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Abstract
In this paper, we study the minimization problem of the type
L(x, y) = f (x) + R(x, y) + g(y), where f and g are both nonconvex nonsmooth functions,
and R is a smooth function we can choose. We present a proximal alternating
minimization algorithm with inertial effect. We obtain the convergence by
constructing a key function H that guarantees a sufficient decrease property of the
iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then
every bounded sequence generated by the algorithm converges strongly to a critical
point of L.
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1 Introduction
Nonconvex and nonsmooth optimization problems are extremely useful in many applied
sciences, including statistics, machine learning, regression, classification, and so on. One
of the most practical and classical optimization problems is of the form

min
x∈Rn

[
f (x) + g(x)

]
. ()

In this paper, we study the problem in the nonconvex and nonsmooth setting, where f , g :
R

n → (–∞,∞] are proper lower semicontinuous functions. We aim at finding the critical
points of

L(x, y) = f (x) + R(x, y) + g(y) ()

(with R being smooth) and possibly solving the corresponding minimization problem ().
This can be seen by setting

L(x, y) = f (x) +
ρ


‖x – y‖ + g(y),

where ρ >  is a relaxation parameter.
For problem (), we introduce a proximal alternating minimization algorithm with in-

ertial effect and investigate the convergence of the generated iterates. Inertial proximal
methods go back to [, ], where it has been noticed that the discretization of a differential
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system of second order in time gives rise to a generalization of the classical proximal-point
algorithm. The main feature of the inertial proximal algorithm is that the next iterate is
defined by using the last two iterates. Recently, there has been an increasing interest in
algorithms with inertial effect; see [–].

Generally, we consider the problem

min L(x, y) = min
{

f (x) + R(x, y) + g(y)
}

with x ∈R
n and y ∈R

m.
In [], the authors proposed the alternating minimization algorithm

⎧
⎨

⎩
xk+ ∈ argmin{L(u, yk) + 

λk
‖u – xk‖ : u ∈R

n},
yk+ ∈ argmin{L(xk+, v) + 

μk
‖v – yk‖ : v ∈ R

m},

which can be viewed as a proximal regularization of a two-block Gauss-Seidel method for
minimizing L,

⎧
⎨

⎩
xk+ ∈ argmin{L(u, yk) : u ∈R

n},
yk+ ∈ argmin{L(xk+, v) : v ∈R

m}.

Inspired by [], we propose the algorithm

xk+ ∈ argmin
x∈Rn

{
L(x, yk) +


λk

‖x – xk‖ + αk〈x, xk – xk–〉
}

, ()

yk+ ∈ argmin
y∈Rm

{
L(xk+, y) +


μk

‖y – yk‖ + βk〈y, yk – yk–〉
}

. ()

We need the following assumptions on the functions and parameters.

(H) f : Rn → (–∞,∞] and g : Rm → (–∞,∞] are proper lower semicontinuous func-
tions;

(H) R : Rn ×R
m →R is a continuously differentiable function;

(H) ∇R is Lipschitz continuous on bounded subsets of Rn ×R
m;

(H) inf L > –∞;
(H)  < μ– ≤ μk ≤ μ+,  < λ– ≤ λk ≤ λ+,  ≤ αk ≤ α,  ≤ βk ≤ β ;
(H) σ > max{α,β} · max{λ+,μ+} · (σ  + ).

To prove the convergence of the algorithm under these assumptions, we construct a key
function H , which is defined as in (). Based on H , we can obtain a sufficient decrease
property of the iterates, the existence of a subgradient lower bound for the iterate gap,
and some important analytic features of the objective function. Finally, we can prove that
every bounded sequence generated by the algorithm converges to a critical point of L if H
satisfies the Kurdyka-Lojasiewicz inequality.

The rest of the paper is arranged as follows. In Section , we recall some elementary
notions and facts of nonsmooth nonconvex analysis. In Section , we present a detailed
proof of the convergence of the algorithm. In Section , we give a brief conclusion.
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2 Preliminaries
In this section, we recall some definitions and results. Let N be the set of nonnegative
integers. For m ≥ , the Euclidean scalar product and induced norm on R

m are denoted
by 〈·, ·〉 and ‖ · ‖, respectively.

