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Abstract
The purpose of this paper is twofold. First, the definition of new statistical
convergence with Fibonacci sequence is given and some fundamental properties of
statistical convergence are examined. Second, we provide various approximation
results concerning the classical Korovkin theorem via Fibonacci type statistical
convergence.
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1 Introduction
1.1 Densities and statistical convergence
Let A be a subset of positive integers. We consider the interval [, n] and select an integer
in this interval, randomly. Then the ratio of the number of elements of A in [, n] to the
total number of elements in [, n] belongs to A, probably. For n → ∞, if this probability
exists, that is, this probability tends to some limit, then this limit is used as the asymptotic
density of the set A. Let us mention that the asymptotic density is a kind of probability of
choosing a number from the set A.

Now, we give some definitions and properties of asymptotic density.
The set of positive integers will be denoted by Z

+. Let A and B be subsets of Z+. If the
symmetric difference A�B is finite, then we can say A is asymptotically equal to B and de-
note A ∼ B. Freedman and Sember introduced the concept of a lower asymptotic density
and defined the concept of convergence in density, in [].

Definition . ([]) Let f be a function defined for all sets of natural numbers which takes
values in the interval [, ]. Then the function f is said to be a lower asymptotic density if
the following conditions hold:

i. f (A) = f (B) if A ∼ B;
ii. f (A) + f (B) ≤ f (A ∪ B) if A ∩ B = ∅;

iii. f (A) + f (B) ≤  + f (A ∩ B) for all A;
iv. f (Z+) = .

We can define the upper density based on the definition of lower density as follows.
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Let f be any density. Then, for any set of natural numbers A, the function f is said to be
upper density associated with f if f (A) =  – f (Z+\A).

Consider the set A ⊂ Z
+. If f (A) = f (A), then we can say that the set A has natural density

with respect to f . The term asymptotic density is often used for the function

d(A) = lim inf
n→∞

A(n)
n

,

where A ⊂ N and A(n) =
∑

a≤n,a∈A . Also the natural density of A is given by d(A) =
limn n–|A(n)|, where |A(n)| denotes the number of elements in A(n).

The study of statistical convergence was initiated by Fast []. Schoenberg [] studied sta-
tistical convergence as a summability method and listed some of the elementary proper-
ties of statistical convergence. Both of these mathematicians mentioned that if a bounded
sequence is statistically convergent to L, then it is Cesàro summable to L. Statistical con-
vergence also arises as an example of ‘convergence in density’ as introduced by Buck [].
In [], Zygmund called this concept ‘almost convergence’ and established the relation be-
tween statistical convergence and strong summability. The idea of statistical convergence
has been studied in different branches of mathematics such as number theory [], trigono-
metric series [], summability theory [], measure theory [] and Hausdorff locally con-
vex topological vector spaces []. The concept of αβ-statistical convergence was intro-
duced and studied by Aktuǧlu []. In [], Karakaya and Karaisa extended the concept of
αβ-statistical convergence. Also, they introduced the concept of weighted αβ-statistical
convergence of order γ , weighted αβ-summability of order γ and strongly weighted αβ-
summable sequences of order γ in []. In [], Braha gave a new weighted equi-statistical
convergence and proved the Korovkin type theorems using the new definition.

Definition . A real numbers sequence x = (xk) is statistically convergent to L provided
that for every ε >  the set {n ∈ N : |xn – L| ≥ ε} has natural density zero. The set of all
statistically convergent sequences is denoted by S. In this case, we write S – lim x = L or
xk → L(S).

Definition . ([]) The sequence x = (xk) is statistically Cauchy sequence if for every
ε >  there is a positive integer N = N(ε) such that

d
({

n ∈N : |xn – xN(ε)| ≥ ε
})

= .

It can be seen from the definition that statistical convergence is a generalization of the
usual notion of convergence that parallels the usual theory of convergence.

Fridy [] introduced a new notation for facilitation: If x = (xn) is a sequence that satisfies
some property P for all n except a set of natural density zero, then we say that x = (xn)
satisfies P for ‘almost all n’, and we abbreviate ‘a.a.n’. In [], Fridy proved the following
theorem.

