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Abstract
In the present study, we work on the problem of the existence of positive solutions of
fractional integral equations by means of measures of noncompactness in association
with Darbo’s fixed point theorem. To achieve the goal, we first establish new fixed
point theorems using a new contractive condition of the measure of
noncompactness in Banach spaces. By doing this we generalize Darbo’s fixed point
theorem along with some recent results of (Aghajani et al. (J. Comput. Appl. Math.
260:67-77, 2014)), (Aghajani et al. (Bull. Belg. Math. Soc. Simon Stevin 20(2):345-358,
2013)), (Arab (Mediterr. J. Math. 13(2):759-773, 2016)), (Banaś et al. (Dyn. Syst. Appl.
18:251-264, 2009)), and (Samadi et al. (Abstr. Appl. Anal. 2014:852324, 2014)). We also
derive corresponding coupled fixed point results. Finally, we give an illustrative
example to verify the effectiveness and applicability of our results.
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1 Introduction
Fractional calculus is the study of integrals and derivatives of an arbitrary order. Frac-
tional calculus seeks to find the integrals and derivatives of a real or even complex order
using the Gamma function, Euler’s generalization of the factorials. In modern times dif-
ferential/integral equations with nonintegral order have drawn the attention of numerous
researchers due to their wide applications in several fields of science and engineering.
The need for fractional order differential/integral equations stems in part from the fact
that many phenomena cannot be modeled by differential/integral equations with integer
derivatives. Analytical and numerical techniques have been implemented to study such
equations.

Due to the importance of fractional calculus, it is necessary to discuss the related prob-
lems and work on them. In this work, we study the problem of the existence of positive
solutions for integral equations of the form

x(t) = a(t) +
h(t, x(t))

�(γ )

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds,

t ∈ I = [, ],  < γ < , (.)
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where �(·) is the (Euler) Gamma function defined by �(γ ) =
∫ ∞

 tγ –e–t dt. Let us recall
that the function h(t, x) involved in equation (.) generates the superposition operator H
defined by the formula (Hx)(t) = h(t, x(t)), where x = x(t) is an arbitrary function defined
on I (cf. [, ]). We are going to show that equation (.) has a positive solution that belongs
to space C+(I) = C([, ];R+). The obtained results extend several papers (see [–, ], for
example). Finally, an example is presented to show the efficiency of our results.

2 Preliminaries
Throughout this paper, we assume that (E,‖ ·‖) is a real Banach space with zero element .
LetR = (–∞, +∞),R+ = [, +∞), andN = {, , , . . .}. Let B(x, r) denote the closed ball cen-
tered at x with radius r. The symbol Br stands for the ball B(, r). For X, a nonempty subset
of E, we denote by X and Conv X the closure and the closed convex hull of X, respectively.
Moreover, let us denote by ME the family of nonempty bounded subsets of E and by NE its
subfamily consisting of all relatively compact subsets of E. We use the following definition
of measure of noncompactness (MNC, for short) given in [].

Definition . ([]) A mapping β : ME −→R+ is said to be an MNC in E if it satisfies the
following conditions:

(◦) the family kerβ = {X ∈ME : β(X) = } is nonempty and kerβ ⊂NE ,
(◦) X ⊂ Y 	⇒ β(X) ≤ β(Y ),
(◦) β(X) = β(X),
(◦) β(Conv X) = β(X),
(◦) β(λX + ( – λ)Y ) ≤ λβ(X) + ( – λ)β(Y ) for λ ∈ [, ],
(◦) if {Xn} is a sequence of closed sets from ME such that Xn+ ⊂ Xn for n = , , . . . and if

limn→∞ β(Xn) = , then the intersection set X∞ =
⋂∞

n= Xn is nonempty.

The subfamily kerβ , defined by (◦), represents the kernel of the MNC β and since

β(X∞) = β

( ∞⋂
n=

Xn

)
≤ β(Xn),

we see that

β

( ∞⋂
n=

Xn

)
= .

Therefore, X∞ ∈ kerβ .
From now on we denote by β an MNC and C to be a nonempty, bounded, closed and

convex subset of a Banach space E.
Darbo’s fixed point theorem (DFPT) is a very important generalization of Schauder’s

fixed point theorem and Banach’s fixed point theorem.

Lemma . (Banaś and Goebel []) Let Q be a self-continuous operator on C and assume
∃ to be a constant k ∈ [, ) such that

β
(
Q(S)

) ≤ kβ(S),

for any nonempty subset S ⊂ C. Then Q has at least one fixed point in C.
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Following the trend of Lemma ., various authors proved several DFPTs and their cou-
pled versions by using different types of contractive conditions in the sense of the MNC
(for example, see [–, ]).