The domain of a function f : Rm → (–∞,∞] is defined by dom f = {x ∈ R
m : f (x) < ∞}.

We say that f is proper if dom f �= ∅. For the following generalized subdifferential notions
and their basic properties we refer to [] and []. Let f : Rm → (–∞,∞] be a proper lower
semicontinuous function. For x ∈ dom f , we consider the Frechet (viscosity) subdifferential
of f at x defined by the set

∂̂f (x) =
{

v ∈R
m : lim inf

y→x

f (y) – f (x) – 〈v, y – x〉
‖y – x‖ ≥ 

}
. ()

For x /∈ dom f , we set ∂̂f (x) := ∅. The limiting (Mordukhovich) subdifferential of f at x ∈
dom f is defined by

∂f (x) =
{

v ∈ R
m : ∃xn → x, f (xn) → f (x) and ∃vn ∈ ∂̂f (xn), vn → v as n → ∞}

, ()

whereas for x /∈ dom f , we take ∂f (x) := ∅.
It is known that both notions of subdifferentials coincide with the convex subdifferential

if f is convex, that is, ∂̂f (x) = ∂f (x) = {v ∈R
m : f (y) ≥ f (x) + 〈v, y – x〉,∀y ∈R

m}. Notice that
if f is continuously differentiable around x ∈R

m, then we have ∂f (x) = {∇f (x)}. Generally,
the inclusion ∂̂f (x) ⊂ ∂f (x) holds for each x ∈R

m.
The Fermat rule reads in this nonsmooth setting as follows: if x ∈ R

m is a local minimizer
of f , then

 ∈ ∂f (x).

Denote by

crit f =
{

x ∈R
m :  ∈ ∂f (x)

}

the set of (limiting) critical points of f . Let us mention also the following subdifferential
rule: if f : Rm → (–∞,∞] is proper lower semicontinuous and g : Rm → R is a continu-
ously differentiable function, then

∂(f + g)(x) = ∂f (x) + ∇g(x)

for all x ∈R
m.

We also denote dist(x,�) = infy∈� ‖x – y‖ for x ∈R
m and � ⊂R

m.
Now let us recall the Kurdyka-Lojasiexicz property, which plays an important role in the

proof of the convergence of our algorithm.

Definition . (Kurdyka-Lojasiexicz property; see [, ]) Let f : Rm → (–∞,∞] be a
proper lower semicontinuous function. We say that f satisfies the Kurdyka-Lojasiexicz
(KL) property at x̄ ∈ dom ∂f = {x ∈ R

m : ∂f (x) �= ∅} if there exist η > , a neighborhood U
of x̄, and a continuous concave function ϕ : [,η) → [,∞) such that
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(i) ϕ() = ;
(ii) ϕ is continuously differentiable on (,η) and continuous at ;

(iii) ϕ′(s) >  for all s ∈ (,η);
(iv) for all x ∈ U ∩ {x ∈R

m : f (x̄) < f (x) < f (x̄) + η}, we have the KL inequality:

ϕ′(f (x) – f (x̄)
)

dist
(
, ∂f (x)

) ≥ . ()

If f satisfies the KL property at each point in dom ∂f , then we call f a KL function.

It is worth mentioning that many functions in applied science are the KL functions
(see []). In fact, semialgebraic functions, real subanalytic functions, semiconvex func-
tions, and uniformly convex functions are all KL functions.

The following result (see [], Lemma ) is crucial to our convergence analysis.

