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Abstract
This paper is concerned with the testing hypotheses of regression parameters in
linear models in which errors are negatively superadditive dependent (NSD). A robust
M-test base on M-criterion is proposed. The asymptotic distribution of the test
statistic is obtained and the consistent estimates of the redundancy parameters
involved in the asymptotic distribution are established. Finally, some Monte Carlo
simulations are given to substantiate the stability of the parameter estimates and the
power of the test, for various choices of M-methods, explanatory variables and
different sample sizes.
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1 Introduction
Consider the linear regression model:

yt = x�
t β + et , t = , . . . , n, ()

where {yt} and {xt = (xt, xt, . . . , xtp)�} are real-valued responses and real-valued random
vectors, respectively. The superscript � represents the transpose throughout this paper,
β = (β, . . . ,βp)� is a p-vector of the unknown parameter, and {et} are random errors.

It is well known that linear regression models have received much attentions for their
immense applications in various areas such as engineering technology, economics and
social sciences. Unfortunately, there exists the problem that the classical maximum like-
lihood estimator for these models is sufficiently sensitive to outliers. To overcome this
defect, Huber proposed the M-estimate which possesses the robustness (see Huber [])
by minimizing

n∑

t=

ρ
(
yt – x�

t β
)
, ()

where ρ is a convex function. It is obvious that many important estimates can be ad-
dressed easily. For instance, the least square (LS) estimate with ρ(x) = x/, the least
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absolute deviation (LAD) estimate with ρ(x) = |x|, and the Huber estimate with ρ(x) =
(xI(|x| ≤ k))/ + (k|x| – k/)I(|x| > k), k > , where I(A)is the indicator function of A.

Let β̂n be a minimizer of () and consequently β̂n is a M-estimate of β . Some excellent
results as regards the asymptotic properties of β̂n with various forms of ρ have been re-
ported in [–]. Most of the results rely on the independence errors. As Huber claimed
in [], the independence assumption on the errors is a serious restriction. It is practically
essential and imperative to explore the case of dependent errors, which is a theoretically
challenging. Under the dependence assumption of the errors, Berlinet et al. [] proved
the consistency of M-estimates for linear models with strong mixing errors. Cui et al. []
obtained the asymptotic distributions of M-estimates for linear models with spatially cor-
related errors. Wu [] investigated the weak and strong Bahadur representations of the
M-estimates for linear models with stationary causal errors. Wu [] established the strong
consistency of M-estimates for linear models with negatively dependent (NA) random er-
rors.

In the following we will introduce a wide random sequence, NSD random sequence,
whose definition based on the superadditive functions.

Definition  (Hu []) A function φ : Rn →R, is called superadditive if

φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y),

for all x, y ∈ R
n, where ‘∨’ is for a componentwise maximum and ‘∧’ is for a component-

wise minimum.

Definition  (Hu []) A random vector (X, X, . . . , Xn) is said to be NSD if

Eφ(X, X, . . . , Xn) ≤ Eφ
(
X∗

 , X∗
 , . . . , X∗

n
)
, ()

where {X∗
t , t = , . . . , n} are independent random variables such that have same marginal

distribution with {Xt , t = , . . . , n} for each t, and φ is a superadditive function such that
the expectations in () exist.

Definition  (Wang et al. []) A sequence of random variables (X, . . . , Xn) is called NSD
if for all n ≥ , (X, . . . , Xn) is NSD.

The concept of NSD random variables, which generalizes the concept of NA, was pro-
posed by Hu []. In such paper, author provided several essential properties and valuable
theorems for NSD. It is realized that many multivariate distributions possess the NSD
property exhibited in practical examples. Compared with NA, NSD contains more widely
sequence [], i.e., NA means NSD, but not vise verse. Consequently, NSD has received an
increasing attention for its enormous research value in comparison with NA both in cop-
ula theory and applications [–]. Specifically, a Kolmogorov and a Rosenthal inequality
of NSD random variables are introduced in [] and [], respectively. Furthermore, Wang
et al. [] obtained the complete convergence for weighted sums of NSD random variables
and investigated the complete consistency of LS estimates in the EV models. Wang et al.
[] established the strong consistency of M-estimates for linear models with NSD errors
via improving the moment condition.
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The purpose of this paper is to investigate the M-test problem of the regression pa-
rameters in the model () with NSD random errors, we consider a test for the following
hypothesis:

H : H�(β – b) =  versus H : H�(β – b) 
= , ()

where H is a known p × q matrix with the rank q ( < q ≤ p), b is a known p-vector.
A sequence of the local alternatives is considered as follows:

H,n : H�(β – b) = H�ωn, ()

where ωn is a known p-vector such that

∥∥S/
n ωn

∥∥ = O(), ()

where Sn =
∑n

t= xtxT
t , ‖ ·‖ is the Euclidean norm.

Denote

min
H�(β–b)=

n∑

t=

ρ
(
yt – x�

t β
)

=
n∑

t=

ρ
(
yt – x�

t β̃
)
,

min
β∈Rp

n∑

t=

ρ
(
yt – x�

t β
)

=
n∑

t=

ρ
(
yt – x�

t β̂
)
,

Mn =
n∑

t=

ρ
(
yt – x�

t β̃
)

–
n∑

t=

ρ
(
yt – x�

t β̂
)
.

