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Abstract
In a real uniformly convex and p-uniformly smooth Banach space, a modified
forward-backward splitting iterative algorithm is presented, where the computational
errors and the superposition of perturbed operators are considered. The iterative
sequence is proved to be convergent strongly to zero point of the sum of infinite
m-accretive mappings and infinite θi-inversely strongly accretive mappings, which is
also the unique solution of one kind variational inequalities. Some new proof
techniques can be found, especially, a new inequality is employed compared to some
of the recent work. Moreover, the applications of the newly obtained iterative
algorithm to integro-differential systems and convex minimization problems are
exemplified.

Keywords: p-uniformly smooth Banach space; θi-inversely strongly accretive
mapping; γi-strongly accretive mapping;μi-strictly pseudo-contractive mapping;
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1 Introduction and preliminaries
Let X be a real Banach space with norm ‖ · ‖ and X∗ be its dual space. ‘→’ denotes strong
convergence and 〈x, f 〉 is the value of f ∈ X∗ at x ∈ X.

The function ρX : [, +∞) → [, +∞) is called the modulus of smoothness of X if it is
defined as follows:

ρX(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ ≤ t

}
.

A Banach space X is said to be uniformly smooth if ρX (t)
t → , as t → . Let p >  be

a real number, a Banach space X is said to be p-uniformly smooth with constant Kp if
Kp >  such that ρX(t) ≤ Kptp for t > . It is well known that every p-uniformly smooth
Banach space is uniformly smooth. For p > , the generalized duality mapping Jp : X → X∗
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is defined by

Jpx :=
{

f ∈ X∗ : 〈x, f 〉 = ‖x‖p,‖f ‖ = ‖x‖p–}, x ∈ X.

In particular, J := J is called the normalized duality mapping.
For a mapping T : D(T) 
 X → X, we use F(T) and N(T) to denote its fixed point set

and zero point set, respectively; that is, F(T) := {x ∈ D(T) : Tx = x} and N(T) = {x ∈ D(T) :
Tx = }. The mapping T : D(T) 
 X → X is said to be

() non-expansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for ∀x, y ∈ D(T);

() contraction with coefficient k ∈ (, ) if

‖Tx – Ty‖ ≤ k‖x – y‖ for ∀x, y ∈ D(T);

() accretive [, ] if for all x, y ∈ D(T), 〈Tx – Ty, j(x – y)〉 ≥ , where j(x – y) ∈ J(x – y);
m-accretive if T is accretive and R(I + λT) = X for ∀λ > ;

() θ -inversely strongly accretive [] if for θ > , ∀x, y ∈ D(T), there exists
jp(x – y) ∈ Jp(x – y) such that

〈
Tx – Ty, jp(x – y)

〉≥ θ‖Tx – Ty‖p for ∀x, y ∈ X;

() γ -strongly accretive [, ] if for each x, y ∈ D(T), there exists j(x – y) ∈ J(x – y) such
that

〈
Tx – Ty, j(x – y)

〉≥ γ ‖x – y‖

for some γ ∈ (, );
() μ-strictly pseudo-contractive [] if for each x, y ∈ X , there exists j(x – y) ∈ J(x – y)

such that

〈
Tx – Ty, j(x – y)

〉≤ ‖x – y‖ – μ
∥∥x – y – (Tx – Ty)

∥∥

for some μ ∈ (, ).
If T is accretive, then for each r > , the non-expansive single-valued mapping JT

r : R(I +
rT) → D(T) defined by JT

r := (I + rT)– is called the resolvent of T []. Moreover, N(T) =
F(JT

r ).
Let D be a nonempty closed convex subset of X and Q be a mapping of X onto D. Then

Q is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x) for all x ∈ X and t ≥ . A mapping
Q of X into X is said to be a retraction [] if Q = Q. If a mapping Q is a retraction, then
Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q. A subset D of X is said to be
a sunny non-expansive retract of X [] if there exists a sunny non-expansive retraction
of X onto D and it is called a non-expansive retract of X if there exists a non-expansive
retraction of X onto D.
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It is a hot topic in applied mathematics to find zero points of the sum of two accretive
mappings, namely, a solution of the following inclusion problem:

 ∈ (A + B)x. (.)

For example, a stationary solution to the initial value problem of the evolution equation

∂u
∂t

+ (A + B)u, u() = u (.)

can be recast as (.). A forward-backward splitting iterative method for (.) means each
iteration involves only A as the forward step and B as the backward step, not the sum A+B.
The classical forward-backward splitting algorithm is given in the following way:

xn+ = (I + rnB)–(I – rnA)xn, n ∈ N . (.)

Some of the related work can be seen in [–] and the references therein.
In , Wei et al. [] extended the related work of (.) from a Hilbert space to the

real smooth and uniformly convex Banach space and from two accretive mappings to two
finite families of accretive mappings:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ D,

yn = QD[( – αn)(xn + en)],

zn = ( – βn)xn + βn[ayn +
∑N

i= aiJ
Ai
rn,i (yn – rn,iBiyn)],

xn+ = γnηf (xn) + (I – γnT)zn, n ∈ N ∪ {},

(.)

where D is a nonempty, closed and convex sunny non-expansive retract of X, QD is the
sunny non-expansive retraction of E onto D, {en} is the error, Ai and Bi are m-accretive
mappings and θ -inversely strongly accretive mappings, respectively, where i = , , . . . , N .
T : X → X is a strongly positive linear bounded operator with coefficient γ and f : X → X
is a contraction.

∑N
m= am = ,  < am < . The iterative sequence {xn} is proved to converge

strongly to p ∈⋂N
i= N(Ai + Bi), which solves the variational inequality

〈
(T – ηf )p, J(p – z)

〉≤  (.)

for ∀z ∈⋂N
i= N(Ai + Bi) under some conditions.

The implicit midpoint rule is one of the powerful numerical methods for solving ordi-
nary differential equations, and it has been extensively studied by Alghamdi et al. They
presented the following implicit midpoint rule for approximating the fixed point of a non-
expansive mapping in a Hilbert space H in []:

x ∈ H , xn+ = ( – αn)xn + αnT
(

xn + xn+



)
, n ∈ N , (.)

where T is non-expansive from H to H . If F(T) �= ∅, then they proved that {xn} converges
weakly to p ∈ F(T) under some conditions.
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Combining the ideas of forward-backward method and midpoint method, Wei et al.
extended the study of two finite families of accretive mappings to two infinite families of
accretive mappings [] in a real q-uniformly smooth and uniformly convex Banach space:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ D,

yn = QD[( – αn)(xn + e′
n)],

zn = δnyn + βn
∑∞

i= aiJ
Ai
rn,i [

yn+zn
 – rn,iBi( yn+zn

 )] + ζne′′
n,

xn+ = γnηf (xn) + (I – γnT)zn + e′′′
n , n ∈ N ∪ {},

(.)

where {e′
n}, {e′′

n} and {e′′′
n } are three error sequences, Ai : D → X and Bi : D → X are

m-accretive mappings and θi-inversely strongly accretive mappings, respectively, where
i ∈ N . T : X → X is a strongly positive linear bounded operator with coefficient γ , f : X →
X is a contraction,

∑∞
n= an = ,  < an < , δn + βn + ζn ≡  for n ∈ N ∪ {}. The iterative

sequence {xn} is proved to converge strongly to p ∈ ⋂∞
i= N(Ai + Bi), which solves the

following variational inequality:

〈
(T – ηf )p, J(p – z)

〉≤ , z ∈
∞⋂
i=

N(Ai + Bi). (.)

