x∗) =

〈
F(yk), x∗ – yk

〉 ≤ .

This completes the proof. �

Lemma . indicates that the hyperplane ∂Hk = {x ∈ Rn|hk(x) = } strictly separates the
current iterate from the solutions of problem (.) if xk is not a solution. In addition, from



Feng et al. Journal of Inequalities and Applications  (2017) 2017:236 Page 5 of 8

Lemma ., we also can derive that the solution set S∗ of problem (.) is included in Hk

for all k.
Certainly, if Algorithm . terminates at step k, then xk is a solution of problem (.).

So, in the following analysis, we assume that Algorithm . always generates an infinite
sequence {xk}. Based on the lemma, we can establish the convergence of the algorithm.

Theorem . If F is continuous and condition (.) holds, then the sequence {xk} generated
by Algorithm . globally converges to a solution of problem (.).

Proof First, we show that the sequences {xk} and {yk} are both bounded. In fact, it follows
from x∗ ∈ Hk , (.), (.) and (.) that

∥
∥xk+ – x∗∥∥ ≤ ∥

∥xk – ξkF(yk) – x∗∥∥

=
∥
∥xk – x∗∥∥ – ξk

〈
F(yk), xk – x∗〉 + ξ 

k
∥
∥F(yk)

∥
∥

≤ ∥
∥xk – x∗∥∥ – ξk

〈
F(yk), xk – yk

〉
+ ξ 

k
∥
∥F(yk)

∥
∥

=
∥
∥xk – x∗∥∥ –

〈F(yk), xk – yk〉

‖F(yk)‖

≤ ∥
∥xk – x∗∥∥ –

σ α
k ‖dk‖

‖F(yk)‖ .

Thus the sequence {‖xk – x∗‖} is decreasing and convergent, and hence the sequence {xk}
is bounded, and from (.), the sequence {dk} is also bounded. Then, by yk = xk +αkdk , the
sequence {yk} is also bounded. Then, by the continuity of F(·), there exists constant M > 
such that ‖F(yk)‖ ≤ M for all k. So,

∥
∥xk+ – x∗∥∥ ≤ ∥

∥xk – x∗∥∥ –
σ α

k ‖dk‖

M , (.)

from which we can deduce that

lim
k→∞

αk‖dk‖ = . (.)

If lim infk→∞ ‖dk‖ = , then from (.) it holds that lim infk→∞ ‖F(xk)‖ = . From the
boundedness of {xk} and the continuity of F(·), {xk} has some accumulation point x̄ such
that F(x̄) = . Then from (.), {‖xk – x̄‖} converges, and thus the sequence {xk} globally
converges to x̄.

If lim infk→∞ ‖dk‖ > , from (.) again, we have

lim inf
k→∞

∥
∥F(xk)

∥
∥ > . (.)

By (.), it holds that

lim
k→∞

αk = . (.)

Therefore, from the line search (.), we have

–
〈
F
(
xk + βρmk–dk

)
, dk

〉
< σβρmk–‖dk‖. (.)



Feng et al. Journal of Inequalities and Applications  (2017) 2017:236 Page 6 of 8

Since {xk} and {dk} are both bounded, then letting k → ∞ in (.) yields that

–
〈
F(x̄), d̄

〉 ≤ , (.)

where x̄, d̄ are limits of corresponding sequences. In addition, from (.) and (.), we get

–
〈
F(x̄), d̄

〉
=

∥
∥F(x̄)

∥
∥ > . (.)

Obviously, (.) contradicts (.). This completes the proof. �

3 Numerical results
In this section, numerical results are provided to substantiate the efficacy of the proposed
method. The codes are written in Mablab Ra and run on a personal computer with
. GHz CPU processor. For comparison, we also give the numerical results of the spectral
gradient method (denoted by SGM) in [], the conjugate gradient method (denoted by
CGM) in []. The parameters used in Algorithm . are set as t = ,σ = .,ρ = .,β = ,
and

βk =
‖F(xk)‖
‖dk–‖ .

For SGM, we set β = .,σ = ., r = .. For CGM, we choose ρ = .,σ = – and ξ =
. Furthermore, the stopping criterion is set as ‖F(xk)‖ ≤ – for all the tested methods.

Problem  The mapping F(·) is taken as F(x) = (f(x), f(x), . . . , fn(x))�, where

fi(x) = exi –  for i = , , . . . , n.

Obviously, this problem has a unique solution x∗ = (, , . . . , )�.

Problem  The mapping F(·) is taken as F(x) = (f(x), f(x), . . . , fn(x))�, where

f(x) = x – ecos( x+x
n+ ),

fi(x) = xi – ecos( xi–+xi+xi+
n+ ), for i = , , . . . , n – ,

fn(x) = xn – ecos( xn–+xn
n+ ).

Problem  The mapping F(x) : R → R is given by

F(x) =

⎛

⎜
⎜
⎜
⎝

   
  – 
   
   

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x

x

x

x

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

x


x


x


x


⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

–


–


⎞

⎟
⎟
⎟
⎠

.

This problem has a degenerate solution x∗ = (, , , ).
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Table 1 Numerical results with different dimensions of Problem 1

Dimension 10 50 100 500 1,000

Iter. 20 21 22 23 23
CPU 0.3594 0.8750 1.7031 41.4844 257.1406

Table 2 Numerical results with different initial points of Problem 3

Initial point Iter. CPU ‖F(xk)‖
(0, 0, 0, 0) 20 0.9219 9.9320×10–7

(3, 0, 0, 0) 22 0.8438 7.0942×10–7

(1, 1, 1, 0) 41 1.6250 7.2649×10–7

(0, 1, 1, 1) 28 1.1875 3.8145×10–7

(0, 100, 100, 1) 34 1.4063 6.6320×10–7

For Problem , the initial point is set as x = (, , . . . , ), and Table  gives the numerical
results by Algorithm . with different dimensions, where Iter. denotes the iteration num-
ber and CPU denotes the CPU time in seconds when the algorithm terminates. Table 
lists the numerical results of Problem  with different initial points. The numerical results
given in Table  and Table  show that the proposed method is efficient for solving the
given two test problems.

4 Conclusion
In this paper, we extended the conjugate gradient method to nonlinear equations. The
major advantage of the method is that it does not need to compute the Jacobian matrix
or any linear equations at each iteration, thus it is suitable to solve large-scale nonlin-
ear constrained equations. Under mild conditions, the proposed method possesses global
convergence.

In Step  of Algorithm ., we have to compute a projection onto the intersection of the
feasible set C and a half-space at each iteration, which is equivalent to quadratic program-
ming, quite time-consuming work. Hence, how to remove this projection step is one of
our future research topics.
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