Lemma . Let � ⊂ R
m be a compact set, and let f : Rm → (–∞,∞] be a proper lower

semicontinuous function. Assume that f is constant on � and f satisfies the KL property
at each point of �. Then there exist ε > ,η > , and a continuous concave function ϕ such
that

(i) ϕ() = ;
(ii) ϕ is continuously differentiable on (,η) and continuous at ;

(iii) ϕ′(s) >  for all s ∈ (,η);
(iv) for all x̄ ∈ � and all x ∈ {x ∈R

m : dist(x,�) < ε} ∩ {x ∈R
m : f (x̄) < f (x) < f (x̄) + η},

we have the KL inequality:

ϕ′(f (x) – f (x̄)
)

dist
(
, ∂f (x)

) ≥ . ()

We need the following two lemmas. The first one was often used in the context of Fejer
monotonicity techniques for proving convergence results of classical algorithms for con-
vex optimization problems or, more generally, for monotone inclusion problems (see []).
The second one is easy to verify (see []).

Lemma . Let {an}n∈N and {bn}n∈N be real sequences such that bn ≥  for all n ∈ N,
{an}n∈N is bounded below, and an+ + bn ≤ an for all n ∈ N. Then {an}n∈N is a monoton-
ically decreasing and convergent sequence, and

∑
n∈N bn < +∞.

Lemma . Let {an}n∈N and {bn}n∈N be nonnegative real sequences such that
∑

n∈N bn < ∞
and an+ ≤ a · an + b · an– + bn for all n ≥ , where a ∈ R, b ≥ , and a + b < . Then
∑

n∈N an < ∞.

3 The convergence of the algorithm
In this section, we prove the convergence of our algorithm. Motivated by [] and [], we
divide the proof into three main steps, which are listed in the following three subsections,
respectively.

We always use {(xk , yk)} as the sequence generated by ()-().
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3.1 A sufficient decrease property of the iterates
In this subsection, we construct the key function H and prove that the iterates have a
sufficient decrease property.

Lemma . Under assumptions (H)-(H), the sequence {(xk , yk)} is well defined, and
{L(xk , yk)} is decreasing. More precisely, there exist two positive constants m > m >  such
that

L(xk+, yk+) + m
(‖xk+ – xk‖ + ‖yk+ – yk‖)

≤ L(xk , yk) + m
(‖xk – xk–‖ + ‖yk – yk–‖). ()

Proof Assumption (H) indicates that, for any r, r >  and (x̄, ȳ), (x̂, ŷ) ∈ R
n × R

m, the
functions

x → L(x, ȳ) +


r
‖x – x̄‖ + r〈x, x̄ – x̂〉

and

y → L(x̄, y) +


r
‖y – ȳ‖ + r〈y, ȳ – ŷ〉

are coercive. Thus the sequence {(xk , yk)} is well defined.
Now we prove (). Using the definition of xk+ and yk+ in () and (), we have

L(xk+, yk+) +


μk
‖yk+ – yk‖ + βk〈yk+, yk – yk–〉

≤ L(xk+, yk) + βk〈yk , yk – yk–〉

= L(xk+, yk) +


λk
‖xk+ – xk‖ + αk〈xk+, xk – xk–〉 + βk〈yk , yk – yk–〉

–


λk
‖xk+ – xk‖ – αk〈xk+, xk – xk–〉

≤ L(xk , yk) + αk〈xk , xk – xk–〉 + βk〈yk , yk – yk–〉

–


λk
‖xk+ – xk‖ – αk〈xk+, xk – xk–〉.

This leads to

L(xk+, yk+) +


λk
‖xk+ – xk‖ +


μk

‖yk+ – yk‖

≤ L(xk , yk) + αk〈xk – xk+, xk – xk–〉 + βk〈yk – yk+, yk – yk–〉
≤ L(xk , yk) + αk‖xk – xk+‖‖xk – xk–‖ + βk‖yk – yk+‖‖yk – yk–‖

≤ L(xk , yk) +
σαk


‖xk – xk+‖ +

αk

σ
‖xk – xk–‖ +

σβk


‖yk – yk+‖

+
βk

σ
‖yk – yk–‖
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for any σ > . Thus it yields

L(xk+, yk+) +



(

λk

– σαk

)
‖xk+ – xk‖ +




(


μk
– σβk

)
‖yk+ – yk‖

≤ L(xk , yk) +



αk

σ
‖xk – xk–‖ +




βk

σ
‖yk – yk–‖.