In , Ceng et al. [] presented the following iterative algorithm to approximate zero
point of an m-accretive mapping:

⎧⎪⎪⎨
⎪⎪⎩

x ∈ X,

yn = αnxn + ( – αn)JA
rn xn,

xn+ = βnf (xn) + ( – βn)[JA
rn yn – λnμnF(JA

rn yn)], n ∈ N ∪ {},
(.)

where T : X → X is a γ -strongly accretive and μ-strictly pseudo-contractive mapping,
with γ + μ > , f : E → E is a contraction and A : X → X is m-accretive. Under some
assumptions, {xn} is proved to be convergent strongly to the unique element p ∈ N(A),
which solves the following variational inequality:

〈
p – f (p), J(p – u)

〉≤ , ∀u ∈ N(A). (.)

The mapping F in (.) is called a perturbed operator which only plays a role in the con-
struction of the iterative algorithm for selecting a particular zero of A, and it is not involved
in the variational inequality (.).

Inspired by the work mentioned above, in Section , we shall construct a new modified
forward-backward splitting midpoint iterative algorithm to approximate the zero points
of the sum of infinite m-accretive mappings and infinite θi-inversely strongly accretive
mappings. New proof techniques can be found, the superposition of perturbed operators
is considered and some restrictions on the parameters are mild compared to the existing
similar works. In Section , we shall discuss the applications of the newly obtained iterative
algorithms to integro-differential systems and the convex minimization problems.

We need the following preliminaries in our paper.
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Lemma . ([]) Let X be a real uniformly convex and p-uniformly smooth Banach space
with constant Kp for some p ∈ (, ]. Let D be a nonempty closed convex subset of X. Let
A : D → X be an m-accretive mapping and B : D → X be a θ -inversely strongly accre-
tive mapping. Then, given s > , there exists a continuous, strictly increasing and con-
vex function ϕp : R+ → R+ with ϕp() =  such that for all x, y ∈ D with ‖x‖ ≤ s and
‖y‖ ≤ s,

∥∥JA
r (I – rB)x – JA

r (I – rB)y
∥∥p

≤ ‖x – y‖p – r
(
pθ – Kprp–)‖Bx – By‖p

– ϕp
(∥∥(I – JA

r
)
(I – rB)x –

(
I – JA

r
)
(I – rB)y

∥∥).

In particular, if  < r ≤ ( pθ

Kp
)


p– , then JA

r (I – rB) is non-expansive.

Lemma . ([]) Let X be a real smooth Banach space and B : X → X be a μ-strictly
pseudo-contractive mapping and also be a γ -strongly accretive mapping with μ + γ > .
Then, for any fixed number δ ∈ (, ), I – δB is a contraction with coefficient  – δ( –

√
–γ

μ
).

Lemma . ([]) Let X be a real Banach space and D be a nonempty closed and convex
subset of X. Let f : D → D be a contraction. Then f has a unique fixed point.

Lemma . ([]) Let X be a real strictly convex Banach space, and let D be a nonempty
closed and convex subset of X. Let Tm : D → D be a non-expansive mapping for each
m ∈ N . Let {am} be a real number sequence in (,) such that

∑∞
m= am = . Suppose that⋂∞

m= F(Tm) �= ∅. Then the mapping
∑∞

m= amTm is non-expansive and F(
∑∞

m= amTm) =⋂∞
m= F(Tm).

Lemma . ([]) In a real Banach space X, for p > , the following inequality holds:

‖x + y‖p ≤ ‖x‖p + p
〈
y, jp(x + y)

〉
, ∀x, y ∈ X, jp(x + y) ∈ Jp(x + y).

Lemma . ([]) Let X be a real Banach space, and let D be a nonempty closed and convex
subset of X. Suppose A : D → X is a single-valued mapping and B : X → X is m-accretive.
Then

F
(
(I + rB)–(I – rA)

)
= N(A + B) for ∀r > .

Lemma . ([]) Let {an} be a real sequence that does not decrease at infinity, in the sense
that there exists a subsequence {ank } so that ank ≤ ank + for all k ∈ N ∪{}. For every n > n,
define an integer sequence {τ (n)} as

τ (n) = max{n ≤ k ≤ n : ak < ak+}.

Then τ (n) → ∞ as n → ∞ and for all n > n, max{aτ (n), an} ≤ aτ (n)+.
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Lemma . ([]) For p > , the following inequality holds:

ab ≤ 
p

ap +
p – 

p
b

p
p– ,

for any positive real numbers a and b.

Lemma . ([]) The Banach space X is uniformly smooth if and only if the duality map-
ping Jp is single-valued and norm-to-norm uniformly continuous on bounded subsets of X.

2 Strong convergence theorems
Theorem . Let X be a real uniformly convex and p-uniformly smooth Banach space
with constant Kp where p ∈ (, ] and D be a nonempty closed and convex sunny non-
expansive retract of X. Let QD be the sunny non-expansive retraction of X onto D. Let
f : X → X be a contraction with coefficient k ∈ (, ), Ai : D → X be m-accretive mappings,
Ci : D → X be θi-inversely strongly accretive mappings, Wi : X → X be μi-strictly pseudo-
contractive mappings and γi-strongly accretive mappings with μi +γi >  for i ∈ N . Suppose
{ω()

i } and {ω()
i } are real number sequences in (, ) for i ∈ N . Suppose  < rn,i ≤ ( pθi

Kp
)


p– for

i ∈ N and n ∈ N , κt ∈ (, ) for t ∈ (, ),
∑∞

i= ω
()
i ‖Wi‖ < +∞,

∑∞
i= ω

()
i =

∑∞
i= ω

()
i =  and⋂∞

i= N(Ai + Ci) �= ∅. If, for each t ∈ (, ), we define Zn
t : X → X by

Zn
t u = tf (u) + ( – t)

(
I – κt

∞∑
i=

ω
()
i Wi

)( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDu

)
,

then Zn
t has a fixed point un

t . Moreover, if κt
t → , then un

t converges strongly to the unique
solution q of the following variational inequality, as t → :

〈
q – f (q), J(q – u)

〉≤ , ∀u ∈
∞⋂
i=

N(Ai + Ci). (.)

