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Abstract
In this paper, a class of nonlinear constrained optimization problems with both
inequality and equality constraints is discussed. Based on a simple and effective
penalty parameter and the idea of primal-dual interior point methods, a QP-free
algorithm for solving the discussed problems is presented. At each iteration, the
algorithm needs to solve two or three reduced systems of linear equations with a
common coefficient matrix, where a slightly new working set technique for judging
the active set is used to construct the coefficient matrix, and the positive definiteness
restriction on the Lagrangian Hessian estimate is relaxed. Under reasonable
conditions, the proposed algorithm is globally and superlinearly convergent. During
the numerical experiments, by modifying the technique in Section 5 of (SIAM
J. Optim. 14(1): 173-199, 2003), we introduce a slightly new computation measure for
the Lagrangian Hessian estimate based on second order derivative information,
which can satisfy the associated assumptions. Then, the proposed algorithm is tested
and compared on 59 typical test problems, which shows that the proposed algorithm
is promising.
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1 Introduction
In this paper, we consider nonlinear constrained optimization problems with inequality
and equality constraints

(P) min f (x), s.t. gi(x) = , i ∈ I�; gj(x) ≤ , j ∈ Iı , ()

where I� = {, , . . . , m�}, Iı = {m� + , m� + , . . . , m� + mı}, the functions f and gj : Rn → R.
It is known that the nonlinear equality constraints are difficult to be dealt with in design-
ing algorithms for (P), especially, in designing the methods of feasible directions (MFD).
In , Mayne and Polak [] proposed a simple scheme to convert (P) to a sequence of
inequality smoothing constrained optimization

(Pρ) min fρ(x) := f (x) – ρ
∑

j∈I�
gj(x), s.t. gj(x) ≤ , j ∈ I� ∪ Iı , ()
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where ρ >  is a penalty parameter. Under suitable constraint qualifications (CQ), e.g., lin-
ear independence, it has been shown that (Pρ) is equivalent to (P) when ρ is large enough.
So, based on (Pρ), one can study and present effective algorithms for the original problem
(P), e.g., Refs. [, –].

In addition, with the help of inequality constrained non-smoothing optimization

min f (x) +
∑

j∈I�
cj
∣∣gj(x)

∣∣, s.t. gj(x) ≤ , j ∈ I� ∪ Iı ,

one can also design an algorithm for solving the original problem (P), e.g., [], where cj > 
is the penalty parameter that needs to be updated.

It is known that the sequential quadratic programming (SQP) method is one of the ef-
ficient methods for constrained optimization due to its fast convergence, and it has been
widely studied by many authors, see Refs. [–]. However, the quadratic program (QP)
subproblems solved in the SQP methods may be inconsistent, and the computational cost
for the QPs is high. Therefore, motivated by the KKT condition of the QPs and/or the
quasi-Newton method, QP-free methods are put forward, in which the QPs are replaced
by suitable systems of linear equations (SLEs), see Refs. [–].

Now we review briefly the study on the primal-dual interior point (PDIP) QP-free al-
gorithms associated with our work. First, for problem (P) with no equality constraints,
i.e., I� = ∅, in , Panier et al. [] presented a QP-free algorithm denoted by PTH, at
iterate k, two SLEs are solved to yield a master search direction. Then a least squares
problem (LSP) needs to be solved to avoid the so-called Maratos effect []. However, the
SLEs solved in [] may become ill-conditioned, and the PTH algorithm may be insta-
ble. Furthermore, the initial point must lie on the strict interior of the feasible set, and
an additional assumption that ‘the number of stationary points is finite’ is used to ensure
the global convergence. Later, under the assumption that the multiplier approximation
sequence remains bounded, the PTH algorithm was improved by Gao et al. [] by solv-
ing an extra SLE. The PTH algorithm was also improved by Qi and Qi [], Zhu [] and
Cai [].

To improve the PTH algorithm [], by using the idea of PDIP and choosing different
barrier parameters for each constraint, Bakthiari and Tits [] proposed a new PDIP QP-
free algorithm. The algorithm can start from a feasible point at the boundary of the feasible
set, and it possesses global convergence without both the additional assumption of isolat-
edness of the stationary points and the positive definite restriction on matrix Hk . Almost
at the same time, Tits et al. [] extended and improved the PTH algorithm to problem (P)
with both inequality and equality constraints. The algorithm [] possesses two remarkable
characters. One is that a new and simple rule to update the penalty parameter ρ in (Pρ ) is
derived, the other is that, same as in [], the uniformly positive definite restriction on the
Lagrangian Hessian estimate is relaxed.

More recently, for inequality constrained optimization, Jian et al. [] proposed a
strongly sub-feasible primal-dual quasi interior-point algorithm with superlinear conver-
gence, where the initial point can be chosen arbitrarily, the number of feasible constraints
is nondecreasing, and the iteration points all enter into the interior of the feasible region
after finite iterations; a new kind of working set was introduced, which further reduced the
computational cost; the uniformly positive definite restriction on the sequence {Hk} was
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relaxed; at each iteration, only two or three SLEs with the same coefficient matrix needed
to be solved.

However, there are still some problems worthy of research on the PDIP-type algorithms
[, , ]. First, the coefficient matrix of the Karush-Kuhn-Tucker (KKT) system of the
LSP is not the same as the two previous SLEs, and this further increases the computa-
tional cost. Second, the coefficient matrices of the SLEs include all the constraints and
their gradients, and this leads to a large increase in the scale of the SLEs. Third, the global
convergence of the two algorithms [, ] relies on an additional assumption that the sta-
tionary points are finite or isolated.

On the other hand, to design more effective algorithms with small computational cost
for solving constrained optimization, Facchinei et al. [] first introduced the active set
identifying technique (also called working set technique). And then this technique has
been popularized and applied in many works, e.g., [, , , , ]. Particularly, the
algorithm [] needs to solve four SLEs at each iteration.

The goal of this paper is to improve and extend the algorithms [, ] to nonlinear
constrained optimization (P) and, at the same time, to overcome the three problems men-
tioned above. As a result, by means of problem (Pρ ), we propose a PDIP-type algorithm for
problem (P). Compared with the previous PDIP-type algorithms, the proposed algorithm
possesses the following features.

(a) A slightly new identifying technique for the active set different from [, ] is
introduced. The multiplier yielded at the previous iteration is used to compute the
working set, and no additional computational cost is needed, so the computational
cost is expected to be reduced.

(b) At each iteration, to yield the search directions, only two or three SLEs with the
same coefficient matrix need to be solved. Furthermore, the coefficient matrix has
smaller scale than the ones in [, , ].

(c) For a strict interior point xk of the feasible set of (Pρ ), the iteration at xk is well
defined without any other constraint qualification (CQ).

(d) Under suitable CQ and assumptions including a relaxed positive definite restriction
on the Lagrangian Hessian estimate Hk , but without the isolatedness of the
stationary points, the proposed algorithm is globally and superlinearly convergent.

(e) A slightly new computation technique for Hk based on second order derivative
information is introduced, which is a modification of the one in [], Section ., and
satisfies the relaxed positive definite restriction.

Throughout this paper, for simplicity, denote vector (xT , yT , zT , . . .)T by (x, y, z, . . .) for
column vectors x, y and z, and ‖ · ‖ denotes the Euclidean norm.

2 Construction of algorithm
To analyze our algorithm, the following notations are used:

I = I� ∪ Iı , ê =
(
, . . . , (m�th), , . . . , 

(
(m� + mı)th

))T ,

X =
{

x ∈ Rn : gi(x) = , i ∈ I�; gj(x) ≤ , j ∈ Iı
}

, eJ = (, . . . , )T ∈ R|J|,

X̃ =
{

x ∈ Rn : gj(x) ≤ , j ∈ I
}

, X̃ =
{

x ∈ Rn : gj(x) < , j ∈ I
}

,

I�(x) =
{

j ∈ I� : gj(x) = 
}

, Iı(x) =
{

j ∈ Iı : gj(x) = 
}

, I(x) = I�(x) ∪ Iı(x),

g�(x) =
(
gj(x), j ∈ I�

)
, gı(x) =

(
gj(x), j ∈ Iı

)
, g(x) =

(
gj(x), j ∈ I

)
,
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gJ (x) =
(
gj(x), j ∈ J ⊂ I

)
, ∇gJ (x) =

(∇gj(x), j ∈ J
)
,

gk
j = gj

(
xk), gk

J = gJ
(
xk), ∇gk

j = ∇gj
(
xk), ∇gkT

j =
(∇gk

j
)T .

First, the following basic hypothesis is necessary.

H The inner set X̃ is nonempty, and the functions f and gj (j ∈ I) are all continuously
differentiable.

Remark  Note that if there exists a point belonging to the set X̃, namely, x̂ ∈ X̃, and the
active constraint gradient vectors {∇gj(x̂), j ∈ I(x̂)} are linearly independent, then one can
yield a point x ∈ X̃ by simple computation, e.g., execute line search on g starting with x̂
along direction d̂ = –N̂(N̂T N̂)–e, where N̂ = ∇gI(x̂)(x̂) and e = (, . . . , )T .

Before proposing our algorithm, we give a proposition to show the equivalences between
(P) and (Pρ).

Proposition  If (x,λ) is a KKT pair for problem (Pρ) and g�(x) = , then (x,λρ) with mul-
tiplier λρ = λ – ρê is a KKT pair for the original problem (P).

