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Abstract
In this paper, we investigate the closure property ofH-tensors under the Hadamard
product. It is shown that the Hadamard products of Hadamard powers of strong
H-tensors are still strongH-tensors. We then bound the minimal real eigenvalues of
the comparison tensors of the Hadamard products involving strongH-tensors.
Finally, we show how to attain the bounds by characterizing theseH-tensors.
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1 Introduction
The study of tensors with their various applications has increasingly attracted extensive
attention and interest [–]. A tensor can be regarded as a higher-order generalization of
a matrix in linear algebra. However, unlike matrices, the problems for tensors are gener-
ally nonlinear. Hence, there is a large need to investigate tensor problems. Recently, some
structured tensors such as nonnegative tensors, M-tensors and H-tensors have been in-
troduced and studied well, and many interesting results for these tensors have been ob-
tained because of their special structure properties [–]. These structural tensors have
a wide range of applications such as spectral hypergraph theory, higher-order Markov
chains, big amounts of data, polynomial optimization, magnetic resonance imaging, sim-
ulation, automatic control, and quantum entanglement problems [, , –, –]. For
example, the positive definiteness of an even-degree homogeneous polynomial form f (x)
plays an important role in the stability study of nonlinear autonomous systems via Lya-
punov’s direct method in automatic control []. In [], it is shown that the homoge-
neous polynomial form f (x) is equivalent to the tensor product Axm of an mth-order,
n-dimensional supersymmetric tensor A and xm, defined by the following equation (.)
(see [, ]). In [], Qi pointed out that f (x) is positive definite if and only if the real su-
persymmetric tensor A is positive definite. For an even-order real supersymmetric tensor
A of order m and dimension n, with all diagonal elements ak...k > , if A is an H-tensor,
then A is positive definite []. The main aim of this paper is to study the closure property
of structure properties of H-tensors under the Hadamard product.
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An mth-order n-dimensional real tensor A is a multidimensional array of nm real entries
of the form

A = (ai...im ), ai...im ∈ R,  ≤ i, . . . , im ≤ n.

The entries aii...i are called the diagonal entries of A. If all its off-diagonal entries are zero,
then A is diagonal. The identity tensor I is a diagonal tensor all of whose diagonal entries
are . In the sequel, we denote byR(m,n) the set of all mth-order n-dimensional real tensors.
For a tensor A ∈R(m,n) and a vector x = (x, . . . , xn)T ∈C

n, the tensor-vector multiplication
Axm– is defined as an n-vector whose ith entries are

(
Axm–)

i =
n∑

i,...,im=

aii...im xi . . . xim , i = , , . . . , n. (.)

If there are a number λ and a nonzero vector x ∈C
n such that

Axm– = λx[m–],

then λ is called the eigenvalue of A and x is the eigenvector of A associated with λ, where
x[m–] is the Hadamard power of x, i.e., x[m–] = (xm–

 , . . . , xm–
n )T . Note that the definition

of eigenvalues of tensors was independently introduced by Qi [] and Lim []. Denote
by ϕ(A) the set of all the eigenvalues of A ∈R(m,n), and denote

ρ(A) = max
{|λ||λ ∈ ϕ(A)

}
, τ (A) = min

{
Reλ|λ ∈ ϕ(A)

}
,

where Reλ is the real part of λ. It is well known that if A ∈R(m,n) is a nonnegative tensor
(i.e., all its entries are nonnegative), then ρ(A) must be its eigenvalue [, ]; and if A ∈
R(m,n) is an M-tensor, then τ (A) must be its eigenvalue [].

A tensor A ∈R(m,n) is said to be a (strong) M-tensor if A can be written as A = sI –B,
where B ∈R(m,n) is nonnegative and s(>) ≥ ρ(B). In this case, according to the proof of [,
Theorem .], τ (A) = s – ρ(B). For a tensor A = (ai...im ) ∈ R(m,n), the comparison tensor
M(A) = (mi...im ) ∈R(m,n) is defined as

mi...im =

⎧
⎨

⎩
|ai...im |, if i = · · · = im,

–|ai...im |, otherwise,
 ≤ i, . . . , im ≤ n.

Definition . ([, ]) A tensor A ∈R(m,n) is called a (strong) H-tensor if its comparison
tensor M(A) is a (strong) M-tensor. We denote σ (A) = τ (M(A)).

For a nonnegative tensor A = (aii...im ) ∈ R(m,n), the matrix R(A) = (rij) ∈ R
n×n is called

the representation of A, where

rij =
∑

{i,...,im}�j

aii...im , i, j = , , . . . , n.