Proof We split the proof into five steps.
Step . Zn

t : X → X is a contraction for t ∈ (, ), κt ∈ (, ) and n ∈ N .
In fact, for ∀x, y ∈ X, using Lemmas . and ., we have

∥∥Zn
t x – Zn

t y
∥∥

≤ t
∥∥f (x) – f (y)

∥∥ + ( – t) ×
∥∥∥∥∥

∞∑
i=

ω
()
i (I – κtWi)

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDx

)

–
∞∑
i=

ω
()
i (I – κtWi)

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDy

)∥∥∥∥∥

≤ tk‖x – y‖ + ( – t)
∞∑
i=

ω
()
i

[
 – κt

(
 –

√
 – γi

μi

)]
‖x – y‖

≤ [
 – ( – k)t

]‖x – y‖,

which implies that Zn
t is a contraction. By Lemma ., there exists un

t such that Zn
t un

t = un
t .

That is, un
t = tf (un

t ) + ( – t)(I – κt
∑∞

i= ω
()
i Wi)(

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
t ).



Wei et al. Journal of Inequalities and Applications  (2017) 2017:227 Page 7 of 22

Step . If limt→
κt
t = , then {un

t } is bounded for n ∈ N ,  < t ≤ a, where a is a sufficiently
small positive number and un

t is the same as that in Step .
For ∀u ∈⋂∞

i= N(Ai + Ci), using Lemmas ., . and ., we know that

∥∥un
t – u

∥∥≤ tk
∥∥un

t – u
∥∥ + t

∥∥f (u) – u
∥∥ + ( – t)κt

∞∑
i=

ω
()
i ‖Wiu‖

+ ( – t)
∞∑
i=

ω
()
i

∥∥∥∥∥(I – κtWi)

[ ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

–
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDu

]∥∥∥∥∥

≤ tk
∥∥un

t – u
∥∥ + t

∥∥f (u) – u
∥∥ + ( – t)κt

∞∑
i=

ω
()
i ‖Wi‖‖u‖

+ ( – t)
∞∑
i=

ω
()
i

[
 – κt

(
 –

√
 – γi

μi

)]∥∥un
t – u

∥∥

≤ t
∥∥f (u) – u

∥∥ + ( – t + tk)
∥∥un

t – u
∥∥ + ( – t)κt

∞∑
i=

ω
()
i ‖Wi‖‖u‖.

Then

∥∥un
t – u

∥∥≤ ‖f (u) – u‖ + κt
t
∑∞

i= ω
()
i ‖Wi‖‖u‖

 – k
.

Since limt→
κt
t = , then there exists a sufficiently small positive number a such that  <

κt
t <  for  < t ≤ a. Thus {un

t } is bounded for n ∈ N and  < t ≤ a.
Step . If limt→

κt
t = , then un

t –
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)QDun
t → , as t → , for n ∈ N .

Noticing Step , we have
∥∥∥∥∥un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

∥∥∥∥∥

≤ t
∥∥f
(
un

t
)∥∥ + t

∞∑
i=

ω
()
i
∥∥JAi

rn,i
(I – rn,iCi)QDun

t
∥∥

+ ( – t)κt

∞∑
i=

ω
()
i

∥∥∥∥∥Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)∥∥∥∥∥
→ ,

as t → .
Step . If the variational inequality (.) has solutions, the solution must be unique.
Suppose u ∈⋂∞

i= N(Ai + Ci) and v ∈⋂∞
i= N(Ai + Ci) are two solutions of (.), then

〈
u – f (u), J(u – v)

〉≤ , (.)

and

〈
v – f (v), J(v – u)

〉≤ . (.)
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Adding up (.) and (.), we get

〈
u – f (u) – v + f (v), J(u – v)

〉≤ . (.)

Since

〈
u – f (u) – v + f (v), J(u – v)

〉
= ‖u – v‖ –

〈
f (u) – f (v), J(u – v)

〉
≥ ‖u – v‖ – k‖u – v‖ = ( – k)‖u – v‖,

then (.) implies that u = v.
Step . If limt→

κt
t = , then un

t → q ∈ ⋂∞
i= N(Ai + Ci), as t → , which solves the

variational inequality (.).
Assume tm → . Set un

m := un
tm and define μ : X → R by

μ(u) = LIM
∥∥un

m – u
∥∥, u ∈ X,

where LIM is the Banach limit on l∞. Let

K =
{

x ∈ X : μ(x) = min
x∈X

LIM
∥∥un

m – x
∥∥
}

.

It is easily seen that K is a nonempty closed convex bounded subset of X. Since un
m –∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)QDun
m →  from Step , then for u ∈ K ,

μ

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDu

)
= LIM

∥∥∥∥∥un
m –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDu

∥∥∥∥∥


≤ LIM
∥∥un

m – u
∥∥ = μ(u),

it follows that
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)QD(K) ⊂ K ; that is, K is invariant under∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QD. Since a uniformly smooth Banach space has the fixed point
property for non-expansive mappings,

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QD has a fixed point, say q,
in K . That is,

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDq = q ∈ D, which ensures from Lemmas . and
. that q ∈ ⋂∞

i= N(Ai + Ci). Since q is also a minimizer of μ over X, it follows that, for
t ∈ (, ),

 ≤ μ(q + tf (q) – tq) – μ(q)
t

= LIM
‖un

m – q – tf (q) + tq‖ – ‖un
m – q‖

t

= LIM
〈un

m – q – tf (q) + tq, J(un
m – q – tf (q) + tq)〉 – ‖un

m – q‖

t

= LIM
(〈

un
m – q, J

(
un

m – q – tf (q) + tq
)〉

+ t
〈
q – f (q), J

(
un

m – q – tf (q) + tq
)〉

–
∥∥un

m – q
∥∥)/t.
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Since X is uniformly smooth, then by letting t → , we find the two limits above can be
interchanged and obtain

LIM
〈
f (q) – q, J

(
un

m – q
)〉≤ . (.)

Since un
m – q = tm(f (un

m) – q) + ( – tm)[(I – κtm

∑∞
i= ω

()
i Wi)(

∑∞
i= ω

()
i JAi

rn,i (I –
rn,iCi)QDun

m) – q], then

∥∥un
m – q

∥∥ =
〈
un

m – q, J
(
un

m – q
)〉

≤ tm
〈
f
(
un

m
)

– f (q), J
(
un

m – q
)〉

+ tm
〈
f (q) – q, J

(
un

m – q
)〉

+ ( – tm)

∥∥∥∥∥
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m – q

∥∥∥∥∥
∥∥un

m – q
∥∥

+ ( – tm)κtm

∥∥∥∥∥
∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)∥∥∥∥∥
∥∥un

m – q
∥∥

≤ ( – tm + tmk)
∥∥un

m – q
∥∥ + tm

〈
f (q) – q, J

(
un

m – q
)〉

+ ( – tm)κtm

∥∥∥∥∥
∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)∥∥∥∥∥
∥∥un

m – q
∥∥.