Based on Proposition , it is known that if one can construct an effective algorithm for
problem (Pρ) and adjust parameter ρ to force the iterate to asymptotically satisfy g�(x) = ,
then the solution to (P) can be yielded.

Now, refer to [] and [], we introduce optimal identification functions � and δ as
follows:

�(x,λ) =

⎛

⎜⎝
∇xL(x,λ)

g�(x)
min{–gı(x),λı}

⎞

⎟⎠ , δ(x,λ) =
∥∥�(x,λ)

∥∥r , ()

where λ = (λ�,λı), parameter r ∈ (, ), and the Lagrangian function

L(x,λ) = f (x) +
∑

j∈I

λjgj(x). ()

It is clear that (x∗,λ) is a KKT pair of (P) if and only if δ(x∗,λ) = . Particularly, from
[] or/and [], Definition ., Theorems ., . and ., one can see that {j ∈ I : gj(x) +
δ(x,λ) ≥ } is an exact identification set for active constrain set I(x∗) if (x,λ) converges to a
KKT pair (x∗,λ′) of problem (P), and the Mangasarian-Fromovotz constraint qualification
(MFCQ) and the second order sufficient conditions are satisfied at (x∗,λ′).

In this paper, similarly to the techniques in [, ], for the current iterate xk ∈ X̃, we
yield the corresponding multiplier vector λk = (λk

� ,λk
ı ) in ()-() as follows:

λ = z, λk = λ̄k– – ρk–ê, k > , ()

where z > , and (λ̄k–,ρk–) is computed in the previous iteration (k –)th. Then, similarly
to [], we structure our working set by

Iı
k =

{
j ∈ Iı : gj

(
xk) + δ

(
xk ,λk) ≥ 

}
, Ik = I� ∪ Iı

k . ()
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The reason why one does not compute I�
k as Iı

k is to force g�(xk) → , see the analysis
of Theorem  in Section . The set Iı

k equals the exact active set Iı(x∗) when (xk ,λk) is
sufficiently close to a KKT pair (x∗,λ′) of (P) and the second order sufficient conditions
as well as the MFCQ hold at (x∗,λ′). This important property allows us to construct the
direction finding subproblems only considering the constraints in the working set Ik .

Taking into account that the iterates always execute within the feasible set X̃, let us con-
sider the first order condition of optimality (KKT condition) for problem (Pρk ) nearby the
current iterate xk :

∇fρk (x) +
∑

j∈Ik

λj∇gj(x) = , λjgj(x) = , j ∈ Ik ,λIk ≥ .

Furthermore, if we ignore the non-negativity request ‘λIk ≥ ’ and simultaneously intro-
duce a suitable perturbation (( – ζk)∇fρk (xk),μk) ∈ R(n+|Ik |) in the right-hand side of the
above system, then it can be reduced as a system of nonlinear equations with variables
(x,λIk )

(
∇fρk (x) +

∑
j∈Ik

λj∇gj(x)
λjgj(x), j ∈ Ik

)
=

(
( – ζk)∇fρk (xk)

μk

)
. ()

Applying the Newton method to system () starting with the current iterate (xk ,λk
Ik

), it
yields a SLE as follows:

(
∇

xxLρk (xk ,λk
Ik

) ∇gIk (xk)
�k∇gIk (xk)T diag(gk

Ik
)

)(
x – xk

λIk

)
=

(
–ζk∇fρk (xk)

μk

)
, ()

where diagonal matrix �k = diag(λk
Ik

), and the Lagrangian Hessian

∇
xxLρk

(
xk ,λk

Ik

)
= ∇fρk

(
xk) +

∑

j∈Ik

λk
j ∇gj

(
xk).

Subsequently, to make the coefficient matrix in SLE () possess nice property and low
computational cost, we consider its optimization and modification as follows. First, re-
place the Lagrangian Hessian by a suitable approximate symmetric matrix Hk , and denote
x – xk by direction d. Second, replace the diagonal matrix �k by positive diagonal matrix
Zk = diag(zk

Ik
), where vector zk

Ik
is an approximation of λk .

As a result, from system (), the coefficient matrix and the form of the SLEs that need
to be solved in our algorithm are as follows:

Vk :=

(
Hk ∇gIk (xk)

Zk∇gIk (xk)T diag(gk
Ik

)

)
, ()

SLE
(
Vk ; ζk ,μk) : Vk

(
d
λIk

)
=

(
–ζk∇fρk (xk)

μk

)
. ()

To yield improved search directions with superlinear convergence, our algorithm will solve
two or three SLEs with the form of () with different perturbation vectors (ζk ,μk).
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Subsequently, it is necessary to analyze the singularities of the coefficient matrix Vk

above, i.e., the solvability of SLE ().

Lemma  For iterate xk ∈ X̃ and zk
Ik

> , if the matrix Hk satisfies

Hk 
∑

j∈Ik

zk
j

gk
j
∇gk

j ∇gkT
j , ()

then the coefficient matrix Vk defined by () is invertible, where matrix order A  B means
(A – B) is positive definite on Rn.

Proof One knows that it is sufficient to show that SLE Vku =  has a unique solution zero,
and this is elementary and omitted here. �

Remark  Obviously, the positive definiteness request () on Hk is weaker than the pos-
itive definiteness of Hk itself on Rn. But it is stronger than the positive definiteness of Hk

on the null space of the gradients of approximate active constraints, i.e., on 	k := {d ∈ Rn :
∇gIk (xk)T d = }. However, the latter cannot ensure the invertibility of Vk .

Based on the above analysis and preparation, now we can describe the steps of our al-
gorithm solving (P) as follows.

Algorithm A
Parameters: α ∈ (, 

 ),σ ,β , θ , r ∈ (, ), ξ ∈ (, ), ν > , ϑ > , M, p > ; suitable small
positive parameters γ, γ and γ; sufficiently small lower bound ε >  and sufficiently large
upper bound ε > ; termination accuracy ε > .

Data: x ∈ X̃,ρ > , vectors z with weights z
j ∈ [ε, ε], j ∈ I . Set k := .

Step  Compute working set. Compute λk by (), �(xk ,λk) and δ(xk ,λk) by ()-(). If
�(xk ,λk) ≤ ε or other suitable termination rule is satisfied, then (xk ,λk) is an approximate
KKT pair of problem (P) and stop; otherwise, generate the working sets Iı

k and Ik by ().
Step  Yield matrix Hk . Yield matrix Hk such that it approximates to the Hessian of the

Lagrangian associated with (Pρk ) and satisfies request ().
Step  Compute the main search directions.
(i) Compute (d̄k , λ̄k

Ik
) by solving SLE(Vk ; , ), see (), then set λ̄k = (λ̄k

Ik
, I\Ik ) = (λ̄k

� , λ̄k
ı )

with λ̄k
ı = (λ̄k

Iık
, Iı\Iık ).

(ii) Check conditions: (a) ‖d̄k‖ ≤ γ, (b) λ̄k ≥ –γeI , (c) λ̄k
� ≯ γeI� . If all the three con-

ditions above hold, then increase penalty parameter ρ by ρk+ = ϑρk , set xk+ = xk , zk+ =
zk , Hk+ = Hk , Iı

k+ = Iı
k , Ik+ = Ik , k := k + , and go back to Step (i). Otherwise, set ρk+ = ρk ,

proceed to Step (iii) as follows.
(iii) Yield the weights of vector φk by

φk
j = min

{
, –

(
max

{
–λ̄k

j , 
})p – Mgk

j
}

, j ∈ Ik . ()

Then compute

ξk = ∇fρk

(
xk)T d̄k –

∑

j∈Ik

λ̄k
j φ

k
j

zk
j

, ()
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bk =
(∥∥d̄k∥∥ν +

∥∥φk∥∥)(∑

j∈Ik

λ̄k
j

)
+

∑

j∈Ik

λ̄k
j

zk
j
φk

j , ()

ϕk =

⎧
⎨

⎩
, if bk ≤ ;

min{ (–θ )|ξk |
bk

, }, if bk > ,
()

and yield perturbation vectors via convex combinations

μk = ( – ϕk)φk + ϕk
(
–
∥∥d̄k∥∥ν –

∥∥φk∥∥)
zk

Ik
. ()

(iv) Compute (dk ,λk
Ik

) by solving SLE(Vk ; ,μk), see (), then set λk = (λk
Ik

, I\Ik ) =
(λk

� ,λk
ı ) with λk

ı = (λk
Iık

, Iı\Iık ).
Step  Trial of unit step. If

fρk

(
xk + dk) ≤ fρk

(
xk) + α∇fρk

(
xk)T dk , gj

(
xk + dk) < , ∀j ∈ I,

then let the step size tk = , the high order correction direction d̃k = , and enter Step .
Otherwise, proceed to Step .

Step  Generate high order correction direction. Compute (d̃k , λ̃k
Ik

) by solving SLE(Vk ;
, μ̃k), where

μ̃k = –ωkeIk – ZkgIk

(
xk + dk), ()

ωk = max

{∥∥dk∥∥ξ ;
∥∥dk∥∥

max

{∣∣∣∣ –
zk

j

λk
j

∣∣∣∣
σ

, j ∈ Ik ,λk
j �= 

}}
. ()

If ‖d̃k‖ > ‖dk‖, reset d̃k = .
Step  Perform arc search. Compute the step size tk , the maximum number t of sequence

{,β ,β, . . .} satisfying

fρk

(
xk + tdk + td̃k) ≤ fρk

(
xk) + αt∇fρk

(
xk)T dk , ()

gj
(
xk + tdk + td̃k) < , j ∈ I. ()

Step  Update. Yield a new iterate by xk+ = xk + tkdk + t
k d̃k and compute

zk+
j = min

{
max

{∥∥dk
∥∥ + ε,λk

j
}

, ε
}

, j ∈ I. ()

Set k := k + , go back to Step .