Definition . ([, ]) A tensor A = (aii...im ) ∈ R(m,n) is called weakly irreducible if the
representation R(|A|) of |A| is irreducible. We denote |A| = (|aii...im |).
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Many interesting properties have been provided for M-tensors. Recall that A ∈ R(m,n)

is an H-tensor if and only if M(A) ∈ R(m,n) is an M-tensor. So using [, Theorem .]
and [, Theorem ], we have the following facts on H-tensors that will be frequently used
in the next sections:

(P) If A ∈R(m,n) is an H-tensor, then σ (A) = σ (|A|), which is the minimal real
eigenvalue of M(A). Further, let M(A) = sI – B where B is nonnegative and
s ≥ ρ(B). Then σ (A) = s – ρ(B).

(P) If A ∈R(m,n) is a weakly irreducible strong H-tensor, then σ (A) > , and there
exists an n-vector x >  such that M(A)xm– = σ (A)x[m–].

(P) A tensor A ∈R(m,n) is a strong H-tensor if and only if there exists an n-vector
x >  such that M(A)xm– > .

Clearly, these interesting results are due to the special structures of H-tensors. So it is
natural to consider how to preserve the structure properties under certain operations. In
addition, many interesting results have been obtained for the Hadamard products involv-
ing M-matrices and H-matrices []. It is natural to ask whether we can provide similar
results for the tensor case. Motivated by these facts, the aim of this paper is to investigate
the closure property of H-tensors under the Hadamard product.

Definition . Given two tensors A = (ai...im ),B = (bi...im ) ∈ R(m,n), the Hadamard prod-
uct of A and B is defined as A ◦ B = (ai...im bi...im ) ∈ R(m,n) and the rth Hadamard power
of A is defined as A[r] = (ar

i...im ) ∈R(m,n) for r ≥ .

To obtain our results, we need the following two famous inequalities:
• Hölder’s inequality: let ai and bi be nonnegative numbers for i = , , . . . , n, and let

 < r < . Then

n∑

i=

ar
i b–r

i ≤
( n∑

i=

ai

)r( n∑

i=

bi

)–r

,

and the equality holds if and only if, for all i = , , . . . , n, ai = lbi for some constant l.
• Minkowski’s inequality: let ai be nonnegative numbers for i = , , . . . , n, and let r > .

Then

n∑

i=

ar
i ≤

( n∑

i=

ai

)r

,

and the equality holds if and only if there is at most one nonzero number for
a, a, . . . , an.

The rest of the paper is organized as follows. In Section , we show the closure property
of the Hadamard products of Hadamard powers of strong H-tensors. In Section , we
bound the minimal real eigenvalues of the comparison tensors of the Hadamard products
involving strong H-tensors. In Section , we characterize these strong H-tensors such
that the bounds can be obtained.

2 The closure property
In this section, we provide the closure property of the Hadamard products of Hadamard
powers of strong H-tensors.
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Lemma . Let A,B ∈R(m,n) be strong H-tensors and let  ≤ r ≤ . Then A[r] ◦B[–r] is a
strong H-tensor.

Proof Set A = (aii...im ) and B = (bii...im ). By (P), there exist positive vectors x = (xi) ∈R
n

and y = (yi) ∈ R
n such that M(A)xm– >  and M(B)ym– > , respectively. This means

that, for all i = , , . . . , n,

|aii...i|xm–
i >

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

and

|bii...i|ym–
i >

∑

(i,...,im) �=(i,...,i)

|bii...im |yi . . . yim .

Note that  ≤ r ≤ . Thus, using the Hölder inequality, we have

|aii...i|r|bii...i|–r(xr
i y–r

i
)(m–) >

( ∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)r

×
( ∑

(i,...,im) �=(i,...,i)

|bii...im |yi . . . yim

)–r

≥
∑

(i,...,im) �=(i,...,i)

|aii...im |rxr
i . . . xr

im · |bii...im |–ry–r
i . . . y–r

im .

Set z = (xr
i y–r

i ) ∈R
n. Then the inequality above gives M(A[r] ◦B[–r])zm– > , from which

it follows by (P) that A[r] ◦B[–r] is a strong H-tensor. The result is proved. �

Lemma . Let A ∈ R(m,n) be a strong H-tensor and let t ≥ . Then A[t] is a strong H-
tensor.

Proof Set A = (aii...im ). Clearly, there exists a positive vector x = (xi) ∈ R
n such that

M(A)xm– >  and so, for all i = , , . . . , n,

|aii...i|xm–
i >

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim ,

from which we get, by considering t ≥  and using the Minkowski inequality,

|aii...i|t
(
xt

i
)(m–) >

( ∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)t

≥
∑

(i,...,im) �=(i,...,i)

|aii...im |txt
i . . . xt

im .