Theorem . The following statements are equivalent:
i. x is a statistically convergent sequence;

ii. x is a statistically Cauchy sequence;
iii. x is a sequence for which there is a convergent sequence y such that xn = yn for a.a.n.
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1.2 Fibonacci numbers and Fibonacci matrix
The numbers in the bottom row are called Fibonacci numbers, and the number sequence

, , , , , , , , , , , , . . .

is the Fibonacci sequence [].

Definition . The Fibonacci numbers are a sequence of numbers (fn) for n = , , . . . de-
fined by the linear recurrence equation

fn = fn– + fn–, n ≥ .

From this definition, it means that the first two numbers in Fibonacci sequence are ei-
ther  and  (or  and ) depending on the chosen starting point of the sequence and all
subsequent numbers is the sum of the previous two. That is, we can choose f = f =  or
f = , f = .

Fibonacci sequence was initiated in the book Liber Abaci of Fibonacci which was writ-
ten in . However, the sequence is based on older history. The sequence had been
described earlier as Virahanka numbers in Indian mathematics []. In Liber Abaci, the
sequence starts with , nowadays the sequence begins either with f =  or with f = .

Some of the fundamental properties of Fibonacci numbers are given as follows:

lim
n→∞

fn+

fn
=

 +
√




= α (golden ratio),

n∑

k=

fk = fn+ –  (n ∈N),

∑

k


fk

converges,

fn–fn+ – f 
n = (–)n+ (n ≥ ) (Cassini formula).

It yields f 
n– + fnfn– – f 

n = (–)n+ if we can substitute for fn+ in Cassini’s formula.
Let fn be the nth Fibonacci number for every n ∈ N. Then we define the infinite matrix

F̂ = (̂fnk) [] by

f̂nk =

⎧
⎪⎪⎨

⎪⎪⎩

– fn+
fn (k = n – ),

fn
fn+

(k = n),

 ( ≤ k < n –  or k > n).

1.3 Approximation theory
Korovkin type approximation theorems are practical tools to check whether a given se-
quence (An)n≥ of positive linear operators on C[a, b] of all continuous functions on the
real interval [a, b] is an approximation process. That is, these theorems present a variety
of test functions which provide that the approximation property holds on the whole space
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if it holds for them. Such a property was determined by Korovkin [] in  for the func-
tions , x and x in the space C[a, b] as well as for the functions , cos and sin in the space
of all continuous π-periodic functions on the real line.

Until the study of Gadjiev and Orhan [], there was no study related to statistical con-
vergence and approximation theory. In [], Korovkin type approximation theorems were
proved by using the idea of statistical convergence. Some of the examples of approximation
theory and statistical convergence studies can be seen in [, , –].

2 Methods
In the theory of numbers, there are many different definitions of density. It is well known
that the most popular of these definitions is asymptotic density. However, asymptotic den-
sity does not exist for all sequences. New densities have been defined to fill those gaps and
to serve different purposes.

The asymptotic density is one of the possibilities to measure how large a subset of the
set of natural numbers is. We know intuitively that positive integers are much more than
perfect squares. Because every perfect square is positive and many other positive integers
exist besides. However, the set of positive integers is not in fact larger than the set of per-
fect squares: both sets are infinite and countable and can therefore be put in one-to-one
correspondence. Nevertheless, if one goes through the natural numbers, the squares be-
come increasingly scarce. It is precisely in this case that natural density helps us and makes
this intuition precise.

The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and
Başarır []. Afterward, Kara [] defined the Fibonacci difference matrix F̂ by using the
Fibonacci sequence (fn) for n ∈ {, , . . .} and introduced the new sequence spaces related
to the matrix domain of F̂ .

Following [] and [], high quality papers have been produced on the Fibonacci matrix
by many mathematicians [–].

In this paper, by combining the definitions of Fibonacci sequence and statistical conver-
gence, we obtain a new concept of statistical convergence, which will be called Fibonacci
type statistical convergence. We examine some basic properties of new statistical con-
vergence defined by Fibonacci sequences. Henceforth, we get an analogue of the classical
Korovkin theorem by using the concept of Fibonacci type statistical convergence.