Therefore,

∥∥un
m – q

∥∥ ≤ 
 – k

[〈
f (q) – q, J

(
un

m – q
)〉

+
κtm

tm

∥∥∥∥∥
∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)∥∥∥∥∥
∥∥un

m – q
∥∥
]

. (.)

Since κtm
tm

→ , then from (.), (.) and the result of Step , we have LIM‖un
m – q‖ ≤

, which implies that LIM‖un
m – q‖ = , and then there exists a subsequence which is

still denoted by {un
m} such that un

m → q.
Next, we shall show that q solves the variational inequality (.).
Note that un

m = tmf (un
m) + ( – tm)(I –κtm

∑∞
i= ω

()
i Wi)(

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
m), then

for ∀v ∈⋂∞
i= N(Ai + Ci),

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m – f
(
un

m
)
, J
(
un

m – v
)〉

=


tm

〈(
I – κtm

∞∑
i=

ω
()
i Wi

)( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)
, J
(
un

m – v
)〉

–


tm

〈
un

m – tmκtm

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)
, J
(
un

m – v
)〉
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=


tm

〈 ∞∑
i=

ω
()
i (I – κtm Wi)

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QCun

m

)

–
∞∑
i=

ω
()
i (I – κtm Wi)

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDv

)
, J
(
un

m – v
)〉

–


tm

∥∥un
m – v

∥∥ –
κtm

tm

〈 ∞∑
i=

ω
()
i Wiv, J

(
un

m – v
)〉

+ κtm

〈 ∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)
, J
(
un

m – v
)〉

≤ –


tm

{
 –

∞∑
i=

ω
()
i

[
 – κtm

(
 –

√
 – γi

μi

)]}∥∥un
m – v

∥∥

+
κtm

tm

∞∑
i=

ω
()
i ‖Wi‖‖v‖∥∥un

m – v
∥∥

+ κtm

∞∑
i=

ω
()
i

∥∥∥∥∥Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)∥∥∥∥∥
∥∥un

m – v
∥∥

≤ κtm

tm

∞∑
i=

ω
()
i ‖Wi‖‖v‖∥∥un

m – v
∥∥

+ κtm

∞∑
i=

ω
()
i

∥∥∥∥∥Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

m

)∥∥∥∥∥
∥∥un

m – v
∥∥

→ ,

as tm → . Since xn → q and J is uniformly continuous on each bounded subset of X,
then taking the limits on both sides of the above inequality, 〈q – f (q), J(q – v)〉 ≤ ,
which implies that q satisfies the variational inequality (.).

Next, to prove the net {un
m} converges strongly to q, as t → , suppose that there

is another subsequence {un
tk
} of {un

t } satisfying un
tk

→ v as tk → . Denote un
tk

by un
k .

Then the result of Step  implies that  = limtk→(un
k –

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
k ) =

v –
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)QDv, which ensures that v ∈⋂∞
i= N(Ai + Ci) in view of Lem-

mas . and .. Repeating the above proof, we can also know that v solves the variational
inequality (.). Thus q = v by using the result of Step .

Hence un
t → q, as t → , which is the unique solution of the variational inequality (.).

This completes the proof. �

Theorem . Let X be a real uniformly convex and p-uniformly smooth Banach space
with constant Kp where p ∈ (, ] and D be a nonempty closed and convex sunny non-
expansive retract of X. Let QD be the sunny non-expansive retraction of X onto D. Let
f : X → X be a contraction with coefficient k ∈ (, ), Ai : D → X be m-accretive map-
pings, Ci : D → X be θi-inversely strongly accretive mappings, and Wi : X → X be μi-
strictly pseudo-contractive mappings and γi-strongly accretive mappings with μi +γi >  for
i ∈ N . Suppose {ω()

i }, {ω()
i }, {αn}, {βn}, {ϑn}, {νn}, {ξn}, {δn} and {ζn} are real number se-

quences in (, ), {rn,i} ⊂ (, +∞), {an} ⊂ X and {bn} ⊂ D are error sequences, where n ∈ N
and i ∈ N . Suppose

⋂∞
i= N(Ai + Ci) �= ∅. Let {xn} be generated by the following iterative
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algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ D,

un = QD(αnxn + βnan),

vn = ϑnun + νn
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)( un+vn
 ) + ξnbn,

xn+ = δnf (xn) + ( – δn)(I – ζn
∑∞

i= ω
()
i Wi)

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)( un+vn
 ), n ∈ N .

(.)

Under the following assumptions:
(i) αn + βn ≤ , ϑn + νn + ξn ≡  for n ∈ N ;

(ii)
∑∞

i= ω
()
i =

∑∞
i= ω

()
i = ;

(iii)
∑∞

n= ‖an‖ < +∞,
∑∞

n= ‖bn‖ < +∞,
∑∞

n=( – αn) < +∞,
∑∞

n= ξn < +∞,
limn→∞

∑∞
i= rn,i = ;

(iv) limn→∞ δn = ,
∑∞

n= δn = +∞;
(v)  – αn + ‖an‖ = o(δn), ξn = o(δn), ζn = o(ξn), νn � , as n → ∞;

(vi)
∑∞

i= ω
()
i ‖Wi‖ < +∞,  < rn,i ≤ ( pθi

Kp
)


p– for i ∈ N , n ∈ N ,

the iterative sequence xn → q ∈⋂∞
i= N(Ai + Ci), which is the unique solution of the varia-

tional inequality (.).

Proof We split the proof into four steps.
Step . {vn} is well defined and so is {xn}.
For s, t ∈ (, ), define Hs,t : D → D by Hs,tx := su + tH( u+x

 ) + ( – s – t)v, where H : D → D
is non-expansive for x ∈ D and u, v ∈ D. Then, for ∀x, y ∈ D,

‖Hs,tx – Hs,ty‖ ≤ t
∥∥∥∥u + x


–

u + y


∥∥∥∥≤ t

‖x – y‖.

Thus Hs,t is a contraction, which ensures from Lemma . that there exists xs,t ∈ D such
that Hs,txs,t = xs,t . That is, xs,t = su + tH( u+xs,t

 ) + ( – s – t)v.
Since

∑∞
i= ω

()
i =  and JAi

rn,i (I – rn,iCi) is non-expansive for n ∈ N and i ∈ N , then {vn} is
well defined, which implies that {xn} is well defined.

Step . {xn} is bounded.
For ∀p ∈⋂∞

i= N(Ai + Ci), we can easily know that

‖un – p‖ ≤ αn‖xn – p‖ + βn‖an‖ + ( – αn)‖p‖.

And

‖vn – p‖ ≤ ϑn‖un – p‖ + νn

∥∥∥∥un + vn


– p

∥∥∥∥ + ξn‖bn – p‖

≤
(

ϑn +
νn



)
‖un – p‖ +

νn


‖vn – p‖ + ξn‖bn – p‖.