Set z = (xt
i ) ∈ R

n. Then M(A[t])zm– >  and thus A[t] is a strong H-tensor by (P). The
result is proved. �

Now we are ready to present the main result of this section.
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Theorem . LetA, . . . ,Ak ∈R(m,n) be strongH-tensors and let r, . . . , rk be positive num-
bers with

∑k
i= ri ≥ . Then A[r]

 ◦ · · · ◦A[rk ]
k is a strong H-tensor.

Proof Consider that A ∈ R(m,n) is a strong H-tensor if and only if |A| ∈ R(m,n) is a strong
H-tensor. So, without loss of generality, assume that all the tensors Ai are nonnegative for
i = , , . . . , k. We first use the induction on k to prove the result in the case that

∑k
i= ri = .

Clearly, the result is true for k =  by Lemma .. Assume that the result is true for k – .
Now let

B[–rk ] = A[r]
 ◦ · · · ◦A[rk–]

k– .

Recall that each Ai is nonnegative. Then

B = A
[ r

–rk
]

 ◦ · · · ◦A[ rk–
–rk

]
k– .

Note that
∑k–

i=
ri

–rk
= . Hence, using the induction assumption, we conclude that B is a

strong tensor. Further, by Lemma ., B[–rk ] ◦ A[rk ]
k is a strong H-tensor. So the result is

true in the case that
∑k

i= ri = .
Now consider the general case t =

∑k
i= ri ≥ . Let li = rit– for all i = , , . . . , k. Then

∑k
i= li = . Thus, following the case above, we know that C = A[l]

 ◦ · · ·◦A[lk ]
k is a strong H-

tensor. Further, by considering t ≥ , using Lemma . we find that C[t] = A[r]
 ◦ · · · ◦A[rk ]

k
is a strong H-tensor. The result is proved. �

Example . Let A = (aijkl),A = (bijkl),A = (cijkl) ∈R(,) be defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a = , a = , a = , a = a = a = a = , otherwise aijkl = ,

b = , b = , b = , b = b = , b = b = 
 , otherwise bijkl = ,

c = , c = , c = , c = c = 
 , c = c = 

 , otherwise cijkl = .

By (P), it is ensured that A, A, and A are strong H-tensors. Set r = r = r =  and x =
(x, x, x)T = (, , )T . Then D = A[r]

 ◦A[r]
 ◦A[r]

 = (dijkl), where d = , d = ,
d = , d = , d = , d = 

 , d = 
 , otherwise dijkl = . Since

⎧
⎪⎪⎨

⎪⎪⎩

|d|x
 =  ×  =  > |d|x

 x + |d|x
 x =  ×  ×  + 

 ×  ×  = 
 ,

|d|x
 =  ×  =  > |d|x

 =  ×  = ,

|d|x
 =  ×  =  > |d|x

 = 
 ×  = 

 ,

we see by (P) that D is a strong H-tensor.

3 Bounding the minimal real eigenvalues
In this section, we bound the minimal real eigenvalues of the comparison tensors of the
Hadamard products involving strong H-tensors.

Let A = (aii...im ) ∈ R(m,n) and let α ⊆ {, , . . . , n} with |α| = k, where |α| denotes the
number of elements of α. A principal subtensor A[α] of A is an mth-order k-dimensional
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subtensor consisting of km elements defined as

A[α] = (aii...im ), where i, i, . . . , im ∈ α.

For a nonnegative tensor B ∈R(m,n), let B[α] be a principal subtensor with |α| < n. Then
ρ(B[α]) ≤ ρ(B) by [, Lemma .]. Further, if B is weakly irreducible, then ρ(B[α]) < ρ(B)
by [, Theorem .] or [, Proposition .]. Thus we immediately have the following
result.

Lemma . Let A ∈R(m,n) be a strong H-tensor and let A[α] be a principal subtensor with
|α| < n. Then A[α] is a strong H-tensor and σ (A[α]) ≥ σ (A). Furthermore, if A is weakly
irreducible, then σ (A[α]) > σ (A).

Proof Let M(A) = sI –B, where B is a nonnegative tensor and s > ρ(B). Then M(A[α]) =
sI – B[α] and s – ρ(B[α]) ≥ s – ρ(B) > . So A[α] is a strong H-tensor with σ (A[α]) ≥
σ (A). Further, ifA is weakly irreducible, thenB is also weakly irreducible by Definition .,
so ρ(B[α]) < ρ(B), which implies that σ (A[α]) > σ (A). The result is proved. �

For a nonnegative tensor B ∈ R(m,n), by [, Theorem .], there exists a partition
{α, . . . ,αp} of {, , . . . , n} such that the principal subtensor B[αi] is weakly irreducible for
i = , , . . . , p. Also, ρ(B) = ρ(B[αt]) for some  ≤ t ≤ p. Thus we immediately have the
following result.