Clearly assumption (H) implies that

αk

σ
≤ α

σ
:= M,


λk

– σαk ≥ 
λ+

– σα := M

and

βk

σ
≤ β

σ
:= M,


μk

– σβk ≥ 
μ+

– σβ := M.

Thus

L(xk+, yk+) + M‖xk+ – xk‖ + M‖yk+ – yk‖

≤ L(xk , yk) + M‖xk – xk–‖ + M‖yk – yk–‖.

Set m = max{M, M}, m = min{M, M}. Then

L(xk+, yk+) + m
(‖xk+ – xk‖ + ‖yk+ – yk‖)

≤ L(xk , yk) + m
(‖xk – xk–‖ + ‖yk – yk–‖). ()

An elementary verification shows that m > m >  under assumption (H). �

Remark . Based on Lemma ., we can define the new function

H(z, w) = L(x, y) + m‖z – w‖, ()

where z = (x, y), w = (u, v), and ‖z – w‖ = ‖x – u‖ + ‖y – v‖. Set zk = (xk , yk). Then
Lemma . implies that the sequence {H(zk+, zk)} is decreasing. The decrease property
of the iterates {xk , yk} showed in Lemma . is of vital importance for the convergence
proof. Thus, we call H(x, y) the key function.

More precisely, we have the following lemma.

Lemma . Let H(z, w) be defined as in (). Then under assumptions (H)-(H), we have

H(zk+, zk) + m‖zk+ – zk‖ ≤ H(zk , zk–), ()

where zk = (xk , yk), that is, the sequence {H(zk+, zk)} is decreasing.

Proof Set m := m – m > . Then the result follows directly from () or (). �
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3.2 Norm estimate of the subdifferential of H
In this subsection, we prove that there exists a subgradient lower bound for the iterate gap.
First, we estimate the norm of the subdifferential of L.

Lemma . Define

pk+ := ∇xR(xk+, yk+) – ∇xR(xk+, yk)

–

λk

(xk+ – xk) – αk(xk – xk–), ()

qk+ := –


μk
(yk+ – yk) + βk(yk – yk–). ()

Then, under assumptions (H)-(H), (pk+, qk+) ∈ ∂L(xk+, yk+). Moreover, if {(xk , yk)} is
bounded, then there exists a positive constant C >  such that

∥∥(pk+, qk+)
∥∥

≤ C
(‖xk+ – xk‖ + ‖xk – xk–‖ + ‖yk+ – yk‖ + ‖yk – yk–‖

)
.

Proof According to the definition of xk+ and yk+ and the Fermat rule, we get

 ∈ ∂xL(xk+, yk) +

λk

(xk+ – xk) + αk(xk – xk–)

= ∂f (xk+) + ∇xR(xk+, yk) +

λk

(xk+ – xk) + αk(xk – xk–),

 ∈ ∂yL(xk+, yk+) +


μk
(yk+ – yk) + βk(yk – yk–)

= ∇yR(xk+, yk+) + ∂g(yk+) +


μk
(yk+ – yk) + βk(yk – yk–).

Thus

pk+ := –

λk

(xk+ – xk) – αk(xk – xk–)

– ∇xR(xk+, yk) + ∇xR(xk+, yk+)

∈ ∂f (xk+) + ∇xR(xk+, yk+) = ∂xL(xk+, yk+)

and

qk+ := –


μk
(yk+ – yk) – βk(yk – yk–)

∈ ∇yR(xk+, yk+) + ∂g(yk+) = ∂yL(xk+, yk+).

Using assumption (H), we obtain that

‖qk+‖ ≤ 
μk

‖yk+ – yk‖ + βk‖yk – yk–‖
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and

‖pk+‖ ≤ 
λk

‖xk+ – xk‖ + αk‖xk – xk–‖ + �‖yk+ – yk‖,

where � is the Lipschitz constant of ∇R(x, y) on the bounded set {(xk , yk)}.
Hence the norm estimate can be immediately derived. �

The norm estimate of the subdifferential of H is a direct consequence of Lemma ..