It will be shown that if X is a Banach space, then for a closed subset of X, which is
denoted by A, Fibonacci type space A is closed in Fibonacci type space X. We will give
the definitions of Fibonacci statistically Cauchy sequence and investigate the Fibonacci
statistically convergent sequences and Fibonacci statistically Cauchy sequences. Using the
definition of statistical boundedness, it will be proved that the set of Fibonacci statistically
convergent sequence spaces of real numbers is a closed linear space of a set of Fibonacci
bounded sequences of real numbers and nowhere dense in Fibonacci bounded sequences
of real numbers. After proving that the set of Fibonacci statistically convergent sequences
is dense in Frechet metric space of all real sequences, the inclusion relations will be given.

For the rest of the paper, firstly an approximation theorem, which is an analogue of Ko-
rovkin theorem, is given and an example is solved. Second, the rate of Fibonacci statistical
convergence of a sequence of positive linear operators defined Cπ (R) into Cπ (R) is com-
puted.
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3 Main results
3.1 Fibonacci type statistical convergence
Now, we give the general Fibonacci sequence space X (̂F) as follows [, ]: Let X be any
sequence space and k ∈N. Then

X (̂F) =
{

x = (xk) ∈ ω : (̂Fxk) ∈ X
}

.

It is clear that if X is a linear space, then X (̂F) is also a linear space. Kara proved that if
X is a Banach space, then X (̂F) is also a Banach space with the norm

‖x‖X (̂F) = ‖F̂x‖X .

Now, we will give lemma which is used in the proof of Theorem .. Proof of this lemma
is trivial.

Lemma . If X ⊂ Y , then X (̂F) ⊂ Y (̂F).

Theorem . Consider that X is a Banach space and A is a closed subset of X. Then A(̂F)
is also closed in X (̂F).

Proof Since A is a closed subset of X, from Lemma ., then we can write A(̂F) ⊂ X (̂F).
A(̂F), A denote the closure of A(̂F) and A, respectively. To prove the theorem, we must
show that A(̂F) = A(̂F).

Firstly, we take x ∈ A(̂F). Therefore, from .. Theorem of [], there exists a sequence
(xn) ∈ A(̂F) such that ‖xn –x‖F̂ →  in A(̂F) for n → ∞. Thus, ‖(xn

k )–(xk)‖F̂ →  as n → ∞
in A(̂F) so that

m∑

i=

∣
∣xn

i – xi
∣
∣ +

∥
∥F̂

(
xn

k
)

– F̂(xk)
∥
∥ → 

for n → ∞, in A. Therefore, F̂x ∈ A and so x ∈ A(̂F).
Conversely, if we take x ∈ A(̂F), then x ∈ A(̂F). We know that A is closed. Then A(̂F) =

A(̂F). Hence, A(̂F) is a closed subset of X (̂F). �

From this theorem, we can give the following corollary.

Corollary . If X is a separable space, then X (̂F) is also a separable space.

Definition . A sequence x = (xk) is said to be Fibonacci statistically convergent (or F̂-
statistically convergent) if there is a number L such that, for every ε > , the set Kε (̂F) :=
{k ≤ n : |̂Fxk – L| ≥ ε} has natural density zero, i.e., d(Kε (̂F)) = . That is,

lim
n→∞


n

∣
∣
{

k ≤ n : |̂Fxk – L| ≥ ε
}∣
∣ = .

In this case we write d(̂F) – lim xk = L or xk → L(S(̂F)). The set of F̂-statistically conver-
gent sequences will be denoted by S(̂F). In the case L = , we will write S(̂F).
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Definition . Let x = (xk) ∈ ω. The sequence x is said to be F̂-statistically Cauchy if there
exists a number N = N(ε) such that

lim
n→∞


n

∣
∣
{

k ≤ n : |̂Fxk – F̂xN | ≥ ε
}∣
∣ = 

for every ε > .

Theorem . If x is an F̂-statistically convergent sequence, then x is an F̂-statistically
Cauchy sequence.