Actually, β̃ and β̂ are the M-estimates in the restricted and unrestricted model (), respec-
tively. To test the hypothesis (), we adopt M-criterion which regards Mn as the criterion
to measure the level of departure from the null hypothesis. Several classical conclusions
have been presented in [–] when the errors are assumed to be independence, we
will generalize the case to NSD random errors. Throughout this paper, let C be a positive
constant. Put |τ | = max≤t≤p{|τ |, |τ |, . . . , |τ p|} if τ is a p-vector. Let x+ = xI(x ≥ ) and
x– = –xI(x < ). A random sequence {Xn} is said to on Lq-norm, q > , if E|Xn|q < ∞. De-
note an = oP(bn) if an/bn converges to  in probability and an = OP(bn) if an/bn converges
to a constant in probability.

The rest of the paper is organized as follows. In Section , the asymptotic distribution of
Mn is obtained with the NSD random errors, and the consistence estimates of the redun-
dancy parameters λ and σ  are constructed under the local hypothesis. Section  gives
the theoretical proofs of main results. The simulations are presented to show the per-
formances of parameter estimates and the M-test for the powers in Section , and the
conclusions are given in Section .

2 Main results
In this paper, let ρ be a non-monotonic convex function on R, and denote ψ+ and ψ– as
the right and left derivatives of the function ρ , respectively. The derivative function ψ is
chosen to satisfy ψ–(u) ≤ ψ(u) ≤ ψ+(u), for all u ∈R.

Now, several assumptions are listed as follows:
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(A) The function G(u) = Eψ(et + u) exists with G() = Eψ(et) = , and has a positive
derivative λ at u = .

(A)  < Eψ(e) = σ  < ∞, and limu→ E|ψ(e + u) – ψ(e)| = .
(A) There exists a positive constant � such that for h ∈ (,�), the function

ψ(u + h) – ψ(u) is monotonic on u.
(A)

∑∞
t= | cov(ψ(e),ψ(et))| < ∞.

(A) Denote Sn =
∑n

t= xtxT
t , assume that Sn >  for sufficiently large n, and

dn = max
≤t≤n

xT
t S–

n xt = O
(
n–).

Remark  (A)-(A) are often applied in the asymptotic theory of M-estimate in re-
gression models (see [–]). (A) is reasonable because it is equivalent to the bound
of max≤t≤n |xtxT

t |, and here is a particular case of the condition dn = O(n–δ) for some
 < δ ≤ , which was used in Wang et al. []. Those functions were mentioned in ()
whose ‘derivative’ function ψ correspond to least square (LS) estimate with ψ(x) = x,
least absolute deviation (LAD) estimate with ψ(x) = sign(x) and Huber estimate with
ψ(x) = –kI(x < –k) + xI(|x| ≤ k) + kI(x > k) are satisfied with the above conditions.

Theorem  In the model (), assume that {et ,  ≤ t ≤ n}, which is a sequence of identically
distributed NSD random variables, is an uniformly integral family on L-norm, and (A)-
(A) hold. Then λσ –Mn has an asymptotic non-central chi-squared distribution with
p-degrees of freedom and a non-central parameter v(n), namely,

λσ –Mn
D−→ χ

p,v(n),

where v(n) = λσ –‖ω(n)‖, ω(n) = H�
n S/

n ωn, Hn = S–/
n H(H�S–

n H)–/. In particular,
when the local alternatives ‖S/

n ωn‖ → , which means that the true parameters devi-
ate from the null hypothesis slightly, then λσ –Mn has an asymptotic central chi-squared
distribution with p degrees of freedom

λσ –Mn
D−→ χ

p .

For a given significance level α, we can determine the rejection region as follows:

W =
(
,χ

p ( – α/)
)∪ (

χ
p (α/), +∞)

, ()

where χ
p ( – α/), χ

p (α/) are the ( – α/)-quantile and α/-quantile of central chi-
squared distribution with p degrees of freedom, respectively.

Theorem  Denote

σ̂ 
n = n–

n∑

t=

ψ(yt – x�
t β̂n

)
,

λ̂n = (nh)–
n∑

t=

ψ
(
yt – x�

t β̂n + h
)

– ψ
(
yt – x�

t β̂n – h
)
,
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where h = hn > , and hn is a sequence chosen to satisfy

hn/d/
n → ∞, hn → , lim

n→∞ nh
n > . ()

Under the conditions of Theorem , we have

σ̂ 
n

P−→ σ , ()

λ̂
n

P−→ λ. ()

Under the assumption ‖S/
n ωn‖ → , replacing λ, σ  by their consistent estimates λ̂n and

σ̂ 
n , then

λ̂nσ̂
–
n Mn

D−→ χ
p .

3 Proof of theorems
It is convenient to consider the rescaled model

ynt = x�
ntβ(n) + et , t = , , . . . , n, ()

where xnt = S–/
n xt , β(n) = S/

n (β – b), ynt = yt – x�
t b. It is easily to check that

n∑

t=

∥∥xntx�
nt
∥∥ = p. ()

Assume that q < p, there exists a p × (p – q) matrix K with the rank (p – q) such that
H�K =  and K�ωn = , then, for some γ ∈R

p–q, H and H,n can be written as

H : β – b = Kγ , H,n : β – b = Kγ + ωn. ()

Denote Hn = S–/
n H(H�S–

n H)–/, Kn = S/
n K(K�SnK)–/, then

H�
n Hn = Iq, K�

n Kn = Ip–q, H�
n Kn = , HnH�

n + KnK�
n = Ip. ()

Let γ (n) = (K�SnK)/γ . Under the null hypothesis, model () can be rewritten as

ynt = x�
ntKnγ (n) + et , t = , , . . . , n.