Thus

‖vn – p‖ ≤
(

ϑn + νn

 – νn

)
‖un – p‖ +

ξn

 – νn
‖bn – p‖

≤ αn‖xn – p‖ + βn‖an‖ + ( – αn)‖p‖ + ‖bn‖ +
ξn

 – νn
‖p‖. (.)
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Using Lemma . and (.), we have, for n ∈ N ,

‖xn+ – p‖ ≤ δn
∥∥f (xn) – f (p)

∥∥ + δn
∥∥f (p) – p

∥∥

+ ( – δn)

∥∥∥∥∥
(

I – ζn

∞∑
i=

ω
()
i Wi

) ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
– p

∥∥∥∥∥

≤ δnk‖xn – p‖ + δn
∥∥f (p) – p

∥∥ + ( – δn)ζn

∞∑
i=

ω
()
i ‖Wi‖‖p‖

+ ( – δn)

∥∥∥∥∥
∞∑
i=

ω
()
i (I – ζnWi)

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)

–
∞∑
i=

ω
()
i (I – ζnWi)

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)p

∥∥∥∥∥

≤ δnk‖xn – p‖ + δn
∥∥f (p) – p

∥∥ + ( – δn)ζn

∞∑
i=

ω
()
i ‖Wi‖‖p‖

+ ( – δn)

[
 – ζn

(
 –

∞∑
i=

ω
()
i

√
 – γi

μi

)]

×
[
αn‖xn – p‖ + βn‖an‖ + ( – αn)‖p‖ + ‖bn‖ +

ξn

 – νn
‖p‖

]

≤
{

( – δn)

[
 – ζn

(
 –

∞∑
i=

ω
()
i

√
 – γi

μi

)]
+ δnk

}
‖xn – p‖ + δn

∥∥f (p) – p
∥∥

+ ( – δn)

[
 – ζn

(
 –

∞∑
i=

ω
()
i

√
 – γi

μi

)]

×
[
βn‖an‖ + ( – αn)‖p‖ + ‖bn‖ +

ξn

 – νn
‖p‖

]

+ ( – δn)ζn

∞∑
i=

ω
()
i ‖Wi‖‖p‖. (.)

By using the inductive method, we can easily get the following result from (.):

‖xn+ – p‖ ≤ max

{
‖x – p‖,

∑∞
i= ω

()
i ‖Wi‖‖p‖

 –
∑∞

i= ω
()
i

√
–γi
μi

,
‖f (p) – p‖

 – k

}

+
n∑

k=

( – δk)

[
 – ζk

(
 –

∞∑
i=

ω
()
i

√
 – γi

μi

)]

×
[
βk‖ak‖ + ( – αk)‖p‖ + ‖bk‖ +

ξk

 – νk
‖p‖

]
.

Therefore, from assumptions (iii) and (vi), we know that {xn} is bounded.
Step . There exists q ∈⋂∞

i= N(Ai + Ci), which solves the variational inequality (.).
Using Theorem ., we know that there exists un

t such that un
t = tf (un

t ) + ( – t)(I –
κt
∑∞

i= ω
()
i Wi)(

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
t ) for t ∈ (, ). Moreover, under the assump-



Wei et al. Journal of Inequalities and Applications  (2017) 2017:227 Page 13 of 22

tion that κt
t → , un

t → q ∈⋂∞
i= N(Ai + Ci), as t → , which is the unique solution of the

variational inequality (.).
Step . xn → q, as n → ∞, where q is the same as that in Step .
Set C := sup{‖αnxn +βnan –q‖p–, ‖q‖‖αnxn +βnan –q‖p– : n ∈ N}, then from Step

 and assumption (iii), C is a positive constant. Using Lemma ., we have

‖un – q‖p ≤ αn‖xn – q‖p – p( – αn)
〈
q, Jp(αnxn + βnan – q)

〉
+ pβn

〈
an, Jp(αnxn + βnan – q)

〉
≤ αn‖xn – q‖p + C( – αn) + C‖an‖. (.)

Using Lemma ., we know that

‖vn – q‖p ≤ ϑn‖un – q‖p + νn

∞∑
i=

ω
()
i

∥∥∥∥JAi
rn,i

(I – rn,iCi)
(

un + vn



)
– q

∥∥∥∥
p

+ ξn‖bn – q‖p

≤
(

ϑn +
νn



)
‖un – q‖p +

νn


‖vn – q‖p

– νn

∞∑
i=

ω
()
i rn,i

(
θip – rp–

n,i Kp
)∥∥∥∥Ci

(
un + vn



)
– Ciq

∥∥∥∥
p

– νn

∞∑
i=

ω
()
i ϕp

(∥∥∥∥(I – JAi
rn,i

)(un + vn


– rn,iCi

(
un + vn



))

–
(
I – JAi

rn,i

)
(q – rn,iCiq)

∥∥∥∥
)

+ ξn‖bn – q‖p.

Therefore,

‖vn – q‖p ≤ ϑn + νn

 – νn
‖un – q‖p +

ξn

 – νn
‖bn – q‖p

–
νn

 – νn

∞∑
i=

ω
()
i rn,i

(
θip – rp–

n,i Kp
)∥∥∥∥Ci

(
un + vn



)
– Ciq

∥∥∥∥
p

–
νn

 – νn

∞∑
i=

ω
()
i ϕp

(∥∥∥∥(I – JAi
rn,i

)(un + vn


– rn,iCi

(
un + vn



))

–
(
I – JAi

rn,i

)
(q – rn,iCiq)

∥∥∥∥
)

. (.)

Now, from (.)–(.) and Lemmas . and ., we know that for n ∈ N ,

‖xn+ – q‖p

=

∥∥∥∥∥δn
(
f (xn) – q

)
+ ( – δn)

( ∞∑
k=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
– q

)

– ( – δn)ζn

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))∥∥∥∥∥
p
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≤ ( – δn)
∥∥∥∥un + vn


– q

∥∥∥∥
p

+ pδn
〈
f (xn) – f (q), Jp(xn+ – q)

〉
+ pδn

〈
f (q) – q, Jp(xn+ – q)

〉

– p( – δn)ζn

〈 ∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))
, Jp(xn+ – q)

〉

≤ ( – δn)
(‖un – p‖


+

‖vn – p‖



)

+ pδnk‖xn – q‖‖xn+ – q‖p– + pδn
〈
f (q) – q, Jp(xn+ – q)

〉

– p( – δn)ζn

〈 ∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))
, Jp(xn+ – q)

〉

≤ ( – δn)‖un – p‖ + ( – δn)

[
ξn

 – νn
‖bn – q‖p

–
νn

 – νn

∞∑
i=

ω
()
i rn,i

(
θip – rp–

n,i Kp
)∥∥∥∥Ci

(
un + vn



)
– Ciq

∥∥∥∥
p

–
νn

 – νn

∞∑
i=

ω
()
i ϕp

(∥∥∥∥(I – JAi
rn,i

)(un + vn


– rn,iCi

(
un + vn



))