Proof Let ε > . Assume that xk → L(S(̂F)). Then |̂Fxk – L| < ε/ for almost all k. If N is
chosen so that |̂FxN –L| < ε/, then we have |̂Fxk – F̂xN | < |̂Fxk –L|+ |̂FxN –L| < ε/+ε/ =
ε for almost all k. It means that x is an F̂-statistically Cauchy sequence. �

Theorem . If x is a sequence for which there is an F̂-statistically convergent sequence y
such that F̂xk = F̂yk for almost all k, then x is an F̂- statistically convergent sequence.

Proof Suppose that F̂xk = F̂yk for almost all k and yk → L(S(̂F)). Then ε >  and, for each
n, {k ≤ n : |̂Fxk – L| ≥ ε} ⊆ {k ≤ n : F̂xk �= F̂yk}∪ {k ≤ n : |̂Fxk – L| ≤ ε}. Since yk → L(S(̂F)),
the latter set contains a fixed number of integers, say g = g(ε). Therefore, for F̂xk = F̂yk , for
almost all k,

lim
n


n

∣
∣
{

k ≤ n : |̂Fxk – L| ≥ ε
}∣
∣ ≤ lim

n


n

∣
∣{k ≤ n : F̂xk �= F̂yk}

∣
∣ + lim

n

g
n

= .

Hence xk → L(S(̂F)). �

Definition . ([]) A sequence x = (xk) is said to be statistically bounded if there exists
some L ≥  such that

d
({

k : |xk| > L
})

= , i.e., |xk| ≤ L a.a.k.

By m, we denote the linear space of all statistically bounded sequences. Bounded se-
quences are obviously statistically bounded as the empty set has zero natural density. How-
ever, the converse is not true. For example, we consider the sequence

xn =

⎧
⎨

⎩

n (k is a square),

 (k is not a square).

Clearly (xk) is not a bounded sequence. However, d({k : |xk| > /}) = , as the set of squares
has zero natural density and hence (xk) is statistically bounded [].

Proposition . ([]) Every convergent sequence is statistically bounded.

Although a statistically convergent sequence does not need to be bounded (cf. [, ]),
the following proposition shows that every statistically convergent sequence is statistically
bounded.
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Proposition . ([]) Every statistically convergent sequence is statistically bounded.

Now, using Propositions . and ., we can give the following corollary.

Corollary . Every F̂-statistically convergent sequence is F̂-statistically bounded.

Denote the set of all F̂-bounded sequences of real numbers by m(̂F) []. Based on Def-
inition . and the descriptions of m and m(̂F), we can denote the set of all F̂-bounded
statistically convergent sequences of real numbers by m(̂F).

The following theorem can be proved by Theorem . of [] and Theorem ..

Theorem . The set of m(̂F) is a closed linear space of the linear normed space m(̂F).

Theorem . The set of m(̂F) is a nowhere dense set in m(̂F).

Proof According to [], every closed linear subspace of an arbitrary linear normed space
E, different from E, is a nowhere dense set in E. Hence, on account of Theorem ., it
suffices to prove that m(̂F) �= m(̂F). But this is evident, consider the sequence

xn =

⎧
⎨

⎩

 (n is odd),

 (n is even).

Then x ∈ m(̂F), but does not belong to m(̂F). �

ω denotes the Fréchet metric space of all real sequences with the metric dω ,

dω =
∞∑

k=


k

|xk – yk|
 + |xk – yk| ,

where x = (xk), y = (yk) ∈ ω for all k = , , . . . .

Theorem . The set of F̂-statistically convergent sequences is dense in the space ω.

Proof If x = (xk) ∈ S(̂F) (for all k) and the sequence y = (yk) (for all k) of real numbers differs
from x only in a finite number of terms, then evidently y ∈ S(̂F), too. From this statement
the proof follows at once on the basis of the definition of the metric in ω. �

Theorem . The following statements hold.
i. The inclusion c(̂F) ⊂ S(̂F) is strict.

ii. S(̂F) and 
∞ (̂F) overlap but neither one contains the other.
iii. S(̂F) and 
∞ overlap but neither one contains the other.
iv. S and S(̂F) overlap but neither one contains the other.
v. S and c(̂F) overlap but neither one contains the other.

vi. S and c(̂F) overlap but neither one contains the other.
vii. S and 
∞ (̂F) overlap but neither one contains the other.