Set ω(n) = H�
n S/

n ωn, γ (n) = γ (n) + K�
n S/

n ωn, under the local alternatives (),

β(n) = Knγ (n) + Hnω(n). ()

Define β̂(n) = S/
n (β̂ – b), and γ̂ (n) satisfies

min
ς∈Rp–q

n∑

t=

ρ
(
ynt – x�

ntKnζ
)

=
n∑

t=

ρ
(
ynt – x�

ntKnγ̂ (n)
)
.
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Obviously, β̂(n), γ̂ (n) are the M-estimates of β(n) and γ (n), respectively. Thus

β̃ = b + S–/
n Knγ̂ (n).

Next, we will state some lemmas that are needed in order to prove the main results of
this paper.

Lemma  (Hu []) If {Xn, n ≥ } is a NSD random sequence, we have the following prop-
erties.

(a) For any x, x, . . . , xn,

P(X ≤ x, X ≤ x, . . . , Xn ≤ xn) ≤
n∏

t=

P(Xt ≤ xt).

(b) If f, f, . . . , fn are non-decreasing functions, then {fn(Xn), n ≥ } is still a NSD random
sequence.

(c) The sequence {–X, –X, . . . , –Xn} is also NSD.

Lemma  ((Rosenthal inequality) (Shen et al. [])) Let {Xn, n ≥ } be a NSD random se-
quence with EXt =  and E|Xn|p < ∞ for some p ≥ , then, for all n ≥  and p ≥ ,

E

(
max
≤j≤n

∣∣∣∣∣

j∑

t=

Xt

∣∣∣∣∣

p)
≤ C

{ n∑

t=

E|Xt|p +

( n∑

t=

EX
t

)p/}
.

Lemma  (Anderson et al. []) Let D be an open convex subset of Rn and {fn} are convex
functions on D, for any x ∈ D,

fn(x) P−→ f (x).

If f is a real function on D, then f is also convex, and for all compact subset D ⊂ D,

sup
x∈D

∣∣fn(x) – f (x)
∣∣ P−→ . ()

Moreover, if f is a differentiable function on D, g(x) and gn(x) represent the gradient and
sub-gradient of f , respectively, then () implies that for all D

sup
x∈D

∣∣gn(x) – g(x)
∣∣ P−→ .

Lemma  Assume that {Xn, n ≥ } is a sequence of identically distributed NSD random
sequence with finite variance, and an array of real numbers {anj,  ≤ j ≤ n} is satisfied∑n

j= a
nj = O(), max≤j≤n |anj| → . Then, for any real rj, j = , . . . , n,

∣∣∣∣∣E exp

(
i

n∑

j=

rjZnj

)
–

n∏

j=

E exp(irjZnj)

∣∣∣∣∣≤



n∑

j 
=l,j,l=

∣∣rjrl Cov(Znj, Znl)
∣∣,

where Znj =
∑

l∈ϒj
anlXl , {ϒj} are disjoint subsets of {, , . . . , n}, i refers to imaginary unit.
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Proof For a pair of NSD random variables X, Y , by the property (a) in Lemma , we have

H(x, y) = P(X ≤ x, Y ≤ y) – P(X ≤ x)P(Y ≤ y) ≤ . ()

Denote by F(x, y) the joint distribution functions of (X, Y ), and FX(x), FY (y) the marginal
distribution function of X, Y , one gets

Cov(X, Y ) = E(XY ) – E(X)E(Y ) =
∫∫ [

F(x, y) – FX(x)FY (y)
]

dx dy

=
∫∫

H(x, y) dx dy. ()

Form (), we obtain

Cov
(
f (X), g(Y )

)
=
∫∫

f ′(X)g ′(Y )H(x, y) dx dy,

where f , g are complex valued functions on R with f ′, g ′ < ∞. Combining () and ()
yields

∣∣Cov
(
f (X), g(Y )

)∣∣≤
∫∫ ∣∣f ′(X)

∣∣∣∣g ′(Y )
∣∣∣∣H(x, y)

∣∣dx dy ≤ ∥∥f ′∥∥∞
∥∥g ′∥∥∞

∣∣Cov(X, Y )
∣∣. ()

Taking f (X) = exp(irX), g(Y ) = exp(iuY ), it is easily seen that

∥∥f ′(X)
∥∥∞ ≤  < ∞,

∥∥g ′(Y )
∥∥∞ ≤  < ∞,

thus for any real numbers r, u

∣∣E exp(irX + iuY ) – E exp(irX)E exp(iuY )
∣∣≤ ∣∣ru Cov(X, Y )

∣∣. ()

Next, we proceed the proof by induction on n. Lemma  for n =  is trivial and for n =  is
true by (). Assume that the result is true for all n ≤ M (n ≥ ). For n = M + , there exist
some ε = , δ = , k ∈ {, . . . , M} such that

⎧
⎨

⎩
εrj ≥ ,  ≤ j ≤ k,

δrj ≥ ,  + k ≤ j ≤ M + .

Denote X =
∑k

j= εrjZnj, Y =
∑M+

j=k+ δrjZnj, then

n∑

j=

rjZnj = εX + δY .