Lemma . Let A ∈ R(m,n) be a strong H-tensor. Then there exists α ⊆ {, , . . . , n} such
that A[α] is a weakly irreducible strong H-tensor with σ (A) = σ (A[α]).

Proof Let M(A) = sI – B, where B is a nonnegative tensor and s > ρ(B). Assume that
B[α] is a weakly irreducible principal subtensor of B such that ρ(B) = ρ(B[α]). Then, by
Definition . and Lemma ., A[α] is a weakly irreducible strong H-tensor. Moreover,
σ (A) = s – ρ(B) = s – ρ(B[α]) = σ (A[α]). The result is proved. �

Lemma . ([, Lemma .]) Let B ∈R(m,n) be a nonnegative tensor and let x = (xi) ∈R
n

be a positive vector. Then

min
≤i≤n

(Bxm–)i

xm–
i

≤ ρ(B) ≤ max
≤i≤n

(Bxm–)i

xm–
i

.

Lemma . Let A ∈ R(m,n) be an M-tensor and let Azm– ≥ kz[m–] for a positive vector
z ∈R

n. Then τ (A) ≥ k.

Proof Let A = sI –B, where B is a nonnegative tensor and s ≥ ρ(B). Since Azm– ≥ kz[m–]

for z = (zi) ∈R
n > , we have, for all i = , , . . . , n,

szm–
i –

(
Bzm–)

i ≥ kzm–
i ,

from which it follows that

max
≤i≤n

(Bzm–)i

zm–
i

≤ s – k.

So, by Lemma ., ρ(B) ≤ s – k. Thus τ (A) = s – ρ(B) ≥ k. The result is proved. �
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Lemma . Let A,B ∈R(m,n) be strong H-tensors, and let  ≤ r ≤ . Then

σ
(
A[r] ◦B[–r]) ≥ σ (A)rσ (B)–r. (.)

Proof The result is trivial for r = , . So let  < r < . We first consider the case where
A[r] ◦ B[–r] is weakly irreducible. Obviously, both A and B must be weakly irreducible.
Thus, by (P), there exist positive eigenvectors x = (xi) ∈ R

n and y = (yi) ∈ R
n such that

M(A)xm– = σ (A)x[m–] and M(B)ym– = σ (B)y[m–], respectively. Let A = (aii...im ) and
B = (bii...im ). Then, for all i = , , . . . , n,

⎧
⎨

⎩
|aii...i|xm–

i –
∑

(i,...,im) �=(i,...,i) |aii...im |xi . . . xim = σ (A)xm–
i > ,

|bii...i|ym–
i –

∑
(i,...,im) �=(i,...,i) |bii...im |yi . . . yim = σ (B)ym–

i > .
(.)

Set z = (xr
i y–r

i ) ∈R
n. Then, by the Hölder inequality, we have, for all i = , , . . . , n,

(
M

(
A[r] ◦B[–r])zm–)

i =
(|aii...i|xm–

i
)r(|bii...i|ym–

i
)–r

–
∑

(i,...,im) �=(i,...,i)

(|aii...im |xi . . . xim
)r(|bii...im |yi . . . yim

)–r

≥ (|aii...i|xm–
i

)r(|bii...i|ym–
i

)–r

–
( ∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)r

×
( ∑

(i,...,im) �=(i,...,i)

|bii...im |yi . . . yim

)–r

≥
(

|aii...i|xm–
i –

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)r

×
(

|bii...i|ym–
i –

∑

(i,...,im) �=(i,...,i)

|bii...im |yi . . . yim

)–r

=
(
σ (A)xm–

i
)r(

σ (B)ym–
i

)–r = σ (A)rσ (B)–rzm–
i . (.)

SoM(A[r] ◦B[–r])zm– ≥ σ (A)rσ (B)–rz[m–] for z > . Consider thatA[r] ◦B[–r] is a strong
H-tensor by Theorem .. Thus, using Lemma ., we get σ (A[r] ◦B[–r]) ≥ σ (A)rσ (B)–r .

Now we consider the general case. Recall that A[r] ◦ B[–r] is a strong H-tensor. By
Lemma ., there exists α ⊆ {, , . . . , n} such that (A[r] ◦B[–r])[α] = (A[α])[r] ◦ (B[α])[–r]

is a weakly irreducible H-tensor with σ (A[r] ◦B[–r]) = σ ((A[r] ◦B[–r])[α]). Note that A[α]
and B[α] are strong H-tensors. Thus, according to the case above, using Lemma . we
get

σ
(
A[r] ◦B[–r]) = σ

((
A[α]

)[r] ◦ (
B[α]

)[–r]) ≥ σ
(
A[α]

)r
σ
(
B[α]

)–r ≥ σ (A)rσ (B)–r.