Kirişci and Karaisa Journal of Inequalities and Applications  (2017) 2017:229 Page 8 of 15

Proof i) Since c ⊂ S, then c(̂F) ⊂ S(̂F). We choose

F̂xn =
(
f 
n+

)
=

(
, , , , . . .

)
. (.)

Since f 
n+ → ∞ as k → ∞ and F̂x = (, , , . . .), then F̂x ∈ S, but is not in the space c, that

is, F̂ /∈ c.
For the other items, firstly, use the inclusion relations in []. It is obtained that the

inclusions c ⊂ S(̂F), c ⊂ c(̂F), c ⊂ m(̂F), c ⊂ S, c ⊂ 
∞ and c ∩ c(̂F) �= φ hold. Then we see
that S(̂F) and 
∞ (̂F), S(̂F) and 
∞, S and S(̂F), S and c(̂F), S and c(̂F), S and 
∞ (̂F) overlap.

ii) We define F̂x = F̂xn by (.). Then F̂x ∈ S, but F̂x is not in 
∞. Now we choose u =
(, , , , . . .). Then u ∈ 
∞ (̂F) but u /∈ S(̂F).

iii) The proof is the same as (ii).
iv) Define

xn =

⎧
⎨

⎩

 (n is a square),

 (otherwise).

Then x ∈ S, but x /∈ S(̂F). Conversely, if we take u = (n), then u /∈ S but x ∈ S(̂F).
(v), (vi) and (vii) are proven similar to (iv). �

3.2 Approximation theorems
.. Approximation by F̂-statistical convergence
In this section, we get an analogue of classical Korovkin theorem by using the concept of
F̂-statistical convergence.

Let F(R) denote the linear space of real-valued functions on R. Let C(R) be a space of
all real-valued continuous functions f on R. It is well known that C(R) is a Banach space
with the norm given as follows:

‖f ‖∞ = sup
x∈R

∣
∣f (x)

∣
∣, f ∈ C(R),

and we denote by Cπ (R) the space of all π-periodic functions f ∈ C(R), which is a Ba-
nach space with the norm given by

‖f ‖π = sup
t∈R

∣
∣f (t)

∣
∣, f ∈ C(R).

We say A is a positive operator if for every non-negative f and x ∈ I , we have A(f , x) ≥ ,
where I is any given interval on the real semi-axis. The first and second classical Korovkin
approximation theorems state the following (see [, ]).

Theorem . Let (An) be a sequence of positive linear operators from C[, ] into F[, ].
Then

lim
n→∞

∥
∥An(f , x) – f (x)

∥
∥

C[a,b] =  ⇔ lim
n→∞

∥
∥An(ei, x) – ei

∥
∥

C[a,b] = ,

where ei = xi, i = , , .
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Theorem . Let (Tn) be a sequence of positive linear operators from Cπ (R) into F(R).
Then

lim
n→∞

∥
∥Tn(f , x) – f (x)

∥
∥

π
=  ⇔ lim

n→∞
∥
∥Tn(fi, x) – fi

∥
∥

π
= , i = , , ,

where f = , f = sinx and f = cosx.

Our main Korovkin type theorem is given as follows.

Theorem . Let (Lk) be a sequence of positive linear operators from Cπ (R) into Cπ (R).
Then, for all f ∈ Cπ (R),

d(̂F) – lim
k→∞

∥
∥Lk(f , x) – f (x)

∥
∥

π
=  (.)

if and only if

d(̂F) – lim
k→∞

∥
∥Lk(, x) – 

∥
∥

π
= , (.)

d(̂F) – lim
k→∞

∥
∥Lk(sin t, x) – sin x

∥
∥

π
= , (.)

d(̂F) – lim
k→∞

∥
∥Lk(cos t, x) – cos x

∥
∥

π
= . (.)

Proof As , sin x, cos x ∈ Cπ (R), conditions (.)-(.) follow immediately from (.). Let
conditions (.)-(.) hold and I = (a, a + π ) be any subinterval of length π in R. Let
us fix x ∈ I. By the properties of function f , it follows that for given ε >  there exists
δ = δ(ε) >  such that

∣
∣f (x) – f (t)

∣
∣ < ε, whenever ∀|t – x| < δ. (.)