Note that X, Y are non-decreasing functions, we have by the induction hypothesis that
∣∣∣∣∣E exp

(
i

n∑

j=

rjZnj

)
–

n∏

j=

E exp(irjZnj)

∣∣∣∣∣

≤ ∣∣E(TT) – E(T)E(T)
∣∣ +

∣∣∣∣∣E(T)E(T) – E(T)
M+∏

j=+k

E(R)

∣∣∣∣∣
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+

∣∣∣∣∣E(T)
M+∏

j=+k

E(R) –
k∏

j=

E(R)

∣∣∣∣∣

≤ |εδ|∣∣Cov(X, Y )
∣∣ +

∣∣∣∣∣E(T) –
M+∏

j=+k

E(R)

∣∣∣∣∣ +

∣∣∣∣∣E(T) –
M+∏

j=+k

E(R)

∣∣∣∣∣

≤
∣∣∣∣∣Cov

( k∑

j=

εrjZnj,
M+∑

j=k+

δrlZnl

)∣∣∣∣∣ +



M+∑

j 
=l,j,l=k+

∣∣rjrl Cov(Znj, Znl)
∣∣

+



M+∑

j 
=l,j,l=

∣∣rjrl Cov(Znj, Znl)
∣∣

≤ 


n∑

j 
=l,j,l=

∣∣rjrl Cov(Znj, Znl)
∣∣,

where T = exp(iεX), T = exp(iδY ), R = exp(irjZnj). Thus, this completes the proof of
Lemma . �

Lemma  (Billingsley []) If Xnj
L−→ Xj, Xj

L−→ X for each j, and uniform measure � is sat-
isfied that for all ε > ,

lim
j→∞ lim

n→∞ sup
{
�(Xnj, Yn) ≥ ε

}
= ,

then

Yn
L−→ X.

Lemma  Suppose that {Xn, n ≥ } and {anj,  ≤ j ≤ n} satisfy the assumptions of Lemma .
Further assume that {Xn, n ≥ } is an uniformly integral family on L-norm, then

σ –
n

n∑

j=

anjXj
D−→ N(, ),

where σ 
n = var(

∑n
j= anjXj).

Proof Without loss of generality, we suppose that anj =  for all j > n. By (), we have
Cov(X, Y ) ≤  because of the negativity of H(x, y). Then, for  ≤ m ≤ n – ,

n∑

l,j=,|l–j|≥m

∣∣anlaaj Cov(Xl, Xj)
∣∣ ≤

n–u∑

j=

n∑

l=j+u

(
a

nj + a
nl
)∣∣Cov(Xl, Xj)

∣∣

≤
n–m∑

j=

a
nj

n∑

l=j+m

∣∣Cov(Xl, Xj)
∣∣ +

n∑

l=j+m

a
nj

l–m∑

j=

∣∣Cov(Xl, Xj)
∣∣

≤
n∑

j=

a
nj

n∑

|l–j|≥m

∣∣Cov(Xl, Xj)
∣∣

≤ sup
j

∣∣∣∣∣

n∑

l=,|l–j|≥m

Cov(Xl, Xj)

∣∣∣∣∣

( n∑

l=

a
nl

)
.



Yu et al. Journal of Inequalities and Applications  (2017) 2017:235 Page 9 of 21

Taking ψ(x) = x in assumption (A), we get, for all l ≥  and sufficiently large j,

∞∑

j:|l–j|≥m

∣∣Cov(Xl, Xj)
∣∣→ .

Therefore, for a fixed small ε, there exists a positive integer m = mε such that

∑

l,j=,|l–j|≥m

∣∣anlanj Cov(Xl, Xj)
∣∣≤ ε. ()

Denote N = [/ε], where [x] denotes the integer part of x, and Ynj =
∑m(j+)

k=mj+ ankXk , j =
, , , . . . , n,

ϒj =

{
j : Nl ≤ j ≤ Nl + N,

∣∣Cov(Ynj, Ynj+)
∣∣≤ 

N

Nl+N∑

j=Nl

Var(Ynl)

}
.

We define s = , sj+ = min{s : s > sj, s ∈ ϒj}, and put

Znj =
sj+∑

l=sj+

Ynl, j = , , , . . . , n,

�j =
{

m(sj + ) + , . . . , m(sj+ + )
}

.

Note that

Znj =
∑

l∈�j

anlXl, j = , , , . . . , n,

it is easy to see that #�j ≤ Nm, where # stands for the cardinality of a set. Next, we will
proof that {Znj,  ≤ j ≤ n} satisfies the Lindeberg condition.

Let B
n =

∑n
j= EZ

nj, by Lemma , it yields

B
n =

n∑

j=

E
(∑

l∈�j

anlXl

)

≤
n∑

j=

a
nlE
(∑

l∈�j

Xl

)

≤
n∑

j=

∑

l∈�j

a
nlE(Xl)

≤
n∑

j=

E(anlXj) = σ 
n < ∞.
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Clearly, {Z
nj} is uniform integrable since {X

j , j ≥ } is uniform integrable. Hence, for any
positive ε, {Znj,  ≤ j ≤ n} is verified to satisfy the Lindeberg condition by


B

n

n∑

j=

EZ
njI
{|Znj| ≥ εBn

}≤
n∑

j=

(∑

l∈�j

a
nl

)
max
l∈�j

EX
l I
{∑

l∈�j

|Xl| ≥ ε/ max
l∈�j

|anl|
}

≤
( n∑

j=

a
nl

)
max
≤j≤n

EX
l I
{∑

l∈�j

X
l ≥ ε/

(
max
l∈�l

|anl|
)
}

≤
( n∑

j=

a
nl

)
max
≤j≤n

E
∑

l∈�j

X
l I
{∑

l∈�j

X
l ≥ ε/

(
max
l∈�j

|anl|
)
}

.