Subsequently, we analyze and describe some properties of Algorithm A by the following
lemma and several remarks. For convenience of writing, denote matrix

Qk := Hk –
∑

j∈Ik

zk
j

gk
j
∇gk

j ∇gkT
j . ()

Then request () implies that matrix Qk is positive definite.
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Lemma  For the directions d̄k and dk yielded in Step (i), (iv), the following two relations
hold:

∇fρk

(
xk)T d̄k = –

(
d̄k)T Qkd̄k ≤ , ∀k ≥ , ()

∇fρk

(
xk)T dk ≤ θξk ≤ , ∀k ≥ . ()

Furthermore, when the iterative process goes into Step (iii), (iv), one has d̄k �=  and ξk < ,
so dk is a feasible direction of descent of problem (Pρk ) at point xk and the arc search in Step
 can be finished by finite calculations. Therefore, Algorithm A is well defined.

Proof First, from () and SLE(Vk ; , ) (), we have

∇fρk

(
xk)T d̄k = –

(
d̄k)T

(
Hkd̄k +

∑

j∈Ik

∇gk
j λ̄k

j

)

= –
(
d̄k)T

(
Hk –

∑

j∈Ik

zk
j

gk
j
∇gk

j ∇gkT
j

)
d̄k

= –
(
d̄k)T Qkd̄k ≤ .

So, conclusion () is at hand. Second, from ()-(), one gets

φk
j λ̄k

j ≥ , ∀j ∈ Ik ; ξk ≤ ∇fρk

(
xk)T d̄k ≤ . ()

On the other hand, taking into account SLE(Vk ; , ) and SLE(Vk ; ,μk) as well as ()-(),
it is not difficult to show that

∇fρk

(
xk)T dk = ∇fρk

(
xk)T d̄k –

∑

j∈Ik

λ̄k
j μ

k
j

zk
j

= ξk + ϕkbk . ()

Again, in view of (), it follows that ϕkbk = bk ≤  if bk ≤ , hence, the relations ξk +ϕkbk ≤
ξk ≤ θξk hold since ξk ≤ . If bk > , then ξk + ϕkbk ≤ ξk + (θ – )ξk = θξk . In all, one gets
ξk + ϕkbk ≤ θξk . This, together with () and (), shows that ∇fρk (xk)T dk ≤ θξk ≤ .

Third, if d̄k = , then, from SLE(Vk ; , ) (), g(xk) <  and (), it follows that λ̄k
Ik

= . So,
by the structure of Step , the iterate k does not go into Step (iii), (iv). Thus, d̄k �=  when
the iterative process goes into Step (iii), (iv).

Finally, ξk <  follows from (), () and d̄k �= . The remaining claims in Lemma  are
at hand by ξk <  and g(xk) < . �

As an end of this section, to help the readers understand our algorithm, we further an-
alyze the steps/structure of Algorithm A with three remarks below.

Remark  (Analysis for Step )
(i) The role of solving SLE(Vk ; , ) with no perturbation in Step (i) is to check

whether the current iterate xk is an approximate KKT point of (Pρk ) and yield an
‘improved’ direction d̄k to a certain extent.
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(ii) If conditions (a) and (b) in Step (ii) are satisfied, and the parameters γ and γ are
small enough, then SLE(Vk ; , ) implies that xk is an approximate KKT point of
(Pρk ). However, if case (c) is also satisfied, one cannot estimate ‖g�(xk)‖. So, we
increase the penalty parameter ρ . In practical computation, if conditions (a) and (b)
are satisfied and ‖g�(xk)‖ is small enough, we can terminate the algorithm.

(iii) From result (), one knows that d̄k is a descent direction of the merit function
fρk (x) at xk when d̄k �= . However, the primal feasibility and dual feasibility are
relaxed to a large extent in SLE(Vk ; , ), d̄k cannot be used as an effective search
direction. So, generally, the first direction d̄k should be corrected by another SLE.
For this goal, refer to [], we construct and solve SLE(Vk ; ,μk) in Step (iii), (iv).
Lemma  and the global convergence analysis in the next section show that the
algorithm with search direction dk is well defined and globally convergent.

Remark  (Explanation for Steps  and ) Usually, search direction dk cannot avoid the
Maratos effect, i.e., unit step cannot be accepted by the associated line search for all suf-
ficiently large iterates k. So, to overcome the Maratos effect and obtain superlinear con-
vergence, one needs to compute an additional high order correction direction. Here, we
generate it by solving SLE(Vk ; , μ̃k) in Step . Obviously, solving SLE(Vk ; , μ̃k) should
add computational cost more or less. On the other hand, numerical testing shows that dk

can still avoid the Maratos effect at some iterates. Therefore, to save computational cost
as much as possible, the trial of unit step in Step  is added.

Remark  With the help of the working set technique, the three SLEs solved in Algo-
rithm A have a common coefficient matrix Vk , which can save the cost of computation
and is different from those in Refs. [, ], etc. Furthermore, due to being interior point
type and the constructing technique for Vk , Algorithm A is well defined at each iterate
without any other CQ except the strict inner X̃ �= ∅, see Lemmas  and . In many ex-
isting QP-free type algorithms, see Refs. [, , –], the linearly independent constraint
qualification (LICQ) is necessary to ensure the iterate itself is well defined. Of course, as we
see in Assumption H, to obtain the global and superlinear convergence of Algorithm A,
a suitable CQ on the boundary of X̃ is still necessary.

3 Analysis of global convergence
In this section, we assume that the proposed algorithm (Algorithm A) generates an infinite
iteration sequence {xk} of points. First, we show that the penalty parameter ρk can be fixed
after finite iterates. And then, we prove that Algorithm A is globally convergent. For this
goal, the following hypotheses are necessary.

H Suppose that the sequences both {xk} and {Hk} yielded by Algorithm A are bounded,
and assume that there exists a positive constant a such that

dT Hkd ≥ a‖d‖ –
∑

j∈Ik

zk
j

|gk
j |

∥∥∇gkT
j d

∥∥, ()

i.e., dT Qkd ≥ a‖d‖,∀k,∀d ∈ Rn.

H For each x ∈ X̃ , suppose that
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(i) the gradient vectors {∇gj(x), j ∈ I(x)} are linearly independent; and
(ii) if x /∈ X , i.e., g�(x) �= , then there exist no scalars λj ≥ , j ∈ I(x) such that∑

j∈I� ∇gj(x) =
∑

j∈I(x) λj∇gj(x).

Remark  (Analysis for H) The uniform ‘positive-definiteness’ request () on {Hk} is
weaker than the usual uniform positive-definiteness of {Hk} itself on Rn, namely, dT Hkd ≥
a‖d‖,∀k,∀d ∈ Rn. However, it is stronger than the uniform positive-definiteness of Hk on
the null space 	k . It is encouraging that, based on the Lagrangian Hessian, we can design
an alternative computational technique for Hk such that {Hk} is bounded and satisfies
request (), which implies () whenever {xk} is bounded, see formulas (), () and
() as well as Theorem  in Section .

Remark  (Analysis for H)
(i) Hypothesis H was introduced by Tits et al. in [], Assumption . In our work, it

plays two roles in the convergence analysis of Algorithm A. One is to ensure the
correction for the penalty parameter ρ can be finished in a finite number of
iterations, the other is to assure that the sequence {Vk} of coefficient matrices is
uniform invertible, see Lemmas  and . Furthermore, H is considerably milder
than the linear independence of the gradients {∇gi(x), i ∈ I�;∇gj(x), j ∈ Iı(x)}, a
detailed analysis for this assumption can be seen in [, ].

(ii) First, H automatically holds at each interior point x ∈ X̃. Second, H can be
reduced to each accumulation point x∗ of the iterate sequence {xk}, which satisfies
x∗ /∈ X̃. However, the latter is difficult to be verified.

Lemma  Suppose that H, H and H hold. Then the penalty parameter ρk in Algo-
rithm A is increased at most finite times.

The proof of Lemma  is similar to the one of [], Lemma ., and omitted here. In what
follows, ρ̄ denotes the final value of ρk , i.e., ρk ≡ ρ̄ when k is sufficiently large.

Lemma  Suppose that H, H and H hold. Then
(i) the sequence {Vk} of coefficient matrices is unified invertible, i.e., there exists a

positive constant M̄ such that ‖V –
k ‖ ≤ M̄,∀k ≥ , and

(ii) both sequences {(d̄k , λ̄k)} and {(dk ,λk)} are bounded.

Proof (i) By contradiction, suppose that there exists an infinite subset K such that
‖V –

k ‖ K→ ∞. In view of the boundedness of {xk} and {Hk}, Step  and the finite choice
of Iı

k , without loss of generality, for k ∈ K , assume that

Iı
k ≡ I ′, xk → x∗, Hk → H∗, zk → z∗ ≥ εeI > .