Lemma . For all k ∈N, H(z, w) has a subdifferential at (zk+, zk) of the form

ωk+ :=

⎛

⎜
⎜⎜
⎝

pk+ + m(xk+ – xk)
qk+ + m(yk+ – yk)

–m(xk+ – xk)
–m(yk+ – yk)

⎞

⎟
⎟⎟
⎠

. ()

Moreover, there exists a positive constant C >  such that

‖ωk+‖ ≤ C
(‖zk+ – zk‖ + ‖zk – zk–‖

)
. ()

Proof According to the definition of H(z, w), we get

∂H(z, w) =

⎛

⎜
⎜
⎝

∂L(x, y) +
(

m(x–u)
m(y–v)

)

m(u – x)
m(v – y)

⎞

⎟
⎟
⎠ . ()

The rest is immediately obtained. �

The norm estimate, together with the closeness of the limiting subdifferential, is used
to obtain the following convergence of the subsequence of {xk , yk}.

Lemma . (Preconvergence result) Under assumptions (H)-(H), we have the following
statements:

(i)
∑∞

k= ‖zk+ – zk‖ < ∞; particularly, ‖xk+ – xk‖ → ,‖yk+ – yk‖ → , k → ∞;
(ii) the sequence {L(xk , yk)} is convergent;

(iii) the sequence {H(zk+, zk)} is convergent;
(iv) if {(xk , yk)} has a cluster point (x∗, y∗), then (x∗, y∗) ∈ crit L.

Proof Set ak := L(xk , yk) + m(‖xk – xk–‖ + ‖yk – yk–‖) and bk = (m – m)(‖xk+ – xk‖ +
‖yk+ – yk‖). Then Lemma . gives ak+ + bk ≤ ak . Then assumption (H) ensures that an

is bounded below. Thus Lemma . implies (i) and (ii). Moreover, the definition of H(z, w)
yields that

H(zk+, zk) = L(xk , yk) + m
(‖xk+ – xk‖ + ‖yk+ – yk‖).

Thus (iii) is derived from (i) and (ii).
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Now let {(xkj , ykj )} be a subsequence of {(xk , yk)} such that {(xkj , ykj )} → (x∗, y∗), j → ∞.
Since f is lower semicontinuous, we have

lim inf
j→∞ f (xkj ) ≥ f

(
x∗).

On the other hand, the definition of xk+ shows that

f (xk+) + R(xk+, yk) + g(yk) +


λk
‖xk+ – xk‖ + αk〈xk+, xk – xk–〉

≤ f
(
x∗) + R

(
x∗, yk

)
+ g(yk) +


λk

∥
∥x∗ – xk

∥
∥ + αk

〈
x∗, xk – xk–

〉
,

from which we get

R(xk+, yk) – R
(
x∗, yk

)
+


λk

[‖xk+ – xk‖ –
∥
∥x∗ – xk

∥
∥]

+ αk
〈
xk+ – x∗, xk – xk–

〉
+ f (xk+)

≤ f
(
x∗).

Hence

R(xkj+, ykj ) – R
(
x∗, ykj

)
+


λ+

[‖xkj+ – xkj‖ –
∥∥x∗ – xkj

∥∥]

+ αkj

〈
xkj+ – x∗, xkj – xkj–

〉
+ f (xkj+)

≤ f
(
x∗),

where we have used assumption (H) and replaced xk , yk by xkj , ykj .
Due to the fact that ‖xk+ – xk‖ →  from (i), we have ‖xkj+ – xkj‖ → . This, together

with ‖xkj – x∗‖ → , yields ‖xkj+ – x∗‖ → . Using the continuity of R(x, y) by assumption
(H), the last inequality yields

lim sup
j→∞

f (xkj ) ≤ f
(
x∗).

Therefore

lim
j→∞ f (xkj ) = f

(
x∗).