Now taking an independence random sequence {Z∗
nj, j = , , . . . , n} such that have same

marginal distribution with Znj for each j. Let F(Zn, Zn, . . . , Znn) and G(Z∗
n, Z∗

n, . . . , Z∗
nn)

be the eigenfunctions of
∑n

j= Znj and
∑n

j= Z∗
nj, respectively. Choosing r = max{rl, rj}, we

have by Lemma  and ()

|F – G| =

∣∣∣∣∣E exp

(
i

n∑

j=

rjZnj

)
– E exp

(
i

n∑

j=

rjZ∗
nj

)∣∣∣∣∣

=

∣∣∣∣∣E exp

(
i

n∑

j=

rjZnj

)
–

n∏

j=

E exp(irjZnj)

∣∣∣∣∣

≤ 


n∑

j 
=l,j,l=

∣∣rjrl Cov(Znj, Znl)
∣∣

≤ r

( n∑

≤l<j≤n,|l–j|=

∣∣Cov(Znj, Znl)
∣∣ +

n∑

≤l<j≤n,|l–j|>

∣∣Cov(Znj, Znl)
∣∣
)

≤ r

( n∑

j=

∣∣Cov(Ynsl , Ynsl+ )
∣∣ +

n∑

≤l<j≤n,|l–j|>m

|anlanj|
∣∣Cov(Xnj, Xnl)

∣∣
)

≤ r

(
C
N

n∑

j=

Var(Ynj) + ε

)
≤ ε

(
r + Cσ 

n
)
.

By Levy’s theorem, Z∗
nj obtains the asymptotic normality, applying Lemma , then the iden-

tically distribution property of {Xj} implies that

B–
n

n∑

j=

Znj = σ –
n

n∑

j=

anjXj
D−→ N(, ),

which completes the proof of Lemma . �

Lemma  In the model (), assume that {et ,  ≤ t ≤ n} is a sequence of NSD identically
distributed random variables, (A)-(A) are satisfied, for any positive constant δ and suf-
ficiently large n, then

sup
|τ |≤δ

∣∣∣∣∣

n∑

t=

{
ρ
(
et – x�

ntτ
)

– ρ(et) + ψ(et)x�
ntτ

�} –


λτ�τ

∣∣∣∣∣
P−→ ,
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sup
|τ |≤δ

∣∣∣∣∣

n∑

t=

{
ψ
(
et – x�

ntτ
)

– ψ(et)
}

x�
nt + λτ

∣∣∣∣∣
P−→ ,

where τ is a p-vector.

Proof Denote

fn(τ ) =
n∑

t=

{
ρ
(
et – x�

ntτ
)

– ρ(et) + ψ(et)x�
ntτ

}

=
n∑

t=

∫ –x�
ntτ



{
ψ(et + u) – ψ(et)

}
du.

For fixed τ , it follows from (A) that

max
≤t≤n

∣∣x�
ntτ

∣∣→ O
(
n–/). ()

From (A) and (), there exist a sequence of positive numbers εn →  and θnt ∈ (–, )
such that, for sufficiently large n,

Efn(τ ) =
n∑

t=

∫ –x�
ntτ


E
(
ψ(et + u) – ψ(et)

)
du

=
n∑

t=

∫ –x�
ntτ



{
λu + o

(|u|)}du

=


λ

n∑

t=

(
x�

ntτ
)( + εnθnt) → 


λτ�τ .

In view of the monotonicity of ψ(et +u)–ψ(et), the summands of fn(τ ) is also monotonous
with respect to et from the property (b) in Lemma . We divide the summands of fn(τ )
into positive and negative two parts, by the property (c) in Lemma , they are still NSD.
Therefore, applying Schwarz’s inequality and (), we obtain

var
[
fn(τ )

]
= E

{ n∑

t=

[∫ –x�
ntτ



(
ψ(et + u) – ψ(et)

)
du
]+

–
n∑

t=

[∫ –x�
ntτ



(
ψ(et) + u

)
– ψ(et)

]–

du

}

≤ E

{ n∑

t=

[∫ –x�
ntτ



(
ψ(et + u) – ψ(et)

)
du
]+
}

+ E

{ n∑

t=

[∫ –xT
ntτ



(
ψ(et + u) – ψ(et)

)
du
]–
}

≤
n∑

t=

E
[∫ –x�

ntτ



(
ψ(et + u) – ψ(et)

)
du
]
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≤
n∑

t=

|x�
nt|
∣∣∣∣
∫ –x�

ntτ


E
[
ψ(et + u) – ψ(et)

] du
∣∣∣∣

= o()
n∑

t=

(
x�

nt
) → .

Hence for sufficiently large n, we have

fn(τ ) P−→ 

λτ�τ . ()

Lemma  is proved by () and Lemma . �

Lemma  Under conditions of Lemma  and the local alternatives ()-(), then we see that,
for any positive constant δ and sufficiently large n,

sup
|ξ |≤δ

∣∣∣∣∣

n∑

t=

{
ρ
(
ynt – x�

ntη
)

– ρ(et) + ψ(et)x�
ntξ 

}
–



λ‖ξ ‖

∣∣∣∣∣
P−→ , ()

sup
|ξ |≤δ

∣∣∣∣∣

n∑

t=

[
ψ
(
ynt – x�

ntη
)

– ψ(et)
]
x�

nt + λξ 

∣∣∣∣∣
P−→ , ()

sup
|ξ|≤δ

∣∣∣∣∣

n∑

t=

{
ρ
(
ynt – x�

ntKnζ
)

– ρ(et)
}

+
n∑

t=

ψ(et)x�
nt
(
Knζ – β(n)

)

–


λ‖ξ ‖ +

∥∥ω(n)
∥∥

∣∣∣∣∣
P−→ , ()

sup
|ξ|≤δ

∣∣∣∣∣

n∑

t=

[
ψ
(
ynt – x�

ntKnζ
)

– ψ(et)
]
xnt + λ

(
Knζ – β(n)

)
∣∣∣∣∣

P−→ , ()

where ξ  = η – β(n), ξ  = ζ – τ (n).