–
(
I – JAi

rn,i

)
(q – rn,iCiq)

∥∥∥∥
)]

+ pkδn‖xn – q‖‖xn+ – q‖p– + pδn
〈
f (q) – q, Jp(xn+ – q)

〉

– p( – δn)ζn

〈 ∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))
, Jp(xn+ – q)

〉

≤ ( – δn)‖xn – p‖p + C
(
 – αn + ‖an‖

)
+ kδn‖xn – q‖p

+ kδn‖xn+ – q‖p +
ξn

 – νn
‖bn – q‖p

– ( – δn)
νn

 – νn

∞∑
i=

ω
()
i ϕp

(∥∥∥∥(I – JAi
rn,i

)(un + vn


– rn,iCi

(
un + vn



))

–
(
I – JAi

rn,i

)
(q – rn,iCiq)

∥∥∥∥
)

+ pδn
〈
f (q) – q, Jp(xn+ – q)

〉

+ ζn

∞∑
i=

ω
()
i

∥∥∥∥∥Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))∥∥∥∥∥
∥∥Jp(xn+ – q)

∥∥,

which implies that

‖xn+ – q‖p

≤  – δn( – k)
 – δnk

‖xn – q‖p +
C( – αn + ‖an‖)

 – δnk

+


 – δnk

(
ξn

 – νn
‖bn – q‖p + pδn

〈
f (q) – q, Jp(xn+ – q)

〉
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+ ζn

∞∑
i=

ω
()
i

∥∥∥∥∥Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))∥∥∥∥∥
∥∥Jp(xn+ – q)

∥∥
)

– ( – δn)
νn

 – νn


 – δnk

∞∑
i=

ω
()
i ϕp

(∥∥∥∥(I – JAi
rn,i

)(un + vn


– rn,iCi

(
un + vn



))

–
(
I – JAi

rn,i

)
(q – rn,iCiq)

∥∥∥∥
)

.

From Step , if we set C = sup{∑∞
i= ω

()
i ‖Wi(

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)( un+vn
 ))‖,‖xn –

q‖p– : n ∈ N}, then C is a positive constant.
Let ε

()
n = δn(–k)

–δnk , ε()
n = 

δn(–k) [C(–αn +‖an‖)+ ξn
–νn

‖bn –q‖p +pδn〈f (q)–q, Jp(xn+ –
q)〉 + ζnC

] and ε
()
n = ( – δn) νn

–νn


–δnk
∑∞

i= ω
()
i ϕp(‖(I – JAi

rn,i )(
un+vn

 – rn,iCi( un+vn
 )) – (I –

JAi
rn,i )(q – rn,iCiq)‖).

Then

‖xn+ – q‖p ≤ (
 – ε()

n
)‖xn – q‖p + ε()

n ε()
n – ε()

n . (.)

Our next discussion will be divided into two cases.
Case . {‖xn – q‖} is decreasing.
If {‖xn – q‖} is decreasing, we know from (.) and assumptions (iv) and (v) that

 ≤ ε()
n ≤ ε()

n
(
ε()

n – ‖xn – q‖p) +
(‖xn – q‖p – ‖xn+ – q‖p)→ ,

which ensures that
∑∞

i= ω
()
i ϕp(‖(I – JAi

rn,i )(
un+vn

 – rn,iCi( un+vn
 )) – (I – JAi

rn,i )(q – rn,iCiq)‖) →
, as n → +∞. Then, from the property of ϕp, we know that

∑∞
i= ω

()
i ‖(I – JAi

rn,i )(
un+vn

 –
rn,iCi( un+vn

 )) – (I – JAi
rn,i )(q – rn,iCiq)‖ → , as n → +∞.

Note that limn→∞
∑∞

i= rn,i = , then

∥∥∥∥∥
un + vn


–

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)∥∥∥∥∥

≤
∞∑
i=

ω
()
i

∥∥∥∥(I – JAi
rn,i

)
(I – rn,iCi)

(
un + vn



)
–
(
I – JAi

rn,i

)
(I – rn,iCi)q

∥∥∥∥

+
∞∑
i=

ω
()
i rn,i

∥∥∥∥Ci

(
un + vn



)∥∥∥∥ +
∞∑
i=

ω
()
i rn,i‖Ciq‖

→ ,

as n → ∞.
Now, our purpose is to show that limsupn→∞ ε

()
n ≤ , which reduces to showing that

limsupn→∞〈f (q) – q, Jp(xn+ – q)〉 ≤ .
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Let un
t be the same as that in Step . Since ‖un

t ‖ ≤ ‖un
t – q‖+‖q‖, then {un

t } is bounded,
as t → . Using Lemma . again, we have

∥∥∥∥un
t –

un + vn



∥∥∥∥
p

=

∥∥∥∥∥un
t –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)

+
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
–

un + vn



∥∥∥∥∥
p

≤
∥∥∥∥∥un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)∥∥∥∥∥
p

+ p

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
–

un + vn


, Jp

(
un

t –
un + vn



)〉

=

∥∥∥∥∥tf
(
un

t
)

+ ( – t)

(
I – κt

∞∑
i=

ω
()
i Wi

)( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)

–
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)∥∥∥∥∥
p

+ p

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
–

un + vn


, Jp

(
un

t –
un + vn



)〉

≤
∥∥∥∥un

t –
un + vn



∥∥∥∥
p

+ pt

〈
f
(
un

t
)

–
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

–
κt

t
( – t)

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)
,

Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

+ p

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
–

un + vn


, Jp

(
un

t –
un + vn



)〉
,

which implies that

t

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t – f
(
un

t
)

+
κt

t
( – t)

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)
,

Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

≤
∥∥∥∥∥

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



)
–

un + vn



∥∥∥∥∥
∥∥∥∥un

t –
un + vn



∥∥∥∥
p–

.
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So, limt→ limsupn→+∞〈∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
t – f (un

t ) + κt
t ( – t) ×∑∞

i= ω
()
i Wi(

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
t ), Jp(un

t –
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)( un+vn
 ))〉 ≤ .

Since un
t → q, then

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)QDun
t →∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)QDq = q, as
t → .

Noticing that

〈
q – f (q), Jp

(
q –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

=

〈
q – f (q), Jp

(
q –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))

–Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

+

〈
q – f (q), Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

=

〈
q – f (q), Jp

(
q –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))

–Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

+

〈
q – f (q) –

∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t + f
(
un

t
)

–
κt

t
( – t)

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)
,

Jp

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉

+

〈 ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t – f
(
un

t
)

+
κt

t
( – t)

∞∑
i=

ω
()
i Wi

( ∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)QDun

t

)
,

J

(
un

t –
∞∑
i=

ω
()
i JAi

rn,i
(I – rn,iCi)

(
un + vn



))〉
,

we have limsupn→+∞〈q – f (q), Jp(q –
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)( un+vn
 ))〉 ≤ .