3 New fixed point theorem for shifting distance functions
To complete the proof, we need the following notions.

Definition . ([]) Let � ,� : [,∞) −→ R be two functions. The pair of functions
(� ,�) is said to be a pair of shifting distance functions if the following conditions hold:

() For u, v ∈ [, +∞), if �(u) ≤ �(v), then u ≤ v.
() For un, vn ∈ [, +∞), with

lim
n→∞ un = lim

n→∞ vn = w,

if �(un) ≤ �(vn) for all n, then w = .
We denote by ϒ a pair (� ,�) of shifting distance functions.

Example ([]) Take �(t) = ln( +t
 ), �(t) = ln( +t

 ) for all t ∈ [,∞). Then obviously they
belong to ϒ .

Definition . ([]) Let 	 be a set of functions χ : R+ → [, ) satisfying

χ (tn) → ⇒ tn → .

Let F be class of functions F : [,∞) × [,∞) −→ [,∞) satisfying the following condi-
tions:

(i) max{a, b} ≤ F(a, b) for a, b ≥ ,
(ii) F is continuous,

(iii) F(a + b, c + d) ≤ F(a, c) + F(b, d).
We are now in a position to state and prove a new DFPT theorem.

Theorem . Let T be a self-continuous operator on C such that

�
(
F
(
β
(
T(X)

)
,ϕ

(
β(TX)

))) ≤ �
(
F
(
β(X),ϕ

(
β(X)

)))
, (.)

for any subset X of C, where F ∈ F, (� ,�) ∈ ϒ , and ϕ : R+ −→ R+ is a continuous function.
Then T has at least one fixed point in C.

Proof We start with C = C and construct a sequence {Cn} such that Cn+ = Conv(TCn),
for n ≥ . TC = TC ⊆ C = C, C = Conv(TC) ⊆ C = C. Therefore by continuing this
process we have

C ⊇ C ⊇ · · · ⊇ Cn ⊇ Cn+ ⊇ · · · .

If ∃ a natural number N such that β(CN ) = , then CN is compact and concludes the result
through Schauder’s fixed point theorem. So we consider β(Cn) >  for n ≥ . Also, by (.),
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we have

�
(
F
(
β(Cn+),ϕ

(
β(Cn+)

)))
= �

(
F
(
β
(
Conv(TCn)

)
,ϕ

(
β
(
Conv(TCn)

))))

= �
(
F
(
β(TCn),ϕ

(
β(TCn)

)))

≤ �
[
F
(
β(Cn),ϕ

(
β(Cn)

))]
. (.)

This implies that {F(β(Cn),ϕ(β(Cn)))} is a nonincreasing sequence of positive real num-
bers by () of Definition .. Hence, there is an r ≥  such that

lim
n→∞ F

(
β(Cn),ϕ

(
β(Cn)

))
= lim

n→∞ F
(
β(Cn+),ϕ

(
β(Cn+)

))
= r.

Then, in view of (.) and () of Definition ., we get r =  and hence

lim
n→∞ F

(
β(Cn),ϕ

(
β(Cn)

))
= . (.)

Using (.) and (i) of property F, we get

lim
n→∞β(Cn) = lim

n→∞ϕ
(
β(Cn)

)
= .

Now since Cn is a nested sequence, in view of (◦) of Definition ., we conclude that
C∞ =

⋂∞
n= Cn is a nonempty, closed, and convex subset of C. Besides we know that C∞

belongs to kerβ . So C∞ is compact and invariant under the mapping T . Consequently,
Schauder’s fixed point theorem implies this result in C∞, but as C∞ ⊂ C, the result is true
in C. �

Taking F(a, b) = a + b in Theorem ., we obtain the following.

Theorem . Let T be a self-continuous operator on C such that

�
(
β
(
T(X)

)
+ ϕ

(
β(TX)

)) ≤ �
(
β(X) + ϕ

(
β(X)

))
, (.)

for any subset X of C, where (� ,�) ∈ ϒ and ϕ : R+ −→ R+ is a continuous function. Then
T has at least one fixed point in C.

Remark . Take ϕ ≡  in Theorem .. Then Theorem  of [] is obtained.

Remark . Take ϕ ≡ ,�(t) = t,�(t) = λt for t ≥  and λ ∈ [, ) in Theorem .. Thus
we get DFPT.

Remark . Take �(t) = t,�(t) = λt for t ≥  and λ ∈ [, ) in Theorem .. We get The-
orem  of [].