If |t – x| ≥ δ, let us assume that t ∈ (x + δ, π + x + δ). Then we obtain that

∣
∣f (x) – f (t)

∣
∣ ≤ ‖f ‖π ≤ ‖f ‖π

sin( δ
 )

ψ(t), (.)

where ψ(t) = sin( t–x
 ).

By using (.) and (.), we have

∣
∣f (x) – f (t)

∣
∣ < ε +

‖f ‖π

sin( δ
 )

ψ(t).

This implies that

–ε –
‖f ‖π

sin( δ
 )

ψ(t) < f (x) – f (t) < ε +
‖f ‖π

sin( δ
 )

ψ(t).

By using the positivity and linearity of {Lk}, we get

Lk(, x)
(

–ε
‖f ‖π

sin( δ
 )

ψ(t)
)

< Lk(, x)
(
f (x) – f (t)

)
< Lk(, x)

(

ε +
‖f ‖π

sin( δ
 )

ψ(t)
)

,
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where x is fixed and so f (x) is a constant number. Therefore,

–εLk(, x) –
‖f ‖π

sin( δ
 )

Lk
(
ψ(t), x

)
< Lk(f , x) – f (x)Lk(, x)

< εLk(, x) +
‖f ‖π

sin( δ
 )

Lk
(
ψ(t), x

)
. (.)

On the other hand, we get

Lk(f , x) – f (x) = Lk(f , x) – f (x)Lk(, x) + f (x)Lk(, x) – f (x)

= Lk(f , x) – f (x)Lk(, x) – f (x)Lk + f (x)
[
Lk(, x) – 

]
. (.)

By inequalities (.) and (.), we obtain

Lk(f , x) – f (x) < εLk(, x) +
‖f ‖π

sin( δ
 )

Lk
(
ψ(t), x

)

+ f (x) + f (x)
[
Lk(, x) – 

]
. (.)

Now, we compute the second moment

Lk
(
ψ(t), x

)
= Lk

(

sin
(

x – t


)

, x
)

= Lk

(



( – cos t cos x – sin x sin t), x
)

=


[
Lk(, x) – cos xLk(cos t, x) – sin xLk(sin t, x)

]

=


{

Lk(, x) – cos x
[
Lk(cos t, x) – cos x

]

– sin x
[
Lk(sin t, x) – sin x

]}
.

By (.), we have

Lk(f , x) – f (x) < εLk(, x) +
‖f ‖π

sin( δ
 )



{

Lk(, x)

– cos x
[
Lk(cos t, x) – cos x

]
– sin x

[
Lk(sin t, x) – sin x

]}

+ f (x)
(
Lk(, x) – 

)

= ε
[
Lk(, x) – 

]
+ ε + f (x)

(
Lk(, x) – 

)

+
‖f ‖π

sin( δ
 )

{
Lk(, x) – cos x

[
Lk(cos t, x) – cos x

]

– sin x
[
Lk(sin t, x) – sin x

]}
.

So, from the above inequality, one can see that

∣
∣Lk(f , x) – f (x)

∣
∣ ≤ ε +

(

ε +
∣
∣f (x)

∣
∣ +

‖f ‖π

sin( δ
 )

)
∣
∣Lk(, x) – 

∣
∣

+
‖f ‖π

sin( δ
 )

[| cos x|∣∣Lk(cos t, x) – cos x
∣
∣



Kirişci and Karaisa Journal of Inequalities and Applications  (2017) 2017:229 Page 11 of 15

+ | sin x|∣∣Lk(sin t, x) – sin x
∣
∣
]

≤ ε +
(

ε +
∣
∣f (x)

∣
∣ +

‖f ‖π

sin( δ
 )

)
∣
∣Lk(, x) – 

∣
∣

+
‖f ‖π

sin( δ
 )

[∣
∣Lk(cos t, x) – cos x

∣
∣ + | sin x|∣∣Lk(sin t, x) – sin x

∣
∣
]
.