Denote Î = I� ∪ I ′ and Z∗ = diag(z∗
Î
), then

Vk
K→ V∗ :=

(
H∗ ∇gÎ(x∗)

Z∗∇gÎ(x∗)T diag(gÎ(x∗))

)
. ()

Consequently, under H-H, refer to the proof of [], Lemma .(i), one can show that
V∗ is nonsingular. So ‖V –

k ‖ K→ ‖V –∗ ‖ < ∞, which contradicts ‖V –
k ‖ K→ ∞.
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(ii) First, the boundedness of {(d̄k , λ̄k)} follows from SLE(Vk ; , ) and conclusion (i) as
well as ρk ≡ ρ̄ . Second, the boundedness of {μk} follows from formulas ()-() and the
boundedness of {(d̄k , λ̄k)} as well as the positive boundary below of {zk}. Therefore, the
boundedness of {(dk ,λk)} is also at hand by SLE(Vk ; ,μk). �

Lemma  Suppose that H, H and H hold. Let x∗ be an accumulation point of the se-
quence {xk} generated by Algorithm A, and suppose that {xk}K → x∗ for some infinite index
set K . If {ξk}K → , then x∗ is a KKT point of problem (Pρ̄), and both {λ̄k}K and {λk}K

converge to the unique multiplier vector λ∗ associated with x∗.

Proof Let (λ̄∗; λ̂) be any given limit point of {(λ̄k ;λk)}K . We first show that (x∗, λ̄∗) is a KKT
pair of (Pρ̄). In view of H, Lemma  and the finite choice of Iı

k , we know that there is an
infinite index K ′ ⊆ K such that

Iı
k ≡ I ′,

(
λ̄k ;λk) → (

λ̄∗; λ̂
)
,

Hk → H∗, d̄k → d̄∗, zk → z∗ ≥ εeI , k ∈ K ′.
()

Therefore, from (), () and H, one can easily get d̄∗ =  by {ξk}K → . Further, taking
the limit in SLE(Vk ; , ) for k ∈ K ′, we have, here Î = I� ∪ I ′,

∇fρ̄
(
x∗) +

∑

j∈Î

λ̄∗
j ∇gj

(
x∗) = ; λ̄∗

j gj
(
x∗) = , ∀j ∈ Î. ()

Next, divert our attention to showing that λ̄∗ ≥ . It is obvious that λ̄∗
j =  follows from

λ̄∗
j gj(x∗) =  for j ∈ Î \ I(x∗). Moreover, from the definition of ξk , i.e., (), and (ξk , d̄k) K ′→

(, ), we can deduce that
∑

j∈Î
λ̄k

j φk
j

zk
j

→ , k ∈ K ′. Further, in view of (), we know that each

term
λ̄k

j φk
j

zk
j

≤ , which together with () implies that λ̄k
j φ

k
j

K ′→ . This, plus (), shows that

λ̄∗
j min{, –(max{–λ̄∗

j , })p – Mgj(x∗)} =  for j ∈ Î , and this includes λ̄∗
j ≥  for j ∈ Î ∩ I(x∗).

Therefore, λ̄∗
Î
≥ . Obviously, λ̄∗

I\Î
= . So λ̄∗ ≥  is at hand.

Hence, taking into account x∗ ∈ X̃, we can conclude from () that (x∗, λ̄∗) is a KKT pair
and x∗ is a KKT point for (Pρ̄). Furthermore, the analysis above further shows that the
sequence {λ̄k}K possesses a unique limit point, i.e., the unique KKT multiplier vector λ∗.
So limk∈K λ̄k = λ∗.

Finally, taking into account (d̄k , λ̄k) K ′→ (,λ∗) ≥ , from () and (), we have (φk ,
μk) K ′→ . Therefore, SLE(Vk ; ,μk) minus SLE(Vk ; , ) gives

Vk

(
dk – d̄k

λk
Î

– λ̄k
Î

)
=

(

μk

)
K ′

−→
(




)
. ()

This, along with Lemma (i), shows that λ̂ = limk∈K ′ λk = limk∈K ′ λ̄k = λ∗. �

Theorem  Suppose that H, H and H hold. Then each accumulation point x∗ of the
sequence {xk} generated by Algorithm A is a KKT point of the original problem (P), i.e.
problem ().
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Proof First, there exists an infinite index set K ′ such that xk → x∗, k ∈ K ′, and relation ()
holds. By contradiction, suppose that x∗ is not a KKT point of (P). Then, from Lemma ,
without loss of generality, one can suppose that λk = λ̄k– – ρ̄ê → λ̄′, k ∈ K ′. Therefore, it
follows that (x∗, λ̄′) is not a KKT pair of (P), which further implies that δ(x∗, λ̄′) >  and
Iı(x∗) ⊆ Iı

k , k ∈ K ′ large enough. There are two cases as follows to be considered.
Case I: Assume that x∗ is a KKT point of (Pρ̄). Then there exists a multiplier λ̄′′ ≥  such

that the KKT condition of (Pρ̄) is satisfied at (x∗, λ̄′′). In view of Iı(x∗) ⊆ Iı
k ≡ I ′ holds for

k ∈ K ′ large enough, it is easy to know, from the KKT condition of (Pρ̄), that (, λ̄′′
I∗ ) is a

solution to SLE in (u, v)

V∗

(
u
v

)
=

(
–∇fρ̄(x∗)



)
, ()

where matrix V∗ is defined by (). On the other hand, passing to the limit in SLE(Vk ; , )
for k ∈ K ′ and k → ∞, one knows that (d̄∗, λ̄∗

I∗ ) also solves system () above. Taking into
account the nonsingularity of matrix V∗ (by Lemma (i)), one knows that the solution of
() is unique. So d̄∗ =  and λ̄∗

I∗ = λ̄′′
I∗ ≥ , which implies λ̄∗ = λ̄′′ ≥  . Thus, conditions

(a) and (b) in Step (ii) are always satisfied for k ∈ K ′ large enough. Therefore, in view of
ρk ≡ ρ̄ < ∞ for k large enough, Step (ii) implies λ̄k

I� > γeI� for k ∈ K ′ large enough, which
further implies that λ̄∗

I� ≥ γeI� > . Hence, it follows from the complementary slackness
at KKT pair (x∗, λ̄′′),  = λ̄′′

j gj(x∗) = λ̄∗
j gj(x∗) =  (j ∈ I�). So g�(x∗) = , which together with

Proposition  implies that x∗ is also a KKT point of (P), which contradicts the assumption
that x∗ is not a KKT point of (P).

Case II: Suppose that x∗ is not a KKT point of (Pρ̄ ). And, by Lemma  and ξk ≤ , one can
deduce that ξk → ξ̄ < , k ∈ K ′. Further, this along with () and () as well as H, shows
that limk∈K ′ (‖d̄k‖ν + ‖φk‖) > . So there exist a subset K ′′ ⊆ K ′ and a positive constant �

such that

ξk ≤ ξ̄ / < ,
(∥∥d̄k∥∥ν +

∥∥φk∥∥) ≥ � > , k ∈ K ′′.

The remaining proof is divided into two steps.
Step A: Show that there exists a constant t̄ >  such that the step-length tk ≥ t̄ holds for

all k ∈ K ′′.
(A) Analyze inequality (). First, for j /∈ I(x∗), gj(x∗) < , from the boundedness of

{(dk , d̃k)}K ′′ and the continuity of gj, one gets that gj(xk + tdk + td̃k) <  holds for k ∈ K ′′

large enough and t >  sufficiently small. Second, consider index j ∈ I(x∗), i.e., gj(x∗) = .
In view of Iı(x∗) ⊆ Iı

k , which implies j ∈ Ik , from Taylor expansion, formulas (), () and
SLE(Vk ; ,μk) as well as ‖d̃k‖ ≤ ‖d̄k‖, for t >  small enough, we obtain that

gj
(
xk + tdk + td̃k) = gk

j + t∇gkT
j dk + o(t) = gk

j + t
μk

j – λk
j gk

j

zk
j

+ o(t)

=
(

 – t
λk

j

zk
j

)
gk

j + t
 – ϕk

zk
j

φk
j – tϕk

(∥∥d̄k∥∥ν +
∥∥φk∥∥)

+ o(t)

≤ –tϕk
(∥∥d̄k∥∥ν +

∥∥φk∥∥)
+ o(t),

where the last inequality follows from Lemma (ii), zk
j ≥ ε, ϕk ≤  and φk

j ≤ .
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On the other hand, taking into account ξk ≤ ξ̄ / <  and the boundedness of bk () (by
Lemma ) as well as (), we know that there exists a constant ϕ >  such that ϕk ≥ ϕ >
, k ∈ K ′′. So gj(xk + tdk + td̃k) ≤ –ϕ� t + o(t) <  holds for k ∈ K ′′ large enough and t > 
sufficiently small. Therefore, inequality () holds for t >  sufficiently small and k ∈ K ′′

large enough.

(A) Analyze inequality (). From Taylor expansion and (), one gets

fρ̄
(
xk + tdk + td̃k) – fρ̄

(
xk) – αt∇fρ̄

(
xk)T dk = ( – α)t∇fρ̄

(
xk)T dk + o(t)

≤ ( – α)tθξk + o(t)

≤ ( – α)tθ ξ̄/ + o(t)

≤ .

Hence, inequality () holds for k ∈ K ′′ large enough and t >  sufficiently small. Up to
now, one can conclude that there exists a constant t̄ >  such that tk ≥ t̄ for each k ∈ K ′′.