Proof Take the proofs of () and () as examples, the rest, equations () and (), are
the same. Note that () can be written as

sup
|ξ|≤δ

∣∣∣∣∣

n∑

t=

{
ρ
(
et – x�

nt
(
Knζ – Hnω(n)

))
– ρ(et)

}
+

n∑

t=

ψ(et)x�
nt
(
Knζ – Hnω(n)

)

–


λ‖ξ ‖ +

∥∥ω(n)
∥∥

∣∣∣∣∣
P−→ .

On the other hand, ‖S/
n ωn‖ = O() and ‖γ ‖ ≤ δ, hence there exists a constant δ such

that

∣∣Knζ – Hnω(n)
∣∣≤ δ. ()

Thus () and () follow naturally by () and Lemma . �
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Lemma  Under the conditions of Theorem , as n → ∞, we have

β̂(n) – β(n) = λ–
n∑

t=

xntψ(et) + oP(), ()

γ̂ (n) – γ (n) = λ–
n∑

t=

K�
n xntψ(et) + oP(). ()

Proof The estimate of () can be defined essentially as the solution of the following equa-
tion:

∥∥∥∥∥S–/
n

n∑

t=

ψ
(
yt – x�

t β̂
)
xt

∥∥∥∥∥ = oP(). ()

Denote β̂(n) = S/
n β̂n, () can be rewritten to give

∥∥∥∥∥

n∑

t=

ψ
(
et – x�

ntβ̂(n)
)
xnt

∥∥∥∥∥ = oP(). ()

By a routine argument, we shall prove that

∣∣β̂(n)
∣∣ = Op(). ()

Let U be a denumerable dense subset in the unit sphere of Rp such that

U =
{
β ∈R

p : ‖β‖ = 
}

.

Write

D(τ , L) =
n∑

t=

ψ
(
et – LxT

ntτ
)
xT

ntτ ,

where L ≥ , τ ∈R
p.

Obviously, for a given τ , D(·, L) is non-decreasing on L since ψ is non-decreasing. For
any ε > , let

L =
√

pσ /(λ
√

ε).

Thus by (), there exists a number n, as n ≥ n,

Pr

{∣∣∣∣D
(

β̂(n)
‖β̂(n)‖ ,

∥∥β̂(n)
∥∥
)∣∣∣∣≥ Lλ

}
< ε.

Note that D(τ , ·) is a non-decreasing function on τ for given L, then

Pr
{∥∥β̂(n)

∥∥≥ L
}

< Pr
{

sup
τ∈U

D(τ , L) ≤ –Lλ
}

+ ε.
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Based on Lemma  and max≤t≤n |x�
ntτ | = O(n–/), one can see that

sup
τ∈U

∣∣∣∣∣

n∑

t=

[
ψ
(
et – Lx�

ntτ
)

– ψ(et)
]
x�

ntτ + Lλ

∣∣∣∣∣→ . ()

On the other hand, by Schwarz’s inequality, we have

sup
τ∈U

∣∣∣∣∣

n∑

t=

ψ(et)x�
ntτ

∣∣∣∣∣≤
∥∥∥∥∥

n∑

t=

ψ(et)xnt

∥∥∥∥∥. ()

Combining () and (), there exists n (n ≤ n ≤ n) such that

Pr

{
sup
τ∈U

D(τ , L) < –Lλ +

∥∥∥∥∥

n∑

t=

ψ(et)xnt

∥∥∥∥∥

}
>  – ε. ()

Applying Chebyshev’s inequality, the Cr inequality and Lemma , we have

Pr

{∥∥∥∥∥

n∑

t=

ψ(et)xnt

∥∥∥∥∥≥ Lλ

}
≤
(


Lλ

)

E

∥∥∥∥∥

n∑

t=

ψ(et)xnt

∥∥∥∥∥



≤
(


Lλ

)

E
n∑

t=

∥∥ψ(et)xnt
∥∥

≤
(


Lλ

)

E
n∑

t=

σ ‖xnt‖ ≤ ε. ()

From () and (), it follows that

Pr
{

sup
τ∈U

D(τ , L) < –Lλ
}

>  – ε.

Likewise, when n ≥ n, we obtain

Pr
{∥∥β̂(n)

∥∥≥ L
}

< ε +  – ( – ε) = ε. ()

Thus the result () follows from () and the arbitrariness of ε.
By Lemma  and max≤t≤n |x�

ntτ | = O(n–/), it follows that

I
(∥∥β̂(n)

∥∥≥ L
)
∣∣∣∣∣

n∑

t=

[
ψ
(
et – x�

ntβ̂(n)
)

– ψ(et)
]
xnt + λβ̂(n)

∣∣∣∣∣
P−→ ,

which implies that

β̂(n) = λ–
n∑

t=

xntψ(et) + op().

Consequently, () is proved.
As defined in (), β̂(n) can similarly be written as β̂(n) = Knγ̂ (n) + Hnω(n), replacing

β(n), β̂(n) by γ (n) and γ̂ (n), respectively, () is proved by K�
n Kn = Ip–q. �
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Proof of Theorem  According to () and Lemma , one gets

n∑

t=

[
ρ
(
ynt – xT

ntβ̂(n)
)

– ρ(et)
]

+
n∑

t=

ψ(et)xnt
(
β̂ – β(n)

)
–

λ


∥∥β̂ – β(n)

∥∥ P−→ ,

n∑

t=

[
ρ
(
ynt – x�

ntβ̂(n)
)

– ρ(et)
]

+


λ

∥∥∥∥∥

n∑

t=

ψ(et)xnt

∥∥∥∥∥


P−→ .