The result is proved. �

Lemma . Let A ∈R(m,n) be a strong H-tensor, and let t ≥ . Then σ (A[t]) ≥ σ (A)t .
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Proof First assume that A[t] is weakly irreducible. Obviously, A is weakly irreducible.
Then by (P), there exists a positive eigenvector x = (xi) ∈ R

n such that M(A)xm– =
σ (A)x[m–]. Let A = (aii...im ). Then, for all i = , , . . . , n,

|aii...i|xm–
i –

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim = σ (A)xm–
i > . (.)

Set z = (xt
i ) ∈Rn. Then, by the Minkowski inequality, we have, for all i = , , . . . , n,

(
M

(
A[t])zm–)

i =
∣
∣at

ii...i
∣
∣(xt

i
)m– –

∑

(i,...,im) �=(i,...,i)

∣
∣at

ii...im

∣
∣xt

i . . . xt
im

≥ (|aii...i|xm–
i

)t –
( ∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)t

≥
(

|aii...i|xm–
i –

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim

)t

= σ (A)tzm–
i . (.)

So M(A[t])zm– ≥ σ (A)tz[m–] for z > . Consider that A[t] is a strong H-tensor by
Lemma .. Thus, using Lemma ., we get σ (A[t]) ≥ σ (A)t .

Now we consider the general case. Recall that A[t] is a strong H-tensor. By Lemma .,
there exists α ⊆ {, , . . . , n} such that A[t][α] = (A[α])[t] is a weakly irreducible H-tensor
with σ (A[t]) = σ (A[t][α]). Thus, according to the case above, using Lemma . we get

σ
(
A[t]) = σ

((
A[α]

)[t]) ≥ σ
(
A[α]

)t ≥ σ (A)t .

The result is proved. �

Our main result of this section is the following.

Theorem . Let A,A, . . . ,Ak ∈ R(m,n) be strong H-tensors and let r, r, . . . , rk be posi-
tive numbers such that

∑k
i= ri ≥ . Then

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
) ≥ σ (A)rσ (A)r · · ·σ (Ak)rk . (.)

Proof By (P), without loss of generality, assume that all the tensors Ai are nonnegative for
i = , , . . . , k. We first use the induction on k to prove the result in the case that

∑k
i= ri = .

Obviously, the result is true for k =  by Lemma .. Assume the result is true for k – .
Now let

B[–rk ] = A[r]
 ◦ · · · ◦A[rk–]

k– .

Consider that each Ai is nonnegative. Then

B = A
[ r

–rk
]

 ◦ · · · ◦A[ rk–
–rk

]
k– .
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Note that
∑k–

i=
ri

–rk
= . Thus B is a strong H-tensor by Theorem .. Therefore, using the

induction assumption, we get

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)

= σ
(
B[–rk ] ◦A[rk ]

k
) ≥ σ (B)–rk σ (Ak)rk

≥ (
σ (A)

r
–rk · · ·σ (Ak–)

rk–
–rk

)–rk σ (Ak)rk

= σ (A)r · · ·σ (Ak–)rk–σ (Ak)rk . (.)

So the result is true in the case that
∑k

i= ri = .
Now we consider the general case t =

∑k
i= ri ≥ . Set li = rit– for i = , , . . . , k. Then

∑k
i= li = . Thus C = A[l]

 ◦A[l]
 ◦· · ·◦A[lk ]

k is a strongH-tensor by Theorem .. Therefore,
according to the case above, using Lemma . we get

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)

= σ
(
C[t]) ≥ σ (C)t

≥ (
σ (A)lσ (A)l · · ·σ (Ak)lk

)t

= σ (A)rσ (A)r · · ·σ (Ak)rk .

The result is proved. �

Example . Let A = (aijkl),A = (bijkl),A = (cijkl) ∈R(,) be defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

a = , a = a = a = a = , a = , otherwise aijkl = ,

b = , b = b = b = b = , b = , otherwise bijkl = ,

c = , c = a = c = c = , c = , otherwise cijkl = .

By (P), it is assured that A, A, and A are strong H-tensors. Now set r = r = r = .
Then D = A[r]

 ◦ A[r]
 ◦ A[r]

 = (dijkl), where d = , d = , d = , d = ,
d = , d = , otherwise dijkl = . By Corollary  of Qi [], we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ[M(A)] = {, , , . + .i, . – .i, .},
ϕ[M(A)] = {., , , . + .i, . – .i, .},
ϕ[M(A)] = {, , , . + .i, . – .i, .},
ϕ[M(D)] = {., , , . + .i, . – .i, .}.

So σ (D) = . ≥ σ (A)σ (A)σ (A) =  × . ×  = ..