Step B: Use tk ≥ t̄ >  (k ∈ K ′′) to bring a contradiction. Because of limk∈K ′′ fρ̄(xk) = fρ̄(x∗)
and the monotone property of {fρ̄(xk)}, one knows that limk→∞ fρ̄(xk) = fρ̄(x∗). Further, in
view of () and (), it follows that for k ∈ K ′′ large enough

fρ̄
(
xk+) – fρ̄

(
xk) ≤ αtk∇fρ̄

(
xk)T dk ≤ αtkθξk ≤ αθξ̄ t̄/.

Passing to the limit for k ∈ K ′′ and k → ∞ in the inequality above, we can bring a con-
tradiction. Summarizing the discussions above, the whole proof of Theorem  is com-
pleted. �

4 Analysis of strong and superlinear convergence
In this part, under some additional mild assumptions, we first show that the proposed
algorithm is strongly convergent, that is, the whole sequence {xk} is convergent. Then the
unit step can be accepted and the Maratos effect can be avoided for all k large enough. At
last, we prove that Algorithm A achieves superlinear convergence.

H (i) The functions f (x) and g(x) are all twice continuously differentiable over X̃ ; and
(ii) there exists an accumulation point x∗ of the sequence {xk} of iterative points

with (unique) KKT multiplier λ′ associated with (P) such that the second order
sufficiency conditions (SOSC) and the strict complementarity hold, i.e., the
KKT pair (x∗,λ′) of (P) satisfies λ′

Iı (x∗) >  and

dT∇
xxL

(
x∗,λ′)d > , ∀d ∈ {

d ∈ Rn : d �= ,∇gI(x∗)
(
x∗)T d = 

}
.

Remark  Denote the Lagrangian function of problem (Pρ̄) by Lρ̄(x,λ) = fρ̄(x) +
∑

j∈I λj ×
gj(x). Then, with relation λρ̄ = λ – ρ̄ê, we have L(x,λρ̄) = Lρ̄(x,λ). Therefore, taking into
account Lemma (iv), it is readily checked that the SOSC with the strict complementarity
for (Pρ̄) is identical with that for (P).

Lemma  Suppose that X̃ �= ∅ and assumptions H, H and H are satisfied (by Remark ,
X̃ �= ∅ plus H(i) implies X̃ �= ∅). Then, for any subset K such that {xk}K converges to the
limit point x∗ stated in H, there exists an infinite subset K ′ ⊆ K such that
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(i) Iı(x∗) ⊆ Iı
k for k ∈ K ′ sufficiently large;

(ii) x∗ is a KKT point of problem (Pρ̄);
(iii) {(d̄k , λ̄k)}K ′ → (,λ∗) and {(dk ,λk)}K ′ → (,λ∗), where λ∗ together with x∗ is a KKT

pair of problem (Pρ̄); and
(iv) the KKT multiplier λ′ of (P) and λ∗ of (Pρ̄) associated with the KKT point x∗ satisfy

λ′ = λ∗ – ρ̄ê,λ∗
I(x∗) > .

Proof (i) From Lemma (ii), there exists an infinite subset K ′ ⊆ K such that

xk → x∗, λk =
(
λ̄k– – ρ̄ê

) → λ̄′, k ∈ K ′.

If (x∗, λ̄′) is a KKT pair of (P), then λ̄′ = λ̄∗. Further, under H, by [, ], one knows that
Iı

k ≡ Iı(x∗) for k ∈ K ′ large enough. Otherwise, we have  < δ(x∗, λ̄′) K ′← δ(xk ,λk). So, from
(), Iı(x∗) ⊆ Iı

k also holds for k ∈ K ′ large enough.
(ii) By contradiction, suppose that x∗ is not a KKT point of (Pρ̄). Then, taking into ac-

count conclusion Iı(x∗) ⊆ Iı
k (k ∈ K ′ large enough), by Case II of the proof of Theorem ,

we can bring a contradiction.
(iii) To show {(d̄k , λ̄k)}K ′ → (,λ∗), it is sufficient to show that (,λ∗) is a unique accumu-

lation point of {(d̄k , λ̄k)}K ′ . Let (d̄, λ̄) be any given accumulation point of {(d̄k , λ̄k)}K ′ . Since
the sequences {(d̄k , λ̄k)} and {zk} are all bounded, in view of H, H and Iı

k ⊆ Iı , there exists
an infinite subset K ′′ ⊆ K ′ such that

Iı
k ≡ I ′, Hk → H∗,

(
d̄k , λ̄k) → (d̄, λ̄), zk → z∗, k ∈ K ′′. ()

Now, passing to the limit for k ∈ K ′′ and k → ∞ in SLE(Vk ; , ), we deduce that (d̄, λ̄Î )
(Î := I� ∪ I ′) solves SLE (). Further, it follows from Lemma (i) that the coefficient matrix
of SLE () is nonsingular. Thus the solution of () is unique. On the other hand, in view
of Iı(x∗) ⊆ I ′, I�(x∗) = I� and (x∗,λ∗) being a KKT pair of (Pρ̄), we know that (,λ∗

Î
) is also a

solution to system (). Therefore (d̄, λ̄Î) = (,λ∗
Î
), this further implies that (d̄, λ̄) = (,λ∗)

and (,λ∗) is a unique limit point of {(d̄k , λ̄k)}K ′ .
Finally, conclusion {(dk ,λk)}K ′ → (,λ∗) follows from {(d̄k , λ̄k)}K ′ → (,λ∗) and ().
(iv) By Proposition  and g�(x∗) = , we have λ′ = λ∗ – ρ̄ê, and λ∗

Iı (x∗) = λ′
Iı (x∗) >  by H(ii).

Further, in view of d̄k → , λ̄k → λ∗ ≥ , k ∈ K ′, one knows that conditions (a) and (b) in
Step (ii) hold for k large enough. Therefore, taking into account ρk ≡ ρ̄ for k large enough,
it follows that λ̄k > γ eI� by Step (ii), so λ∗

� ≥ γeI� > . Therefore λ∗
I(x∗) >  holds. �

Remark  In view of I�(x∗) = I�, from H, H and Lemma (ii), (iv), the following con-
clusion holds: The LICQ, SOSC and strict complementarity of problem (P) and problem
(Pρ̄ ) are satisfied at their KKT pair (x∗,λ′) and (x∗,λ∗), respectively.

In view of Remark , similarly to the proof of [], Theorem ., Lemma ., we have
the following result.

Theorem  Suppose that X̃ �= ∅ and assumptions H, H and H are satisfied. Then
(i) xk → x∗, i.e., Algorithm A is strongly convergent;

(ii) (d̄k , λ̄k) → (,λ∗), (dk ,λk) → (,λ∗), zk → min{max{εeI ,λ∗}, εeI}, and
(iii) φk = ,μk = –ϕk‖d̄k‖νzk

Ik
, Iı

k ≡ Iı(x∗) and Ik ≡ I∗ := I(x∗) if k is sufficiently large.
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Lemma  Suppose that the hypotheses in Lemma  hold, and assume that the boundary
parameters ε and ε satisfy

ε ≤ min
{
λ∗

j , j ∈ I∗
}

, ε ≥ max
{
λ∗

j , j ∈ I∗
}

. ()

Then

zk
I∗ → λ∗

I∗ , ωk = o
(∥∥dk∥∥), ()

and the solution (d̃k , λ̃k
I∗ ) of SLE(Vk ; , μ̃k) satisfies

‖(d̃k , λ̃k
I∗
)‖ = O(ω̂k) = o

(∥∥dk∥∥)
, ω̂k

∥∥dk∥∥ = o(ωk), ()

where

ω̂k = max
{∣∣zk

j /λk
j – 

∣∣ · ∥∥dk∥∥, j ∈ I∗;
∥∥dk∥∥}. ()

Furthermore, the correction direction d̃k in Step  is always yielded by the solution of
SLE(Vk ; , μ̃k).

Proof First, from the given conditions and Theorem (iv), relation zk
I∗ → λ∗

I∗ is at hand.
Further, this, together with Theorem (ii), shows that zk

j /λk
j →  for j ∈ I∗. So, it follows

that ωk = o(‖dk‖) from ().
Second, we prove relation (). From Theorem (ii), (iii), we know that μk = –ϕk‖d̄k‖ν ×

zk
I∗ → , k → ∞. This, along with SLE(Vk ; , ) and SLE(Vk ; ,μk) as well as Lemma (i),

implies that there exists a positive constant c such that

∥∥dk – d̄k∥∥ ≤ c
∥∥d̄k∥∥ν ,

∥∥λk – λ̄k∥∥ ≤ c
∥∥d̄k∥∥ν ,

∥∥dk∥∥ ∼ ∥∥d̄k∥∥. ()

Therefore, from definition () of μ̃k , Taylor expansion and SLE(Vk ; ,μk), one has for
j ∈ I∗

μ̃k
j = –ωk – zk

j gj
(
xk + dk)

= –ωk – zk
j
(
gk

j + ∇gkT
j dk) + O

(∥∥dk∥∥)

= –ωk – zk
j
(
 – zk

j /λk
j
)∇gkT

j dk + O
(∥∥dk∥∥)

= –ωk + O
(
max

{∣∣zk
i /λk

i – 
∣∣ · ∥∥dk∥∥, i ∈ I∗

})
+ O

(∥∥dk∥∥)

= –ωk + O(ω̂k) + O
(∥∥dk∥∥)

= o
(∥∥dk∥∥) + O(ω̂k) + O

(∥∥dk∥∥).