()

Similarly,

n∑

t=

[
ρ
(
ynt – x�

ntKnγ̂ (n)
)

– ρ(et)
]

+


λ

∥∥∥∥∥

n∑

t=

ψ(et)K�
n xnt

∥∥∥∥∥



–
n∑

t=

ψ(et)x�
ntHnω(n) –

λ


∥∥ω(n)

∥∥ P−→ . ()

From (), () and (), one can see that

λσ 
n Mn =

∥∥∥∥∥

n∑

t=

H�
n xntψ(et)

∥∥∥∥∥



+ λ∥∥ω(n)
∥∥ + λω�(n)

n∑

t=

H�
n xntψ(et) + oP()

=

∥∥∥∥∥

n∑

t=

H�
n xntψ(et) + λω(n)

∥∥∥∥∥



+ oP(). ()

Since Eψ(et) = , Eψ(et) = σ  < ∞, max≤t≤n ‖xntτ‖ = O(n–/), we see by (A) that σ 
n

is bounded by

∥∥∥∥∥var

( n∑

t=

xntψ(et)

)∥∥∥∥∥ =

∥∥∥∥∥

n∑

t=

(xnt)Eψ(et)

∥∥∥∥∥ + 

∥∥∥∥∥

n–∑

t=

n∑

j=t+

xntx�
njE
(
ψ(et)ψ(ej)

)
∥∥∥∥∥

= pσ  + 
∥∥S–

n
∥∥∥∥xtx�

j
∥∥

n–∑

t=

n∑

j=t+

∣∣E
(
ψ(et)ψ(ej)

)∣∣

= pσ  + C
∥∥xtx�

j
∥∥

= pσ  + pC = O().

In the view of H�
n Hn = Iq and Lemma ,

σ –
n∑

t=

H�
n xntψ(et)

D−→ N(, Ip). ()

Thus Theorem  follows immediately from () and (). �

Proof of Theorem  Consider the model (), without loss of generality, assume that the
true parameter β(n) is equal to . For any δ > , write

Vn = E
∣∣ψ
(
e + δd/

n
)

– ψ
(
e – δd/

n
)∣∣.
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By the monotonicity of ψ , Schwarz’s inequality and (A), we get, for sufficiently large n,

EI
(∥∥β̂(n)

∥∥≤ δ
)
∣∣∣∣∣σ̂


n – n–

n∑

t=

ψ(et)

∣∣∣∣∣

≤ Vn + E
∣∣ψ(e)

[
ψ
(
e + δd/

n
)

– ψ
(
e – δd/

n
)]∣∣

≤ Vn + δV /
n → .

By Lemma ,

σ̂ 
n = n–

n∑

t=

{
ψ(et + h) – ψ(et – h)

} P−→ Eψ(e) = σ .

Consequently, () is proved.
As mentioned in Chen et al. [], in order to prove (), it is desired to prove that

(nh)–
n∑

t=

{
ψ(et + h) – ψ(et – h)

} P−→ λ.

Actually, by the monotonicity of ψ(et + h) – ψ(et – h), and the assumption (), applying
Lemma  and Lemma , we get

var

{
(nh)–

n∑

t=

[
ψ(et + h) – ψ(et – h)

]
}

≤ (
nh)–E

[ n∑

t=

(
ψ(et + h) – ψ(et – h)

)
]

≤ (
nh)–E

[
ψ(et + h) – ψ(et – h)

] → .

On the other hand, since limn→∞[G(h) – G(–h)]/(h) = λ,

(nh)–
n∑

t=

[
ψ(et + h) – ψ(et – h)

]
=
[
G(h) – G(–h)

]
/(h) + oP() → λ.

This completes the proof of Theorem . �

4 Simulation
We evaluate the parameter estimates and the M-test for the powers by Monte Carlo tech-
niques. Under the null hypothesis, the estimators of regression coefficients and redun-
dancy parameters are derived by some M-methods such as LS method, LAD method and
Huber method. Under the local alternative hypothesis, the powers of the M-test is ob-
tained with the rejection region given by Theorem . In this section, the case of the NSD
sequence is raised as follows:

Xt = anYt + bnZt , t = , . . . , n,
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where an and bn are positive sequences, Yt and Zt are negatively dependent (correspond
to ρ < ) random variables with the distribution

(Y , Z) ∼ N
(
μ,μ,σ 

 ,σ 
 ,ρ

)
.

Now, we will prove that (X, X, . . . , Xn) is a NSD sequence. Obviously, one may easily to
check that

cov(Xt , Xj) < ,  ≤ t < j ≤ n.

As stated in Hu [], the superaddictivity of φ is equivalent to ∂φ/∂xt∂xj ≥ ,  ≤ t 
=
j ≤ n, if the function φ has continuous second partial derivatives. In which, φ(x, . . . , xn) =
exp (

∑n
t= Xt) can be chosen as a superadditive function. Note that the {X∗

t ,  ≤ t ≤ n}
have same marginal distribution with {Xt , t = , . . . , n} for each t, by Jensen’s inequality, the
sequence (X, X, . . . , Xn) is proved to be NSD since

Eφ(X∗
 , X∗

 , . . . , X∗
n)

Eφ(X, X, . . . , Xn)
= E exp

{( n∑

t=

X∗
t

)

–

( n∑

t=

Xt

)}

≥ exp E

{( n∑

t=

X∗
t

)

–

( n∑

t=

Xt

)}
≥ .