From assumptions (iv) and (v) and Step , we know that xn+ –
∑∞

i= ω
()
i JAi

rn,i (I –
rn,iCi)( un+vn

 ) →  and then limsupn→+∞〈q – f (q), Jp(q – xn+)〉 ≤ . Thus
limsupn→∞ ε

()
n ≤ .

Employing (.) again, we have

‖xn – q‖p ≤ ‖xn – q‖p – ‖xn+ – q‖p

ε
()
n

+ ε()
n .



Wei et al. Journal of Inequalities and Applications  (2017) 2017:227 Page 18 of 22

Assumption (iv) implies that liminfn→∞ ‖xn–q‖p–‖xn+–q‖p

ε
()
n

= . Then

lim
n→∞‖xn – q‖p ≤ liminf

n→∞
‖xn – q‖p – ‖xn+ – q‖p

ε
()
n

+ limsup
n→∞

ε()
n ≤ .

Then the result that xn → q follows.
Case . If {‖xn –q‖} is not eventually decreasing, then we can find a subsequence {‖xnk –

q‖} so that ‖xnk – q‖ ≤ ‖xnk+ – q‖ for all k ≥ . From Lemma ., we can define a
subsequence {‖xτ (n) – q‖} so that max{‖xτ (n) – q‖,‖xn – q‖} ≤ ‖xτ (n)+ – q‖ for all n > n.
This enables us to deduce that (similar to Case )

 ≤ ε
()
τ (n) ≤ ε

()
τ (n)

(
ε

()
τ (n) – ‖xτ (n) – q‖p) +

(‖xτ (n) – q‖p – ‖xτ (n)+ – q‖p)→ ,

and then copying Case , we have limn→∞ ‖xτ (n) – q‖ = . Thus  ≤ ‖xn – q‖ ≤ ‖xτ (n)+ –
q‖ → , as n → ∞.

This completes the proof. �

Remark . Theorem . is reasonable if we suppose X = D = (–∞, +∞), take f (x) = x
 ,

Aix = Cix = x
i , Wix = x

i+ , θi = i, ω()
i = ω

()
i = 

i , αn =  – 
n , βn = 

n , ϑn = δn = 
n , ξn = ζn =

an = bn = 
n , γi = 

i+ , μi =
i+– 

 + 
i+

i+– , rn,i = 
n+i for n ∈ N and i ∈ N .

Remark . Our differences from the main references are:
(i) the normalized duality mapping J : E → E∗ is no longer required to be weakly

sequentially continuous at zero as that in [];
(ii) the parameter {rn,i} in the resolvent JAi

rn,i does not need satisfying the condition
‘
∑∞

n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε >  for i ∈ N and some ε > ’ as that in []
or [];

(iii) Lemma . plays an important role in the proof of strong convergence of the
iterative sequence, which leads to different restrictions on the parameters and
different proof techniques compared to the already existing similar works.

3 Applications
3.1 Integro-differential systems
In Section ., we shall investigate the following nonlinear integro-differential systems
involving the generalized pi-Laplacian, which have been studied in []:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(i)(x,t)
∂t – div[(C(x, t) + |∇u(i)|)

pi–
 ∇u(i)] + ε|u(i)|ri–u(i)

+ g(x, u(i),∇u(i)) + a ∂
∂t
∫
�

u(i) dx = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |∇u(i)|)
pi–

 ∇u(i)〉 ∈ βx(u(i)), (x, t) ∈ � × (, T),

u(i)(x, ) = u(i)(x, T), x ∈ �, i ∈ N ,

(.)

where � is a bounded conical domain of a Euclidean space RN (N ≥ ), � is the boundary
of � with � ∈ C and ϑ denotes the exterior normal derivative to �. 〈·, ·〉 and | · | denote
the Euclidean inner-product and the Euclidean norm in RN , respectively. T is a positive
constant. ∇u(i) = ( ∂u(i)

∂x
, ∂u(i)

∂x
, . . . , ∂u(i)

∂xN
) and x = (x, x, . . . , xN ) ∈ �. βx is the subdifferential of
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ϕx, where ϕx = ϕ(x, ·) : R → R for x ∈ �. a and ε are non-expansive constants,  ≤ C(x, t) ∈⋂∞
i= Vi :=

⋂∞
i= Lpi (, T ; W ,pi (�)), f (x, t) ∈ ⋂∞

i= Wi :=
⋂∞

i= Lmax{pi ,p′
i}(, T ; Lmax{pi ,p′

i}(�))
and g : � × RN+ → R are given functions.

Just like [], we need the following assumptions to discuss (.).

Assumption  {pi}∞i= is a real number sequence with N
N+ < pi < +∞, {θi}∞i= is any real

number sequence in (, ] and {ri}∞i= is a real number sequence satisfying N
N+ < ri ≤

min{pi, p′
i} < +∞. 

pi
+ 

p′
i

=  and 
ri

+ 
r′i

=  for i ∈ N .

Assumption  Green’s formula is available.

Assumption  For each x ∈ �, ϕx = ϕ(x, ·) : R → R is a proper, convex and lower-
semicontinuous function and ϕx() = .

Assumption   ∈ βx() and for each t ∈ R, the function x ∈ � → (I + λβx)–(t) ∈ R is
measurable for λ > .

Assumption  Suppose that g : � × RN+ → R satisfies the following conditions:
(a) Carathéodory’s conditions;
(b) Growth condition.

∣∣g(x, r, . . . , rN+)
∣∣max{pi ,p′

i} ≤ ∣∣hi(x, t)
∣∣pi + bi|r|pi ,

where (r, r, . . . , rN+) ∈ RN+, hi(x, t) ∈ Wi and bi is a positive constant for i ∈ N ;
(c) Monotone condition. g is monotone in the following sense:

(
g(x, r, . . . , rN+) – g(x, t, . . . , tN+)

)≥ (r – t)

for all x ∈ � and (r, . . . , rN+), (t, . . . , tN+) ∈ RN+.

Assumption  For i ∈ N , let V ∗
i denote the dual space of Vi. The norm in Vi, ‖ · ‖Vi , is

defined by

∥∥u(x, t)
∥∥

Vi
=
(∫ T



∥∥u(x, t)
∥∥pi

W ,pi (�) dt
) 

pi
, u(x, t) ∈ Vi.

Definition . ([]) For i ∈ N , define the operator Bi : Vi → V ∗
i by

〈w, Biu〉 =
∫ T



∫
�

〈(
C(x, t) + |∇u|) pi–

 ∇u,∇w
〉
dx dt + ε

∫ T



∫
�

|u|ri–uw dx dt

for u, w ∈ Vi.