Obviously, definition () implies ‖dk‖ = O(ω̂k). Thus ‖μ̃k‖ = O(ω̂k) = o(‖dk‖). Therefore,
from SLE(Vk ; , μ̃k) and Lemma , it is clear that the first relation of () holds. Finally,
relation ω̂k‖dk‖ = o(ωk) follows from definitions () of ω̂k and () of ωk . �

To ensure the step size tk ≡  for k large enough, which is necessary to obtain superlinear
convergence, similarly or refer to [, ], the following second order approximate condition
is necessary.
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H Assume that the relation ‖Pk(∇
xxLρ̄(xk ,λk) – Hk)Pkd̄k‖ = o(‖d̄k‖) holds, where the pro-

jective matrix Pk is defined by Pk = En –Nk(NT
k Nk)–NT

k with Nk = ∇gI∗ (xk) and n-order
unit matrix En.

Remark  (About H)
(i) Due to I∗ = I(x∗) = I� ∪ Iı(x∗), one knows from H(i) that matrix Nk → ∇gI∗ (x∗)

which is column full rank, and matrix Pk is well defined when k is large enough.
(ii) The -sided projection second order approximation H above, also used in [, , ,

], is milder than the -sided projection second order approximation:

H+ ‖Pk(∇
xxLρ̄(xk ,λk) – Hk)d̄k‖ = o(‖d̄k‖).

Both the two can ensure the step unit is achieved. However, the associated
algorithms can attain (one-step) q-superlinear convergence under the latter, and
only two-step superlinear convergence under the former.

(iii) In view of relation (), assumptions H and H+ are equivalent to
‖Pk(∇

xxLρ̄(xk ,λk) – Hk)Pkdk‖ = o(‖dk‖) and ‖Pk(∇
xxLρ̄(xk ,λk) – Hk)dk‖ = o(‖dk‖),

respectively.

Theorem  Suppose that X̃ �= ∅ and hypotheses H-H hold, and assume that the bound-
ary parameters ε and ε satisfy (). Then the step size tk of Algorithm A always equals one,
i.e., tk ≡  for k large enough.

Proof (i) Discuss (). For j /∈ I∗ = I(x∗), gj(x∗) < , using the continuity of gj and
(xk , dk , d̃k) → (x∗, , ), k → ∞, we know that () holds for t =  and k large enough.

For j ∈ I∗ = I(x∗) = Ik , in view of SLE(Vk ; ,μk), Theorem (iii) and ‖dk‖ ∼ ‖d̄k‖ as well
as λk

j → λ∗
j > , we have

zk
j ∇gkT

j dk + gk
j λk

j = μk
j = o

(∥∥dk∥∥), gk
j = O

(∥∥dk∥∥)
. ()

Again, taking into account SLE(Vk ; , μ̃k), one has

zk
j ∇gkT

j d̃k + zk
j gj

(
xk + dk) + λ̃k

j gk
j = –ωk .

This, together with (), () and ωk = o(‖dk‖), shows that

gj
(
xk + dk) + ∇gkT

j d̃k = –
ωk

zk
j

+ λ̃k
j O

(∥∥dk∥∥)
= –

ωk

zk
j

+ O
(
ω̂k

∥∥dk∥∥)

= –
ωk

zk
j

+ o(ωk) = O(ωk) = o
(∥∥dk∥∥). ()

Further, using Taylor expansion and (), one has

gj
(
xk + dk + d̃k) = gj

(
xk + dk) + ∇gj

(
xk + dk)T d̃k + O

(∥∥d̃k∥∥)

= gj
(
xk + dk) + ∇gkT

j d̃k + O
(∥∥dk∥∥ · ∥∥d̃k∥∥)

+ O
(∥∥d̃k∥∥)

= –
ωk

zk
j

+ o(ωk) + O
(
ω̂k

∥∥dk∥∥)
= –

ωk

zk
j

+ o(ωk) = o
(∥∥dk∥∥).
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Hence, we can conclude from the fourth equality above that inequality () holds for j ∈ I∗,
t =  and k large enough since zk

j → λ∗
j > .

(ii) Analyze (). From Taylor expansion and (), it follows that

wk := fρ̄
(
xk + dk + d̃k) – fρ̄

(
xk) – α∇fρ̄

(
xk)T dk

= ∇fρ̄
(
xk)T(

dk + d̃k) +


(
dk)T∇fρ̄

(
xk)dk – α∇fρ̄

(
xk)T dk + o

(∥∥dk∥∥). ()

On the other hand, from SLE(Vk ; ,μk), we have

Hkdk + ∇fρ̄
(
xk) +

∑

j∈I∗
λk

j ∇gk
j = , ()

which, together with (), gives

∇fρ̄
(
xk)T dk = –

(
dk)T Hkdk –

∑

j∈I∗
λk

j ∇gkT
j dk , ()

∇fρ̄
(
xk)T(

dk + d̃k) = –
(
dk)T Hkdk –

∑

j∈I∗
λk

j ∇gkT
j

(
dk + d̃k) + o

(∥∥dk∥∥). ()

Therefore, by () and Taylor expansion for gj(xk + dk) at point xk , one yields

∇gkT
j

(
dk + d̃k) = –gk

j –


(
dk)T∇gj

(
xk)dk + o

(∥∥dk∥∥), j ∈ I∗.

This, together with (), shows that

∇fρ̄
(
xk)T(

dk + d̃k) =
(
dk)T

(
–Hk +




∑

j∈I∗
λk

j ∇gj
(
xk)

)
dk

+
∑

j∈I∗
λk

j gk
j + o

(∥∥dk∥∥). ()

On the other hand, the first relation of () gives

λk
j ∇gkT

j dk = –
((

λk
j
)/zk

j
)
gk

j + o
(∥∥dk∥∥), j ∈ I∗.

This, along with (), shows that

(
dk)T Hkdk = –∇fρ̄

(
xk)T dk +

∑

j∈I∗

(λk
j )

zk
j

gk
j + o

(∥∥dk∥∥). ()

Again, substituting () into (), one has

wk =
∑

j∈I∗
λk

j gk
j +



(
dk)T(∇

xxLρ̄

(
xk ,λk) – Hk

)
dk

–


(
dk)T Hkdk – α∇fρ̄

(
xk)T dk + o

(∥∥dk∥∥).
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Therefore, substituting () into the relation above, we have

wk =
(




– α

)
∇fρ̄

(
xk)T dk +



(
dk)T(∇

xxLρ̄

(
xk ,λk) – Hk

)
dk

+
∑

j∈I∗
λk

j

(
 –

λk
j

zk
j

)
gk

j + o
(∥∥dk∥∥). ()

On the other hand, from the definition of the projection matrix Pk , we get

dk = Pkdk + dk
, dk

 = Nk
(
NT

k Nk
)–NT

k dk .

Furthermore, in view of SLE(Vk ; ,μk), Theorem (iii) and the above division, one has

NT
k dk = Z–

k
(
μk – diag

(
gk

I∗
)
λk

I∗
)
, dk

 = o
(∥∥dk∥∥) + O

(∥∥gk
I∗
∥∥)

. ()

Thus, relation (), together with the relations above and H, implies that

wk =
∑

j∈I∗
λk

j

(
 –

λk
j

zk
j

)
gk

j + o
(∥∥dk∥∥) +

(



– α

)
∇fρ̄

(
xk)T dk

+


(
dk

 + Pkdk)T(∇
xxLρ̄

(
xk ,λk) – Hk

)(
dk

 + Pkdk)

=
(




– α

)
∇fρ̄

(
xk)T dk +

∑

j∈I∗
λk

j

(
 –

λk
j

zk
j

)
gk

j + O
(∥∥gk

I∗
∥∥)

+ o
(∥∥dk∥∥). ()

On the other hand, taking into account Lemma (ii), Lemma  and Theorem , one has
(when k → ∞)

λk
j → λ∗

j > , λk
j

(
 –

λk
j

zk
j

)
→ λ∗

j


> , ∀j ∈ I∗. ()

Further, relations (), (), (), () and ‖dk‖ ∼ ‖d̄k‖ as well as H yield

∇fρ̄
(
xk)T dk ≤ θξk ≤ θ∇fρ̄

(
xk)T d̄k

= –θ
(
d̄k)T Qkd̄k ≤ θa

∥∥d̄k∥∥

= –θa
∥∥dk∥∥ + o

(∥∥dk∥∥). ()

Therefore, for k large enough, relations ()-() show that wk ≤ (α – 
 )θa‖dk‖ +

o(‖dk‖) ≤ . Thus, inequality () holds for t =  and k large enough, and the entire proof
of Theorem  is finished. �

Finally, based on Theorem , by similar analysis in [, , ] (for two-step superlinear
convergence) and [], Appendix A (for one-step superlinear convergence), we can prove
the following rate of superlinear convergence.
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Theorem  Suppose that X̃ �= ∅ and the hypotheses H-H hold. If the boundary parame-
ters ε and ε satisfy (), then the proposed Algorithm A is two-step superlinearly convergent,
i.e., ‖xk+ – x∗‖ = o(‖xk – x∗‖). Moreover, if H is strengthened as H+, then Algorithm A
is one-step superlinearly convergent, i.e., ‖xk+ – x∗‖ = o(‖xk – x∗‖).

5 Numerical experiments
In this section, to show the practical effectiveness of Algorithm A, we test  typical prob-
lems from []. The numerical experiments are implemented by using MATLAB Ra,
and on a PC with Inter(R) Core(TM) i- . GHz CPU, . GB RAM. The details
about the implementation are described as follows.