Remark . Set ϕ ≡ ,�(t) = t, t ≥  and let the function � satisfy limn→∞ �n(t) =  for
any t ≥  in Theorem .. Then we get Theorem . of [].

Taking � = I in Theorem ., we have the following result.
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Corollary . Let T be a self-continuous operator on C such that

F
(
β
(
T(X)

)
,ϕ

(
β(TX)

)) ≤ �
(
F
(
β(X),ϕ

(
β(X)

)))
,

for any subset X of C, where F ∈ F and ϕ : R+ −→ R+ is a continuous function, where � :
[,∞) →R is a function such that

(a) for u, v ∈ [, +∞), if u ≤ �(v), then u ≤ v,
(b) for un, vn ∈ [, +∞) with

lim
n→∞ un = lim

n→∞ vn = w,

if un ≤ �(vn) for all n, then w = .
Then T has at least one fixed point in C.

Remark . Take F(a, b) = a + b in Corollary .. We get Theorem . of [].

Following Proposition  (see []) and Theorem ., we conclude the following.

Theorem . Let T be a self-continuous operator on C such that

ψ
(
F
(
β
(
T(X)

)
,ϕ

(
β(TX)

))) ≤ ψ
(
F
(
β(X),ϕ

(
β(X)

)))
– φ

(
F
(
β(X),ϕ

(
β(X)

)))
,

for any subset X of C, where F ∈ F, ϕ : R+ −→ R+ is a continuous function, and ψ ,φ :
[,∞) → [,∞) are two nondecreasing and continuous functions satisfying ψ(t) = φ(t) = 
if and only if t = . Then T has at least one fixed point in C.

Remark . Take ϕ ≡  and F(a, b) = a + b in Theorem .. Then Theorem . of [] is
obtained.

Remark . Take F(a, b) = a + b in Theorem .. We get Theorem  of [].

Theorem . Let T be a self-continuous operator on C such that

F
(
β
(
T(X)

)
,ϕ

(
β(TX)

)) ≤ χ
(
F
(
β(X),ϕ

(
β(X)

)))
F
(
β(X),ϕ

(
β(X)

))
,

for any subset X of C, where F ∈ F and χ ∈ 	. Then T has at least one fixed point in C.

Remark . Take F(a, b) = a + b and ϕ ≡  in Theorem .. We get Theorem . of [].

4 Coupled fixed point theorems
Here we derive some new coupled fixed point (CFP) results by means of the MNC.

Definition . ([]) An element (u, v) ∈ E is called a CFP of mapping G : E → E if
G(u, v) = u and G(v, u) = v.

The first CFP result is the following.
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Theorem . Suppose that G : C → C is continuous operator such that, for i, j ∈
{, }, i �= j,

�
(
F
(
β
(
G(Xi × Xj)

)
,ϕ

(
β
(
G(Xi × Xj)

))))

≤ 

�

(
F
(
β(Xi) + β(Xj),ϕ

(
β(Xi) + β(Xj)

)))
(.)

for all (Xi, Xj) ∈ C × C, where F ∈ F, ϕ : R+ −→ R+ is a continuous sub-additive function,
and (� ,�) ∈ ϒ are sub-additive functions. Then G has at least one CFP (u, v) ∈ C.

Proof Consider the map G : X → X defined by the formula

Ĝ(u, v) =
(
G(u, v), G(v, u)

)
.

Ĝ is continuous due to the continuity of G. Following [], we define a new MNC in the
space X × X as

β̂(M) = β(X) + β(X),

where Xi, i = ,  denote the natural projections of X. Without loss of generality, we assume
M is a nonempty subset of X. Hence, by condition (.) and using (◦) of Definition .
we conclude that

β̂
(
Ĝ(M)

) ≤ β̂
(
G(X × X) × G(X × X)

)

= β
(
G(X × X)

)
+ β

(
G(X × X)

)
,

which implies

�
(
F
(
β̂
(
Ĝ(M)

)
,ϕ

(
β̂
(
Ĝ(M)

))))

≤ �
(
F
(
β̂
(
G(X × X) × G(X × X)

)
,ϕ

(
β̂
(
G(X × X) × G(X × X)

))))

≤ �
(
F
(
β
(
G(X × X)

)
+ β

(
G(X × X)

)
,ϕ

(
β
(
G(X × X)

))
+ ϕ

(
β
(
G(X × X)

))))

≤ �
(
F
(
β
(
G(X × X)

)
,ϕ

(
β
(
G(X × X)

)))

+ F
(
β
(
G(X × X)

)
,ϕ

(
β
(
G(X × X)

))))

≤ �
(
F
(
β
(
G(X × X)