Because ε is arbitrary, we obtain

∥
∥Lk(f , x) – f (x)

∥
∥

π
≤ ε + R

(∥
∥Lk(, x) – 

∥
∥

π
+

∥
∥Lk(cos t, x) – cos t

∥
∥

π

+
∥
∥Lk(sin t, x) – sin x

∥
∥

π

)
,

where R = max(ε + ‖f ‖π + ‖f ‖π

sin( δ
 )

, ‖f ‖π

sin( δ
 )

).

Finally, replacing Lk(·, x) by Tk(·, x) = F̂Lk(·, x) and for ε′ > , we can write

A :=
{

k ∈ N :

∥
∥Tk(, x) – 

∥
∥

π
+

∥
∥Tk(sin t, x) – sin x

∥
∥

π
+

∥
∥Tk(cos t, x) – cos x

∥
∥

π
≥ ε′

R

}

,

A :=
{

k ∈N :
∥
∥Tk(, x) – 

∥
∥

π
≥ ε′

R

}

,

A :=
{

k ∈N :
∥
∥Tk(sin t, x) – sin x

∥
∥

π
≥ ε′

R

}

,

A :=
{

k ∈N :
∥
∥Tk(cos t, x) – cos x

∥
∥

π
≥ ε′

R

}

.

Then A ⊂ A ∪A ∪A, so we have d(A) ≤ d(A) + d(A) + d(A). Thus, by conditions
(.)-(.), we obtain

d(̂F) – lim
k→∞

∥
∥Lk(f , x) – f (x)

∥
∥

π
= ,

which completes the proof. �

We remark that our Theorem . is stronger than Theorem . as well as Theorem of
Gadjiev and Orhan []. For this purpose, we get the following example.

Example . For n ∈ N, denote by Sn(f ) the n-partial sum of the Fourier series of f , that
is,

Sn(f , x) =



a(f ) +
n∑

k=

ak(f ) cos kx + bk(f ) sin kx.

For n ∈N, we get

Fn(f , x) =


n + 

n∑

k=

Sk(f ).
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A standard calculation gives that for every t ∈R

Fn(f , x) =


π

∫ π

–π

f (t)ϕn(x – t)dt,

where

ϕn(x) =

⎧
⎨

⎩

sin((n+)(x–t)/)
(n+) sin((x–t)/) , if x is not a multiple of π ,

n + , if x is a multiple of π .

The sequence (ϕn)n∈N is a positive kernel which is called the Fejér kernel, and correspond-
ing Fn for n ≥  are called Fejér convolution operators.

We define the sequence of linear operators as Kn : Cπ (R) −→ Cπ (R) with Kn(f , x) = ( +
yn)Fn(f , x), where y = (yn) = (f 

n+). Then Kn(, x) = , Kn(sin t, x) = n
n+ sin x and Kn(cos t, x) =

n
n+ cos x and the sequence (Kn) satisfies conditions (.)-(.). Therefore, we get

d(̂F) – lim
k→∞

∥
∥Kn(f , x) – f (x)

∥
∥

π
= .

On the other hand, one can see that (Kn) does not satisfy Theorem . as well as The-
orem of Gadjiev and Orhan [] since F̂y = (, , , . . .), the sequence y is F̂-statistically
convergent to . But the sequence y is neither convergent nor statistically convergent.

.. Rate of F̂-statistical convergence
In this section, we estimate the rate of F̂-statistical convergence of a sequence of positive
linear operators defined by Cπ (R) into Cπ (R). Now, we give the following definition.

Definition . Let (an) be a positive non-increasing sequence. We say that the sequence
x = (xk) is F̂-statistically convergent to 
 with the rate o(an) if, for every ε > ,

lim
n→∞


un

∣
∣
{

k ≤ n : |̂Fx – 
| ≥ ε
}∣
∣ = .

At this stage, we can write xk – 
 = d(̂F) – o(un).

As usual we have the following auxiliary result.

Lemma . Let (an) and (bn) be two positive non-increasing sequences. Let x = (xk) and
y = (yk) be two sequences such that xk – L = d(̂F) – o(an) and yk – L = d(̂F) – o(bn). Then
we have

(i) α(xk – L) = d(̂F) – o(an) for any scalar α,
(ii) (xk – L) ± (yk – L) = d(̂F) – o(cn),

(iii) (xk – L)(yk – L) = d(̂F) – o(anbn),
where cn = max{an, bn}.