In a similar way, we can prove that limj→∞ g(ykj ) = g(y∗). Combining with the continuity
of R(x, y), we immediately obtain that

L(xkj , ykj ) → L
(
x∗, y∗), j → ∞.

On the other hand, Lemma .(i) and Lemma . give (pkj+, qkj+) ∈ ∂L(xkj+, ykj+) and
(pkj+, qkj+) → , j → ∞. Thus the closeness of the limiting subdifferential (see ()) indi-
cates that  ∈ ∂L(x∗, y∗). �
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3.3 Analytic property of the key function H
Denote by � the set of the cluster points of the sequence {(zk+, zk)}.

Lemma . Suppose that the sequence {(xk , yk)} is bounded. Under assumptions (H)-
(H), we have that

(i) � is nonempty, compact, and connected. Moreover, dist((zk+, zk),�) →  as k → ∞.
(ii) � ⊂ crit H = {(z∗, z∗) : z∗ = (x∗, y∗) ∈ crit L}.

(iii) H is finite and constant on �.

Proof (i) It is easy to check by some elementary tools (see, e.g., []).
(ii) According to Lemma .(i),

∑∞
k= ‖zk+ – zk‖ < ∞, and hence ‖zk+ – zk‖ → , k →

∞. Note that zk = (xk , yk), so � ⊂ {(z∗, z∗) : z∗ = (x∗, y∗) ∈ crit L}. On the other hand, from
() we see that

 ∈ ∂H(z, w) ⇔ u = x, v = y and  ∈ ∂L(x, y).

Thus crit H = {(z∗, z∗) : z∗ = (x∗, y∗) ∈ crit L}, and hence � ⊂ crit H .
(iii) Notice that {L(xk , yk)} is convergent by Lemma .(ii). Let L∗ = limk→∞ L(xk , yk) be a

constant. For any (z∗, z∗) ∈ �, we have z∗ = (x∗, y∗) ∈ crit L, and there exits a subsequence
{(xkj , ykj )} of {(xk , yk)} such that {(xkj , ykj )} → (x∗, y∗). So

H(zkj , zkj– ) → H
(
z∗, z∗), j → ∞.

Thus

H
(
z∗, z∗) = lim

j→∞ H(zkj , zkj– ) = lim
j→∞ L(xkj , ykj ) = L∗. �

Theorem . (Convergence) Assume that H(z, w) is a KL function and that the sequence
{(xk , yk)} is bounded. Then, under assumptions (H)-(H), we have

(i)
∑∞

k= ‖zk – zk–‖ < ∞, that is,
∑∞

k=(‖xk – xk–‖ + ‖yk – yk–‖) < ∞;
(ii) {(xk , yk)} converges to a critical point (x∗, y∗) of L(x, y).

Proof According to Lemma ., we consider an element (x∗, y∗) ∈ crit L(x, y) such that
(z∗, z∗) ∈ �, where z∗ = (x∗, y∗). From the previous proof we can easily obtain that
limk→∞ H(zk+, zk) = H(z∗, z∗). Next, we prove the theorem in two cases.

Case . There exists a positive integer k such that H(zk+, zk ) = H(z∗, z∗).
Since {H(zk+, zk)} is decreasing, we know that H(zk+, zk) = H(z∗, z∗) for all k ≥ k. This,

together with the definition of H , shows that zk = zk for all k ≥ k, and the desired results
follow.

Case . H(zk+, zk) > H(z∗, z∗) for all k ∈N.
Since H satisfies the KL property, Lemma . says that there exist ε,η >  and a concave

function ϕ such that
(i) ϕ() = ;

(ii) ϕ is continuously differentiable on (,η) and continuous at ;
(iii) ϕ′(s) >  for all s ∈ (,η);
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(iv) for all

(z, w) ∈ {
(z, w) ∈R

n ×R
m : dist

(
(z, w),�

)
< ε

}

∩ {
(z, w) ∈R

n ×R
m : H

(
z∗, z∗) < H(z, w) < H

(
z∗, z∗) + η

}
, ()

we have

ϕ′(H(z, w) – H
(
z∗, z∗))dist

(
, ∂H(z, w)

) ≥ .