Throughout the simulations, the Huber function is taken to be ρ(x) = (xI(|x| ≤ k))/ +
(k|x| – k/)I(|x| > k), k = .σ. The explanatory variables are generated from two ran-
dom models and all of the simulations are run for , replicates and calculate the aver-
ages of the derived estimates to avoid the randomness impact.

The linear model with NSD errors is given by yt = β +βxt + et , et = Yt + Zt , t = , , . . . , n,
where the NSD errors {et , t = , , . . . , n} are assumed to follow a multivariate mixture of
normal distribution with joint distribution (Y , Z) ∼ N(μ,μ,σ 

 ,σ 
 ,ρ), ρ < . The null

hypothesis is H : (β,β)� = (, )�. The sample size is taken to be n = , n = , n =
,. The joint distribution is taken to be (Y , Z) ∼ N(, , , , –.). The explanatory
variables xt are generated by the following two random models: I. xt = ut ,  ≤ t ≤ n; II. xt =
sin(t) + .ut ,  ≤ t ≤ n, where u obeys a standard uniform distribution U(, ).

Firstly, we generate a NSD sequence by the Gibbs sampling technique. Figure  shows the
fitted distribution (full line) of NSD is close to the normal distribution, relatively speaking,
the NSD distribution tends to behave a truncated distribution feature.

Next, we evaluate the estimators of regression coefficients and redundancy parameters
under the null hypothesis, Table  illustrates that the M-methods are valid (the corre-
sponded M-estimates are close to true parameters β = , β = ) and the estimators of
redundancy parameters are effective (one may easily to check that σ  =  and λ =  when
the convex function is taken to LS function, for other estimates, although their values
are different based on different methods, the sign and significance remain the same, so
the general conclusions remain the same). Additionally, with the increasing sample size,
the estimations are more and more accurate. In fact, the estimations behave well though
the sample size is not large (n = ). As excepted, the fitted residual densities are close
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Figure 1 Histograms and fitted distributions of M-estimates residuals with different explanatory
variables and M-methods (sample size is n = 1,000).

Table 1 The evaluations of regression coefficients and redundancy parameters

Estimates n LS LAD Huber

I II I II I II

β̂0 100 1.031 0.985 1.016 0.978 1.006 1.007
500 0.994 0.994 1.008 1.006 1.003 1.006
1000 1.002 0.999 1.000 1.006 1.002 1.003

β̂1 100 1.983 2.008 1.992 2.016 2.131 2.131
500 2.003 2.011 1.997 2.003 1.996 1.992
1000 1.997 1.997 1.999 1.998 1.996 1.994

σ̂ 2
n 100 12.764 12.671 0.984 0.987 9.095 9.100

500 12.965 12.941 0.997 0.997 9.193 9.206
1000 12.967 12.956 0.998 0.998 9.208 9.291

λ̂n 100 1.000 1.000 0.282 0.282 0.825 0.825
500 1.000 1.000 0.241 0.241 0.822 0.823
1000 1.000 1.000 0.233 0.234 0.822 0.821

to the assumed NSD errors in Figure , and all of them still show a truncated distribu-
tion feature. Figure  checks the residuals are NSD by using the empirical distribution to
approximate the distribution function, which supports the NSD errors assumption.

Finally, we study the empirical significant levels and the powers of M-test. Under the
local hypothesis, λ̂nσ̂


n Mn has an asymptotic central chi-squared distribution with two

degrees of freedom by Theorem  and Theorem , we may reject the null hypothesis if the
simulative value λ̂nσ̂


n Mn ∈ W in (). Table  presents the powers at significance levels

α = . and α = . for various choices of M-methods, explanatory variables and dif-
ferent sample sizes n = , n = , n = ,. The result represents that the empirical
significant levels are close to the nominal levels, consequently, the M-test is valid. Figure 
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Figure 2 Histograms and fitted distributions of M-estimates residuals with different explanatory
variables and M-methods (sample size is n = 1,000).

Table 2 The powers of the M-test with NSD errors, ‘∗’ is for the nominal significant levels

n Significance
levels

LS LAD Huber

I II I II I II

100 0.05∗ 0.063 0.068 0.082 0.079 0.062 0.062
0.01∗ 0.013 0.011 0.028 0.019 0.013 0.016

500 0.05∗ 0.059 0.057 0.064 0.052 0.054 0.059
0.01∗ 0.009 0.013 0.020 0.013 0.009 0.012

1000 0.05∗ 0.056 0.056 0.062 0.052 0.048 0.057
0.01∗ 0.012 0.015 0.013 0.011 0.010 0.013

illustrates that λ̂nσ̂

n Mn can approximate the central χ

 well by comparing the empirical
distributions of λ̂nσ̂


n Mn with χ

 , which implies that the M-test is valid under the local
alternatives.

5 Conclusions
The results presented here generalize conclusions in [–]. In the simulations it turns
out that the M-tests for the linear model with NSD errors are insensitive to different
choices of M-methods and explanatory variables, therefore it shows robustness, which
illustrates that the M-test is effective.
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Figure 3 A comparison fitted distribution functions of residuals and assumed NSD errors (sample size
is n = 1,000).

Figure 4 A comparison fitted distribution functions of 2λ̂nσ̂ 2
n Mn and the central chi-squared

distribution with two degrees (sample size is n = 1,000).
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