For δ > , the modulus of continuity of f , ω(f , δ) is defined by

ω(f , δ) = sup
|x–y|<δ

∣
∣f (x) – f (y)

∣
∣.
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It is well known that for a function f ∈ C[a, b],

lim
n→+

ω(f , δ) = 

for any δ > 

∣
∣f (x) – f (y)

∣
∣ ≤ ω(f , δ)

( |x – y|
δ

+ 
)

. (.)

Theorem . Let (Lk) be a sequence of positive linear operators from Cπ (R) into Cπ (R).
Assume that

(i)
∥
∥Lk(, x) – x

∥
∥

π
= d(̂F) – o(un),

(ii) ω(f , θk) = d(̂F) – o(vn), where θk =

√

Lk

[

sin
(

t – x


)

, x
]

.

Then, for all f ∈ Cπ (R), we get

∥
∥Lk(f , x) – f (x)

∥
∥

π
= d(̂F) – o(zn),

where zn = max{un, vn}.

Proof Let f ∈ Cπ (R) and x ∈ [–π ,π ]. From (.) and (.), we can write

∣
∣Lk(f , x) – f (x)

∣
∣ ≤ Lk

(∣
∣f (t) – f (x)

∣
∣; x

)
+

∣
∣f (x)

∣
∣
∣
∣Lk(, x) – 

∣
∣

≤ Lk

( |x – y|
δ

+ ; x
)

ω(f , δ) +
∣
∣f (x)

∣
∣
∣
∣Lk(, x) – 

∣
∣

≤ Lk

(
π

δ sin
(

y – x


)

+ ; x
)

ω(f , δ) +
∣
∣f (x)

∣
∣
∣
∣Lk(, x) – 

∣
∣

≤
{

Lk(, x) +
π

δ Lk

(

sin
(

y – x


)

; x
)}

ω(f , δ) +
∣
∣f (x)

∣
∣
∣
∣Lk(, x) – 

∣
∣

=
{

Lk(, x) +
π

δ Lk

(

sin
(

y – x


)

; x
)}

ω(f , δ) +
∣
∣f (x)

∣
∣
∣
∣Lk(, x) – 

∣
∣.

By choosing
√

θk = δ, we get

∥
∥Lk(f , x) – f (x)

∥
∥

π
≤ ‖f ‖π

∥
∥Lk(, x) – x

∥
∥

π
+ ω(f , θk) + ω(f , θk)

∥
∥Lk(, x) – x

∥
∥

π

≤ K
{∥
∥Lk(, x) – x

∥
∥

π
+ ω(f , θk) + ω(f , θk)

∥
∥Lk(, x) – x

∥
∥

π

}
,

where K = max{,‖f ‖π }. By Definition . and conditions (i) and (ii), we get the desired
result. �

4 Conclusion
One of the most known and interesting number sequences is the Fibonacci sequence, and
it still continues to be of interest to mathematicians because this sequence is an important
and useful tool to expand the mathematical horizon for many mathematicians.



Kirişci and Karaisa Journal of Inequalities and Applications  (2017) 2017:229 Page 14 of 15

The concept of statistical convergence for a sequence of real numbers was defined by
Fast [] and Steinhaus [] independently in . Statistical convergence has recently
become an area of active research. Currently, researchers in statistical convergence have
devoted their effort to statistical approximation.

Approximation theory has important applications in the theory of polynomial approxi-
mation in various areas of functional analysis. The study of the Korovkin type approxima-
tion theory is a well-established area of research, which is concerned with the problem of
approximating a function f by means of a sequence An of positive linear operators. Statis-
tical convergence is quite effective in the approximation theory. In recent times, very high
quality publications have been made using approximation theory and statistical conver-
gence [, , –].

In this study, we have studied the concept of statistical convergence which has an im-
portant place in the literature using Fibonacci sequences. The statistical convergence is
a generalization of the usual notion of convergence. We have defined the Fibonacci type
statistical convergence and investigated basic properties. A new version of Korovkin type
approximation theory was introduced using the new concept of statistical convergence.
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