4 Characterizations for the equality case
In this section, we characterize the strong H-tensors such that the equality of (.) holds.

Lemma . ([, Lemma .]) Let B ∈ R(m,n) be a weakly irreducible nonnegative tensor
and let Bzm– ≤ ρ(B)z[m–] for a positive vector z ∈ R

n. Then Bzm– = ρ(B)z[m–].

Using Lemma ., we immediately get the following result.

Lemma . Let A ∈ R(m,n) be a weakly irreducible strong M-tensor and let Azm– ≥
τ (A)z[m–] for a positive vector z ∈ R

n. Then Azm– = τ (A)z[m–].
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Proof Let A = sI –B, where B is a nonnegative tensor and s > ρ(B). Obviously, B is weakly
irreducible. Since Azm– ≥ τ (A)z[m–] where τ (A) = s – ρ(B), we have Bzm– ≤ ρ(B)z[m–]

for z > . Thus, by Lemma ., Bzm– = ρ(B)z[m–]. So Azm– = τ (A)z[m–]. The result is
proved. �

For a tensor A = (aii...im ) ∈ R(m,n) and a nonsingular diagonal matrix D = diag(dii) ∈
R

n×n, the tensor C = AD–(m–) · D · · ·D︸ ︷︷ ︸
m–

= (cii...im ) ∈R(m,n) is defined as

cii...im = aii...im d–(m–)
i,i di,i · · ·dim ,im ,  ≤ i, i, . . . , im ≤ n.

It must be pointed out that A and C have the same eigenvalues []. In particular, if A and
C are strong H-tensors, then M(C) = M(A)|D|–(m–) · |D| · · · |D|︸ ︷︷ ︸

m–

, so σ (A) = σ (C).

Lemma . Let A,B ∈ R(m,n) be weakly irreducible strong H-tensors and let  < r < .
Then

σ
(
A[r] ◦B[–r]) = σ (A)rσ (B)–r

if and only if there exist γ >  and a positive diagonal matrix D ∈R
n×n such that

|A| = γ |B|D–(m–) · D · · ·D︸ ︷︷ ︸
m–

.

Proof As regards sufficiency, we have σ (A)rσ (B)–r = γ rσ (B)rσ (B)–r = γ rσ (B) and

σ
(
A[r] ◦B[–r]) = σ

(|A|[r] ◦ |B|[–r])

= σ
(
γ r(|B|[r] ◦ |B|[–r])(Dr)–(m–) · Dr · · ·Dr

︸ ︷︷ ︸
m–

)
= γ rσ (B),

and thus the sufficiency is true.
Necessarily, according to the proof of Lemma ., there exists α ⊆ {, , . . . , n} such that

(A[r] ◦B[–r])[α] is a weakly irreducible H-tensor and

σ
(
A[r] ◦B[–r]) = σ

((
A[r] ◦B[–r])[α]

)

= σ
((
A[α]

)[r] ◦ (
B[α]

)[–r]) ≥ σ
(
A[α]

)r
σ
(
B[α]

)–r .

Recall that A = (aii...im ) and B = (bii...im ) are weakly irreducible strong H-tensors. Thus,
if |α| < n, then, by Lemma ., σ (A[α]) > σ (A) and σ (B[α]) > σ (B), from which it follows
that σ (A[r] ◦ B[–r]) > σ (A)rσ (B)–r , a contradiction. So |α| = n. Hence, A[r] ◦ B[–r] must
be weakly irreducible and thus, according to the proof of Lemma ., (.) is true, i.e.,

M
(
A[r] ◦B[–r])zm– ≥ σ (A)rσ (B)–rz[m–]

= σ
(
A[r] ◦B[–r])z[m–],  < z =

(
xr

i y–r
i

) ∈R
n,
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from which it follows by Lemma . that

M
(
A[r] ◦B[–r])zm– = σ (A)rσ (B)–rz[m–].

This means that the two Hölder inequalities of (.) are equalities and so, for all i =
, , . . . , n,

|aii...im |xi . . . xim = ki|bii...im |yi . . . yim , ∀(i, . . . , im) �= (i, . . . , i)

for some constant ki and for some constant li

⎧
⎪⎪⎨

⎪⎪⎩

∑
(i,...,im) �=(i,...,i) |aii...im |xi . . . xim = li

∑
(i,...,im) �=(i,...,i) |bii...im |yi . . . yim ,

|aii...i|xm–
i –

∑
(i,...,im) �=(i,...,i) |aii...im |xi . . . xim

= li(|bii...i|ym–
i –

∑
(i,...,im) �=(i,...,i) |bii...im |yi . . . yim ),

from which we get ki = li and

|aii...im |xi . . . xim = ki|bii...im |yi . . . yim , ∀i, i, . . . , im.