Definition . ([]) For i ∈ N , define the function �i : Vi → R by

�i(u) =
∫ T



∫
�

ϕx
(
u|�(x, t)

)
d�(x) dt

for u(x, t) ∈ Vi.
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Definition . ([]) For i ∈ N , define Si : D(Si) = {u(x, t) ∈ Vi : ∂u
∂t ∈ V ∗

i , u(x, ) =
u(x, T)} → V ∗

i by

Siu =
∂u
∂t

+ a
∂

∂t

∫
�

u dx.

Lemma . ([]) For i ∈ N , define a mapping Ai : Wi → Wi as follows:

D(Ai) =
{

u ∈ Wi|there exists an f ∈ Wi such that f ∈ Biu + ∂�i(u) + Siu
}

,

where ∂�i : Vi → V ∗
i is the subdifferential of �i. For u ∈ D(Ai), we set Aiu = {f ∈ Wi|f ∈

Biu + ∂�i(u) + Siu}. Then Ai : Wi → Wi is m-accretive, where i ∈ N .

Lemma . ([]) Define Ci : D(Ci) = Lmax{pi ,p′
i}(, T ; W ,max{pi ,p′

i}(�)) ⊂ Wi → Wi by

(Ciu)(x, t) = g(x, u,∇u) – f (x, t)

for ∀u(x, t) ∈ D(Ci) and f (x, t) is the same as that in (.), where i ∈ N . Then Ci : D(Ci) ⊂
Wi → Wi is continuous and strongly accretive. If we further assume that g(x, r, . . . , rN+) ≡
r, then Ci is θi-inversely strongly accretive, where i ∈ N .

Lemma . ([]) For f (x, t) ∈⋂∞
i= Wi, integro-differential systems (.) have a unique so-

lution u(i)(x, t) ∈ Wi for i ∈ N .

Lemma . ([]) If ε ≡ , g(x, r, . . . , rN+) ≡ r and f (x, t) ≡ k, where k is a constant, then
u(x, t) ≡ k is the unique solution of integro-differential systems (.). Moreover, {u(x, t) ∈⋂∞

i= Wi|u(x, t) ≡ k satisfying (.)} =
⋂∞

i= N(Ai + Ci).

Remark . ([]) Set p := infi∈N (min{pi, p′
i}) and q := supi∈N (max{pi, p′

i}).
Let X := Lmin{p,p′}(, T ; Lmin{p,p′}(�)), where 

p + 
p′ = .

Let D := Lmax{q,q′}(, T ; W ,max{q,q′}(�)), where 
q + 

q′ = .
Then X = Lp(, T ; Lp(�)), D = Lq(, T ; W ,q(�)) and D ⊂ Wi ⊂ X, ∀i ∈ N .

Theorem . Let D and X be the same as those in Remark .. Suppose Ai and Ci are
the same as those in Lemmas . and ., respectively. Let f : X → X be a fixed contrac-
tive mapping with coefficient k ∈ (, ) and Wi : X → X be μi-strictly pseudo-contractive
mappings and γi-strongly accretive mappings with μi + γi >  for i ∈ N . Suppose that {ω()

i },
{ω()

i }, {αn}, {βn}, {ϑn}, {νn}, {ξn}, {δn}, {ζn}, {rn,i}, {an} ⊂ X and {bn} ⊂ D satisfy the same
conditions as those in Theorem ., where n ∈ N and i ∈ N . Let {xn} be generated by the
following iterative algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ D,

un = QD(αnxn + βnan),

vn = ϑnun + νn
∑∞

i= ω
()
i JAi

rn,i (I – rn,iCi)( un+vn
 ) + ξnbn,

xn+ = δnf (xn) + ( – δn)(I – ζn
∑∞

i= ω
()
i Wi)

∑∞
i= ω

()
i JAi

rn,i (I – rn,iCi)( un+vn
 ), n ∈ N .

(.)

If, in integro-differential systems (.), ε ≡ , g(x, r, . . . , rN+) ≡ r and f (x, t) ≡ k,
then under the following assumptions in Theorem ., the iterative sequence xn → q ∈
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⋂∞
i= N(Ai + Ci), which is the unique solution of integro-differential systems (.) and which

satisfies the following variational inequality: for ∀y ∈⋂∞
i= N(Ai + Ci),

〈
(I – f )q(x, t), J

(
q(x, t) – y

)〉≤ .

3.2 Convex minimization problems
Let H be a real Hilbert space. Suppose hi : H → (–∞, +∞) are proper convex, lower-
semicontinuous and nonsmooth functions [], suppose gi : H → (–∞, +∞) are convex
and smooth functions for i ∈ N . We use ∇gi to denote the gradient of gi and ∂hi the sub-
differential of hi for i ∈ N .

The convex minimization problems are to find x∗ ∈ H such that

hi
(
x∗) + gi

(
x∗)≤ hi(x) + gi(x), i ∈ N , (.)

for ∀x ∈ H .
By Fermats’ rule, (.) is equivalent to finding x∗ ∈ H such that

 ∈ ∂hi
(
x∗) + ∇gi

(
x∗), i ∈ N . (.)

Theorem . Let H be a real Hilbert space and D be the nonempty closed convex sunny
non-expansive retract of H . Let QD be the sunny non-expansive retraction of H onto D.
Let f : H → H be a contraction with coefficient k ∈ (, ). Let hi : H → (–∞, +∞) be proper
convex, lower-semicontinuous and nonsmooth functions and gi : H → (–∞, +∞) be convex
and smooth functions for i ∈ N . Let Wi : H → H be μi-strictly pseudo-contractive mappings
and γi-strongly accretive mappings with μi + γi >  for i ∈ N . Suppose {ω()

i }, {ω()
i }, {αn},

{βn}, {ϑn}, {νn}, {ξn}, {δn}, {ζn}, {rn,i} ⊂ (, +∞), {an} ⊂ H and {bn} ⊂ D satisfy the same
conditions as those in Theorem ., where n ∈ N and i ∈ N . Let {xn} be generated by the
following iterative algorithm:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ D,

un = QD(αnxn + βnan),

vn = ϑnun + νn
∑∞

i= ω
()
i J∂hi

rn,i (I – rn,i∇gi)( un+vn
 ) + ξnbn,

xn+ = δnf (xn) + ( – δn)(I – ζn
∑∞

i= ω
()
i Wi)

∑∞
i= ω

()
i J∂hi

rn,i (I – rn,i∇gi)( un+vn
 ), n ∈ N .

(.)

If, further, suppose ∇gi is 
θi

-Lipschitz continuous and hi + gi attains a minimizer, then
{xn} converges strongly to the minimizer of hi + gi for i ∈ N .

Proof It follows from [] that ∂hi is m-accretive. From [], since ∇gi is 
θi

-Lipschitz con-
tinuous, then ∇gi is θi-inversely strongly accretive. Thus Theorem . ensures the result.

This completes the proof. �
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