Notice that H(zk+, zk) → H(z∗, z∗), k → ∞, and H(zk+, zk) > H(z∗, z∗). Let k be
such that H(z∗, z∗) < H(zk+, zk) < H(z∗, z∗) + η for all k ≥ k. By Lemma .(i) there
exists k such that dist((zk+, zk),�) < ε for all k ≥ k. Take k = max{k, k}. Then,
for k ≥ k, {(zk+, zk)} belongs to the intersection in (). Hence

ϕ′(H(zk+, zk) – H
(
z∗, z∗))dist

(
, ∂H(zk+, zk)

) ≥ , ∀k ≥ k.

Due to the concavity of ϕ,

ϕ
(
H(zk , zk–) – H

(
z∗, z∗)) – ϕ

(
H(zk+, zk) – H

(
z∗, z∗))

≥ ϕ′(H(zk , zk–) – H
(
z∗, z∗))(H(zk , zk–) – H(zk+, zk)

)

≥ H(zk , zk–) – H(zk+, zk)
dist(, ∂H(zk , zk–))

, k > k.

By Lemma . there exist a point ωk+ ∈ ∂H(zk+, zk) defined as in () and a positive con-
stant C >  such that

‖ωk+‖ ≤ C
(‖zk+ – zk‖ + ‖zk – zk–‖

)
.

Thus

ϕ
(
H(zk , zk–) – H

(
z∗, z∗)) – ϕ

(
H(zk+, zk) – H

(
z∗, z∗))

≥ H(zk , zk–) – H(zk+, zk)
C(‖zk – zk–‖ + ‖zk– – zk–‖)

, k > k.

From Lemma . we have H(zk , zk–) – H(zk+, zk) ≥ m‖zk+ – zk‖. Thus

ϕ
(
H(zk , zk–) – H

(
z∗, z∗)) – ϕ

(
H(zk+, zk) – H

(
z∗, z∗))

≥ m‖zk+ – zk‖

C(‖zk – zk–‖ + ‖zk– – zk–‖)
, k > k. ()

Set bk = C
m (ϕ(H(zk , zk–) – H(z∗, z∗)) –ϕ(H(zk+, zk) – H(z∗, z∗))) ≥ , ak = ‖zk – zk–‖ ≥ .

Then () can be equivalently rewritten as

bk ≥ a
k+

ak + ak–
, k > k. ()
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Since ϕ ≥ , we know that

N∑

k=

bk ≤ C

m
ϕ
(
H(z, z) – H

(
z∗, z∗)), ∀N ∈ N,

and hence
∑∞

k= bk < ∞. Note that from () we have

ak+ ≤ √
bk(ak + ak–) ≤ 


(ak + ak–) + bk , k > k.

So Lemma . gives that
∑∞

k= ak < ∞, that is,
∑∞

k= ‖zk – zk–‖ < ∞, which is equivalent
to

∑∞
k=(‖xk – xk–‖ + ‖yk – yk–‖) < ∞. This indicates that {zk} is a Cauchy sequence. So

{zk} = {(xk , yk)} is convergent. Let (xk , yk) → (x∗, y∗), k → ∞. According to Lemma .(iv),
it is clear that (x∗, y∗) is a critical point of H . �

4 Conclusion
In this paper, we present a proximal alternating minimization algorithm with inertial ef-
fect for the minimization problem of the type L(x, y) = f (x) + R(x, y) + g(y), where f and
g are both nonconvex nonsmooth functions, and R is a smooth function. We prove that
every bounded sequence generated by the algorithm converges to a critical point of L.
The key point is to construct a function H (see ()) that satisfies the Kurdyka-Lojasiewicz
inequality. It is worth mentioning that assumption (H) requires

max{α,β} · max{λ+,μ+} <



,

which can be achieved by appropriate choice of the parameters.
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