By considering (.),

σ (A)xm–
i = kiσ (B)ym–

i ⇒ ki =
σ (A)
σ (B)

xm–
i

ym–
i

.

Therefore we have, for all i = , , . . . , n,

|aii...im | = |bii...im |σ (A)
σ (B)

xm–
i

ym–
i

yi
xi

· · · yim
xim

,  ≤ i, . . . , im ≤ n. (.)

Set D = diag( y
x

, . . . , yn
xn

) ∈ R
n×n and γ = σ (A)

σ (B) . Then (.) implies that |A| = γ |B|D–(m–) ·
D · · ·D︸ ︷︷ ︸

m–

. The result is proved. �

Now we characterize strong H-tensors such that the equality of (.) holds in the case
that

∑k
i= ri = .

Theorem . Let A,A, . . . ,Ak ∈ R(m,n) be strong H-tensors and let r, r, . . . , rk be posi-
tive numbers such that

∑k
i= ri = . Then

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)

= σ (A)rσ (A)r · · ·σ (Ak)rk

if and only if there exists α ⊆ {, , . . . , n} such that Ai[α] is weakly irreducible with
σ (Ai[α]) = σ (Ai) for all i = , , . . . , k and

∣∣Ai[α]
∣∣ = γi

∣∣A[α]
∣∣D–(m–)

i · Di · · ·Di︸ ︷︷ ︸
m–

, i = , . . . , k, (.)

where γi >  and Di ∈R
n×n is a positive diagonal matrix.
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Proof As regards sufficiency, using Lemma . and Theorem ., we have

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
) ≤ σ

((
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)
[α]

)

= σ
(∣∣A[α]

∣
∣[r] ◦ ∣

∣A[α]
∣
∣[r] ◦ · · · ◦ ∣

∣Ak[α]
∣
∣[rk ])

= γ
r
 · · ·γ rk

k σ
(∣∣A[α]

∣
∣)

= σ
(
A[α]

)r
σ
(
A[α]

)r · · ·σ (
Ak[α]

)rk

= σ (A)rσ (A)r · · ·σ (Ak)rk

≤ σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)

and thus the sufficiency is true.
Necessarily, by (P), without loss of generality, assume that Ai is nonnegative for all i =

, , . . . , k. Note that C = A[r]
 ◦A[r]

 ◦ · · · ◦A[rk ]
k is a strong H-tensor by Theorem .. Thus

by Lemma ., there exists α ⊆ {, , . . . , n} such that C[α] is a weakly irreducible strong H-
tensor with σ (C) = σ (C[α]). Consider that C[α] = (A[α])[r] ◦ · · · ◦ (Ak[α])[rk ]. Thus Ai[α]
is a weakly irreducible strong H-tensor for i = , , . . . , k. Denote B[–rk ] = (A[α])[r] ◦ · · · ◦
(Ak–[α])[rk–], which is weakly irreducible. Then B = (A[α])[ r

–rk
] ◦ · · · ◦ (Ak–[α])[ rk–

–rk
] is

a weakly irreducible strong H-tensor. Hence, by Theorem . and Lemma ., we have

σ (C) = σ
(
B[–rk ] ◦ (

Ak[α]
)[rk ]) ≥ σ (B)–rk σ

(
Ak[α]

)rk

≥ (
σ
(
A[α]

) r
–rk · · ·σ (

Ak–[α]
) rk–

–rk
)–rk σ

(
Ak[α]

)rk

= σ
(
A[α]

)r · · ·σ (
Ak–[α]

)rk–σ
(
Ak[α]

)rk

≥ σ (A)r · · ·σ (Ak–)rk–σ (Ak)rk = σ (C). (.)

Thus σ (Ai[α]) = σ (Ai) for all i = , , . . . , k. Thus according to the observation that

σ
((
A[α]

)[r] ◦ · · · ◦ (
Ak[α]

)[rk ]) = σ
(
A[α]

)r · · ·σ (
Ak–[α]

)rk–σ
(
Ak[α]

)rk ,

where each Ai[α] is a weakly irreducible strong H-tensor, we use the induction on k to
prove that (.) is true. Clearly, (.) is true for k =  by Lemma .. Assume that (.) is
true for k – . Now by (.) we have the following statements:

• σ (B[–rk ] ◦ (Ak[α])[rk ]) = σ (B)(–rk )σ (Ak[α])rk and so, by Lemma ., there exist γ ′
k > 

and a positive diagonal matrix D′
k ∈R

n×n such that

∣∣Ak[α]
∣∣ = γ ′

k|B|(D′
k
)–(m–) · D′

k · · ·D′
k︸ ︷︷ ︸

m–

. (.)