5.1 Computing matrix Hk

During the process of iteration, to ensure the boundedness of {Hk}, by modifying the com-
puting technique in [] for the approximate Lagrangian Hessian, we introduce a slightly
new computing method for the approximate Hessian matrix Hk in Step  as follows from
second order derivative information. Denote vector ẑk and matrix Mk by

ẑk =
(
zk

I� , zk
Iık

, Iı\Iık

)
, ()

Mk = ∇
xxLρk

(
xk , ẑk) –

∑

j∈I

ẑk
j

gk
j
∇gk

j ∇gkT
j . ()

Then compute the smallest eigenvalue ϑk
min of matrix Mk , and yield

θk =

⎧
⎪⎪⎨

⎪⎪⎩

, if ϑk
min > ε;

–ϑk
min + ε, if |ϑk

min| ≤ ε;

|ϑk
min|, otherwise.

()

Subsequently, compute matrix Hk in Step  by

Hk =

⎧
⎨

⎩
∇

xxLρk (xk , ẑk) + θkEn, if ρk ≤ ε and θk ≤ ε;

En, otherwise,
()

where the positive parameters ε and ε same as the ones in Algorithm A are sufficiently
small and sufficiently large, respectively.

The sequence {Hk} of matrices defined above possesses nice properties as follows.

Theorem  Suppose that X̃ �= ∅ and assumptions H and H(i) hold. Yield matrix Hk

in Step  by ()-(). If the sequence {xk} yielded by Algorithm A is bounded, then the
following results hold.

(i) The sequence {Hk} is bounded and satisfies the positive definite restriction () with
constant a = ε, so H holds.

(ii) In addition, assume that H(ii) and () are satisfied. Then, for k large enough,
matrix Mk is positive definite, ϑk

min >  and θk < ε . Therefore, Hk is always yielded
by the first case in (), i.e.,

Hk = ∇
xxLρk

(
xk , ẑk) + θkEn, when k is large enough. ()
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Further, it follows that

lim
k→∞

∥∥∇
xxLρ̄

(
xk ,λk) – Hk

∥∥ = lim
k→∞

θk ≤ ε ≈ 

when ε is sufficiently small. In this sense, we say assumption H+ is almost satisfied.

Proof (i) By the boundedness of {(xk , ẑk)}, in view of H(i), the boundedness of {Hk} fol-
lows immediately from (). To show the second claim of part (i), it is sufficient to discuss
the case Hk �= En. For any d ∈ Rn, from () and ()-(), one has

dT Qkd = dT
(

Hk –
∑

j∈I

ẑk
j

gk
j
∇gk

j ∇gkT
j

)
d = dT (Mk + θkEn)d. ()

On the other hand, due to the symmetry of matrix Mk , there exists a real orthogonal
matrix Uk such that Mk = Uk diag(ϑk)UT

k , where ϑk = (ϑk
i ) is the eigenvalue vector of

Mk . Therefore,

dTMkd = dT Ukdiag
(
ϑk)UT

k d =
(
UT

k d
)T

diag
(
ϑk)UT

k d

=
n∑

i=

(
uk

i
)

ϑk
i ≥ ϑk

min

n∑

i=

(
uk

i
) = ϑk

min

(
UT

k d
)T UT

k d = ϑk
min‖d‖,

where uk = (uk
i , i = , . . . , n) = UT

k d. This, along with () and (), shows that

dT Qkd = dTMkd + θk‖d‖ ≥ (
ϑk

min + θk
)‖d‖ ≥ ε‖d‖.

So request () is satisfied with a = ε.
(ii) First, under the given conditions, one knows that all the assumptions requested in

Theorem  and Lemma  are satisfied. So, by Theorems  and Lemma , it follows that

Iı
k ≡ Iı

(
x∗), ρk ≡ ρ̄,

(
xk , ẑk) → (

x∗,λ∗),

∇
xxLρ̄

(
xk , ẑk) → ∇

xxLρ̄

(
x∗,λ∗) = ∇

xxL
(
x∗,λ′).

()

Therefore, taking the above results and the SOSC in H(ii) into account, it is not difficult
to show that matrix Mk is positive definite when k is large enough, and this together with
()-() and () further implies that the remaining claims in part (ii) hold. �

Based on Theorem , comparing with [], the following remark is given.

Remark  The technique ()-() yielding matrix Hk is a modification of the one in [],
Section ., and they are unlike in two points. First, the former introduced in this work can
ensure the boundedness of {Hk} (see Theorem (i)), which plays a key role in the analysis
of global and superlinear convergence; especially, in ensuring the penalty parameter ρk

is increased at most finitely many times. However, the latter in [], Section ., cannot
ensure the boundedness of the sequence {Wk} yielded by [], Section . (corresponds to
{Hk} in this paper) since this strict relies on the bounded property of {(ρk , θk)}, and one
of the necessary conditions for the boundedness of {(ρk , θk)} is just the boundedness of



Jian et al. Journal of Inequalities and Applications  (2017) 2017:239 Page 21 of 25

{Wk} (see the proof of [], Lemma .). Second, by introducing ẑk in the computation
technique ()-() rather than zk (corresponds the one denoted in [], Section .), the
assumption H+ is almost satisfied (see Theorem (iii)). If one still uses zk rather that ẑk

in ()-(), then the second order approximate condition H+ even H would be difficult
to be satisfied since zk

Iı\Iı (x∗) → εeIı\Iı (x∗) >  = λ∗
Iı\Iı (x∗) (by Theorem (iv)). Of course, in

view of limk→∞ ‖zk – ẑk‖ = ε which is small enough, it can be thought that the numerical
performances with zk and ẑk should possess no distinct difference.

5.2 Choices of parameters
The parameters in our numerical testing are chosen as follows:

r = ., α = ., θ = ., β = .,

σ = ., ξ = ., ε = , ε = –,

ν = , ρ = p = , ϑ = , M = ,

γ = ., γ = γ = ., z = (, . . . , ).

Remark  (Analysis for lower bound ε and upper bound ε) First, by Theorems  and
, it is known that, in terms of global and strong convergence of Algorithm A, there is
no additional request on the lower bound ε and upper bound ε, i.e., any two positive con-
stants should be suitable. Second, if one considers the rate of convergence of Algorithm A,
by Theorem , parameters ε and ε should be sufficiently small and sufficiently large, re-
spectively. However, if the initial values of ε and ε are chosen too small and/or too large,
the numerical performances should be unstable. An ideal approach is to decrease ε and
increase ε based on values min{zk

i , i ∈ I} and max{zk
i , i ∈ I}, respectively.

5.3 Termination rules
During the process of iteration, the implementation is terminated successfully if one of
the following two conditions is satisfied:

(i) ‖�(xk ,λk)‖ < –; (ii) ‖d̄k‖ < – and max{–λ̄k
j , j ∈ Iı} < –.

5.4 Numerical reports
For the sake of comparing equally, the same initial points as in [] should be selected.
However, Algorithm A starts with a feasible interior point, namely, x ∈ X̃, and some
initial points given in [] do not satisfy this request. So, other initial points for these
problems are selected and listed in Table .

Table 1 Feasible initial interior points for testing problems

Prob. x0 Prob. x0 Prob. x0

HS6 (2, 2) HS32 (0.1, 0.7, 0.1) HS63 (1, 1, 1)
HS7 (0, 1) HS39 (–1, –1, 0, 0) HS73 (1, 1, 1, 1)
HS8 (4, 2) HS40 (2, –1, 0, 1) HS78 (–2, 1.5, 1, –1, –1)
HS25 (50, 25, 1.5) HS42 (1, 1, 1, 1) HS79 (0, 0, 0, 0, 0)
HS26 (0.2, 0.2, 0.2) HS52 (1, –0.5, –1, 0, 1) HS80 (–2, –1.5, 1, 1, 1)
HS27 (0, 0, 0) HS53 (–6 2 2 2 2) HS81 (–1.7, 1, 1.5, –0.8, –0.8)
HS28 (0, 0, 0) HS60 (0, 0, 0) HS107 (0.8 0.8 10 10 1 1 1 1 1)
HS111 (–1, –1, –1, –1, –1, –1, –1, –1, –1, –1) HS114 (1,745 12,000 110 3,048 1,974 89.2 92.8 8 3.6 145)
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The numerical results are reported and compared with the ones from [] in Table ,
where the columns have the following meanings:

Prob.: the problem number given in [];
Itr: the number of iterations;
Nf: the number of function evaluations for f ;
N: the total number of function evaluations for gj;
ρ̄ : the final value of ρk ;
Tcpu: the CPU time (seconds);
ffinal: the objective function value at the final iterate.

Same as the way of counting the number of iterations in [], due to only a little change
at the right side vector of SLE () in the loop between Step (i) and Step (ii), which leads
to low computational cost, the number of this loop is not counted in the total number of
iterations Itr.

From Table  it is clear that, for almost all test problems, the two algorithms (Algo-
rithms A and the one in []) have the same optimal objective value. Relatively speaking, it
also shows that Algorithm A is a promising one in terms of the CPU time, the number of
function evaluations Nf and the total number of function evaluations N.

In particular, the following four performances are worth to be mentioned. First, for
HS, HS and HS, the algorithm [] yields the associated ffinal after  iterations
for each problem, while Algorithm A needs only ,  and  iterations, respectively. Sec-
ond, for HS, the two algorithms yield two large different final objective function values
ffinal, namely, ,e– and .e+. Third, for HS with the same dimension as
HS, Algorithm A has a good numerical performance, while it is not reported in [].
Fourth, for HS, HS, HS and HS, Algorithm A fails to produce an invertible co-
efficient matrix after some iterations, then it cannot obtain the optimal objective value, so
they are not listed in Table .