• σ (B) = σ (A[α])
r

–rk · · ·σ (Ak–[α])
rk–
–rk and thus, by the induction assumption, we find

that, for all i = , . . . , k – , there exist γi >  and a positive diagonal matrix Di ∈Rn×n

such that

∣∣Ai[α]
∣∣ = γi

∣∣A[α]
∣∣D–(m–)

i · Di · · ·Di︸ ︷︷ ︸
m–

. (.)
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• Using (.) and (.), we derive that there exist γk >  and a positive diagonal matrix
Dk ∈R

n×n such that

∣∣Ak[α]
∣∣ = γk

∣∣A[α]
∣∣D–(m–)

k · Dk · · ·Dk︸ ︷︷ ︸
m–

.

Thus the result is proved. �

Next we characterize strong H-tensors such that the equality of (.) holds in the case
that

∑k
i= ri > .

Lemma . Let A ∈ R(m,n) be a weakly irreducible strong H-tensor and let t > . Then
σ (A[t]) = σ (A)t if and only if n = .

Proof The sufficiency is trivial. Necessarily, A[t] is obviously a weakly irreducible strong
H-tensor and thus, according to the proof of Lemma ., (.) is true, i.e.,

M
(
A[t])zm– ≥ σ (A)tz[m–] = σ

(
A[t])z[m–],  < z =

(
xt

i
) ∈R

n,

from which it follows by Lemma . that

M
(
A[t])zm– = σ (A)tz[m–].

This means that the two Minkowski inequalities of (.) are equalities, and so, for all i =
, . . . , n, there is at most one nonzero element for the elements

|aii...im |xi . . . xim , ∀(i, . . . , im) �= (i, . . . , i),

and there is at most one nonzero element for the two elements

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim , |aii...i|xm–
i –

∑

(i,...,im) �=(i,...,i)

|aii...im |xi . . . xim .

So, because of (.), we have, for all i = , . . . , n,

aii...im = , ∀(i, . . . , im) �= (i, . . . , i),

by considering the fact that xi . . . xim > , which means that A is diagonal. Recall that A is
weakly irreducible. So, n = . The result is proved. �

Theorem . Let A,A, . . . ,Ak ∈ R(m,n) be strong H-tensors and let r, r, . . . , rk be posi-
tive numbers such that

∑k
i= ri > . Then

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)

= σ (A)rσ (A)r . . .σ (Ak)rk

if and only if there exists α ⊆ {, , . . . , n} with |α| =  such that σ (Ai[α]) = σ (Ai) for all
i = , , . . . , k.
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Proof As regards sufficiency, by considering |α| = , using Lemma . and Theorem .,
we have

σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
) ≤ σ

((
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)
[α]

)

= σ
(
A[α]

)r
σ
(
A[α]

)r · · ·σ (
Ak[α]

)rk

= σ (A)rσ (A)r · · ·σ (Ak)rk

≤ σ
(
A[r]

 ◦A[r]
 ◦ · · · ◦A[rk ]

k
)
,

and thus the sufficiency is true.
Without loss of generality, assume that Ai is nonnegative for all i = , , . . . , k. Note that

C = A[r]
 ◦ A[r]

 ◦ · · · ◦ A[rk ]
k is a strong H-tensor by Theorem .. Thus, by Lemma .,

there exists α ⊆ {, , . . . , n} such that C[α] is a weakly irreducible strong H-tensor with
σ (C) = σ (C[α]). Set t =

∑k
i= ri and li = rit– for i = , , . . . , k. Denote B = A[l]

 ◦ A[l]
 ◦

· · · ◦A[lk ]
k . Then B[α] is a weakly irreducible strong H-tensor. Hence, by using Lemma .,

Theorem . and Lemma .,

σ (C) = σ
(
C[α]

)
= σ

((
B[α]

)[t]) ≥ σ
(
B[α]

)t

≥ (
σ
(
A[α]

)l
σ
(
A[α]

)l · · ·σ (
Ak[α]

)lk )t

= σ
(
A[α]

)r
σ
(
A[α]

)r · · ·σ (
Ak[α]

)rk

≥ σ (A)rσ (A)r · · ·σ (Ak)rk = σ (C),

from which it follows that σ (Ai[α]) = σ (Ai) for all i = , , . . . , k and σ ((B[α])[t]) = σ (B[α])t ,
which implies by Lemma . that |α| = . The result is proved. �

5 Conclusions
In this paper, we investigate the closure property of H-tensors under the Hadamard prod-
uct. It is shown that the Hadamard products of Hadamard powers of strong H-tensors
are still strong H-tensors. We then bound the minimal real eigenvalues of the comparison
tensors of the Hadamard products involving strong H-tensors. Finally, we show how to
attain the bounds by characterizing these H-tensors.
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