For more clarity, we also give the output of Algorithm A for problem HS in Table . It
is found from ρk-column of Table  that the penalty parameter needs to be increased one,
two, four and six times at nd, rd, th and th iterations, respectively; and it can be fixed
in the subsequent iterations.

6 Conclusions
In this paper, based on a simple and effective penalty parameter update rule and using the
idea of primal-point interior method, a primal-dual interior point QP-free algorithm for
nonlinear constrained optimization is proposed and analyzed. A ‘working set’ technique
for estimating the active set is used in this work, then we need to solve only two or three
reduced systems of linear equations with the same coefficient matrix at each iteration.
Under suitable CQ and assumptions including a relaxed positive definite restriction on
the Lagrangian Hessian estimate Hk , but without the isolatedness of the stationary points,
the proposed algorithm is globally and superlinearly convergent. Moreover, a slightly new
computation technique for Hk based on second order derivative information is introduced
such that the associated assumptions, i.e., the boundedness of {Hk}, the relaxed positive
definiteness and the -sided projection second order approximation H+, are all (almost)
satisfied. The numerical experiments based on the proposed computation technique for
Hk show that the proposed algorithm is promising.
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Table 2 Numerical experiment compared reports

Prob. n me mi Algorithm A in this paper Algorithm from [1]

Itr Nf N ρ̄ ffinal Tcpu Itr ρ̄ ffinal

HS1 2 0 1 28 73 70 1 1.7825e–18 0.02 24 1 6.5782e–27
HS3 2 0 1 6 7 8 1 2.3501e–06 0.01 4 1 8.5023e–09
HS4 2 0 2 7 13 29 1 2.6667e+00 0.01 4 1 2.6667e+00
HS5 2 0 4 5 13 47 1 –1.9132e+00 0.01 6 1 –1.9132e+00
HS6 2 1 0 9 364 718 1 2.4199e–07 0.03 7 2 0.0000e+00
HS7 2 1 0 8 15 28 32 –1.7320e+00 0.01 9 2 –1.7321e+00
HS8 2 2 0 9 16 59 8,192 –1.0000e+00 0.01 14 1 –1.0000e+00
HS9 2 1 0 18 34 66 8,192 –4.9985e–01 0.02 10 1 –5.0000e+01
HS12 2 0 1 9 19 39 1 –3.0000e+01 0.01 5 1 –3.0000e+01
HS24 2 0 5 16 29 179 1 –1.0000e+00 0.02 14 1 –1.0000e+00
HS25 3 0 6 1 1 6 1 9.4934e–31 0.01 62 1 1.8185e–16
HS26 3 1 0 16 76 142 2 1.6085e–04 0.02 19 2 2.8430e–12
HS27 3 1 0 28 484 939 4 3.9958e–02 0.05 14 32 4.0000e–02
HS28 3 1 0 11 38 71 1,024 7.5674e–08 0.01 6 1 0.0000e+00
HS29 3 0 1 11 24 53 1 –2.2627e+01 0.01 8 1 –2.2627e+01
HS30 3 0 7 7 10 63 1 1.0000e+00 0.02 7 1 1.0000e+00
HS32 3 1 4 19 33 166 128 9.8818e–01 0.02 24 4 1.0000e+00
HS33 3 0 6 15 20 189 1 –4.5178e+00 0.02 29 1 –4.5858e+00
HS34 3 0 8 10 15 104 1 –8.3403e–01 0.02 30 1 –0.8340e+00
HS36 3 0 7 10 15 144 1 –3.3000e+03 0.02 10 1 –3.3000e+03
HS37 3 0 8 12 19 200 1 –3.4560e+03 0.02 7 1 –3.4560e+03
HS38 4 0 8 73 153 1,218 1 1.9761e–11 0.06 37 1 3.1594e–24
HS39 4 2 0 11 19 63 1 2.5328e–04 0.02 19 4 –1.0000e+00
HS40 4 3 0 49 108 726 2 –2.5000e–01 0.05 4 2 –2.500e+00
HS42 4 2 0 36 70 290 1,024 1.3883e+01 0.03 6 4 1.3858e+01
HS43 4 0 3 12 29 73 1 –4.4000e+01 0.02 9 1 –4.4000e+01
HS46 5 2 0 101 234 735 1 1.3088e–04 0.05 25 2 6.6616e–12
HS47 5 3 0 21 54 276 1 2.0468e–04 0.04 25 16 8.0322e–14
HS48 5 2 0 21 55 202 2,048 3.1361e–09 0.02 6 4 0.0000e+00
HS49 5 2 0 51 87 276 64 1.1761e–02 0.03 69 64 3.5161e–12
HS50 5 3 0 50 200 1,065 128 9.3190e–05 0.04 11 512 4.0725e–17
HS51 5 3 0 29 132 722 256 2.2808e–05 0.03 8 4 0.0000e+00
HS52 5 3 0 31 45 225 256 5.2930e+00 0.03 4 8 5.3266e+00
HS53 5 3 10 36 69 1,694 256 4.0734e+00 0.06 5 8 4.0930e+00
HS56 7 4 0 21 43 2,482 4 –2.6183e+00 0.06 12 4 –3.4560e+00
HS57 2 0 3 34 53 141 1 2.8461e–02 0.03 15 18 2.8460e–02
HS60 3 1 6 18 43 574 1 3.2650e–02 0.04 7 1 3.2568e–02
HS61 3 2 0 16 255 986 256 –1.7195e+02 0.03 44 128 –1.4365e+02
HS62 3 1 6 8 19 153 1 –2.6273e+04 0.02 5 1 –2.6273e+04
HS63 3 2 3 15 27 200 1 9.6232e+02 0.02 5 2 9.6172e+02
HS66 3 0 8 15 42 249 1 5.1816e–01 0.02 1,000+ 1 5.1817e–01
HS70 4 0 9 16 22 214 1 1.0085e–02 0.03 22 1 1.7981e–01
HS73 4 1 6 17 35 213 1 2.9896e+01 0.03 16 1 2.9894e+01
HS77 5 2 0 21 141 587 1 4.5981e–01 0.06 13 1 2.4151e–01
HS78 5 3 0 23 66 329 1 –2.9197e+00 0.03 4 4 –2.9197e+00
HS79 5 3 0 16 26 123 128 7.8681e–02 0.02 7 2 7.8777e–02
HS80 5 3 10 66 196 3,975 4 6.0149e–02 0.14 6 2 5.3950e–02
HS81 5 3 10 19 37 708 8 6.4109e–02 0.05 9 8 5.3950e–02
HS84 5 0 16 30 57 1,252 1 –5.2803e+06 0.06 30 1 –5.2803e+06
HS93 6 0 8 21 43 1,387 1 1.3629e+02 0.04 12 1 1.3508e+02
HS99 7 2 14 18 31 57 1 –8.3108e+08 0.02 8 4 0.0000e+00
HS100 7 0 4 8 22 86 1 6.8063e+02 0.02 9 1 6.8063e+02
HS107 9 6 8 41 67 1,086 1 1.3748e–08 0.06 1,000+ 8,192 5.0545e+38
HS110 10 0 20 11 510 10,146 1 –4.3134e+01 0.13 6 1 –4.5778e+01
HS111 10 3 20 26 264 6,542 1,024 –5.8531e+01 0.14 1,000+ 1 –4.7760e+01
HS112 10 3 10 6 11 199 2 –5.3197e+01 0.02 11 1 –4.7761e+01
HS113 10 0 8 21 48 519 1 2.4306e+01 0.03 10 1 2.4306e+01
HS114 10 3 28 11 136 4,474 16 –1.3407e+03 0.13 39 256 –1.7688e+03
HS118 15 0 59 34 51 2,554 1 6.6482e+02 0.12 - - -
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Table 3 Output of Algorithm A for problem HS8

k ρk xk f (xk) ‖d̄k‖ ‖gk
�‖

0 1 (4, 2) –1.00000e+00 5.09902e+00
1 1 (4.56235, 1.91528) –1.00000e+00 5.70399e–01 5.09902e+00
2 2 (4.60502, 1.91721) –1.00000e+00 1.02139e–01 5.79231e–01
3 8 (4.60222, 1.94248) –1.00000e+00 1.07010e–01 2.08008e–01
4 128 (4.60158, 1.95367) –1.00000e+00 1.83034e–01 7.60755e–02
5 8,192 (4.60159, 1.95516) –1.00000e+00 1.93245e–01 1.32456e–02
6 8,192 (4.60159, 1.95575) –1.00000e+00 5.86992e–04 4.14795e–03
7 8,192 (4.60159, 1.95581) –1.00000e+00 1.24840e–04 5.82513e–04
8 8,192 (4.60159, 1.95583) –1.00000e+00 2.60839e–05 2.36077e–04
9 8,192 (4.60159, 1.95584) –1.00000e+00 1.21999e–05 7.55776e–05

7 Results and discussion
In this work, a new primal-dual interior point QP-free algorithm for nonlinear optimiza-
tion with equality and inequality constraints is proposed. The global and superlinear con-
vergence are analyzed. Some effective numerical results are reported. As further work,
there are several interesting problems worthy of discussing. First, refer to [], improve
the algorithm such that it can start from an arbitrary initial point. Second, try to get rid
of the strict complementarity condition. Third, apply the ideas in the paper to minimax
optimization problems, engineering problems and so on.
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