)
,ϕ

(
β
(
G(X × X)

))))

+ �
(
F
(
β
(
G(X × X)

)
,ϕ

(
β
(
G(X × X)

))))

≤ 

�

(
F
(
β(X) + β(X)

)
,ϕ

(
β(X) + β(X)

))

+


�

(
F
(
β(X) + β(X),ϕ

(
β(X) + β(X)

)))

= �
(
F
(
β(X) + β(X),ϕ

(
β(X) + β(X)

)))

= �
(
F
(
β̂(M),ϕ

(
β̂(M)

)))
,
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that is,

�
(
F
(
β̂
(
Ĝ(M)

)
,ϕ

(
β̂
(
Ĝ(M)

)))) ≤ �
(
F
(
β̂(M),ϕ

(
β̂(M)

)))
.

Following Theorem ., Ĝ has at least one fixed point in X, and hence G has a CFP. �

The second outcome of this section is the following.

Theorem . Suppose that G : C → C is a continuous operator such that, for i, j ∈
{, }, i �= j,

�

(
F(β(G(Xi × Xj)),
ϕ(β(G(Xi × Xj))))

)
≤ �

(
F(max{β(Xi),β(Xj)},
ϕ(max{β(Xi),β(Xj)}))

)
(.)

for all (Xi, Xj) ∈ C ×C, where F ∈ F, (� ,�) ∈ ϒ and ϕ : R+ −→ R+ is a continuous function.
Then G has at least one CFP (u, v) ∈ C.

Proof Consider the map G : X × X → X × X, defined by the formula

Ĝ(u, v) =
(
G(u, v), G(v, u)

)
.

Ĝ is continuous due to the continuity of G. Following [], we express β̂ as a new MNC in
the space X as

β̂(M) = max
{
β(X),β(X)

}
,

where Xi, i = ,  denote the natural projections of M. Without loss of generality, we take
M, a nonempty subset of X. Following the previous theorem, we have

β̂
(
Ĝ(M)

) ≤ β̂
(
G(X × X) × G(X × X)

)

= max
{
β
(
G(X × X)

)
,β

(
G(X × X)

)}
.

Hence, by condition (.) and using (◦) of Definition . we obtain

�
(
F
(
β̂
(
Ĝ(M)

)
,ϕ

(
β̂
(
Ĝ(M)

))))

≤ �

(
F(β̂(G(X × X) × G(X × X)),
ϕ(β̂(G(X × X) × G(X × X))))

)

= �

(
F(max{β(G(X × X)),β(G(X × X))},
ϕ(max{β(G(X × X)),β(G(X × X))}))

)

= �

(
max

{
F(β(G(X × X)),ϕ(β(G(X × X)))),
F(β(G(X × X)),ϕ(β(G(X × X))))

})

≤ max

{
�(F(max{β(X),β(X)},ϕ(max{β(X),β(X)}))),
�(F(max{β(X),β(X)},ϕ(max{β(X),β(X)})))

}
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≤ max

{
�(F(max{β(X),β(X)},ϕ(max{β(X),β(X)}))),
�(F(max{β(X),β(X)},ϕ(max{β(X),β(X)})))

}

= �
(
F
(
max

{
β(X),β(X)

}
,ϕ

(
max

{
β(X),β(X)

})))

= �
(
F
(
β̂(M),ϕ

(
β̂(M)

)))
,

that is,

�
(
F
(
β̂
(
Ĝ(M)

))) ≤ �
(
F
(
β̂(M) + ϕ

(
β̂(M)

)))
.

Hence, using Theorem ., we conclude that Ĝ has at least one fixed point in X, and thus
G has a CFP. �

Remark . We can derive some new CFP results from Theorems .-., if we take
F(a, b) = a + b with various settings for � ,� and ϕ.

5 Solvability of an implicit fractional integral equation
Let C+(I) = C([, ];R+) be the Banach space of all real continuous functions on I = [, ]
equipped with the standard norm

‖x‖ = max
{∣∣x(t)

∣∣ : t ≥ 
}

.

Let X be a nonempty and bounded subset of C+(I). Let us define the mapping ω : X ×
R+ −→ R+ by

ω(x, ε) := sup
{∣∣x(t) – x(s)

∣∣ : t, s ∈ [, ], |t – s| ≤ ε
}

, x ∈ X, ε ≥ .

Further, let us put

ω(X, ε) := sup
{
ω(x, ε) : x ∈ X

}
.

Let X be the set of all nonempty and bounded subsets of C+(I). Then the mapping ω :
X −→ R+ is defined by

ω(X) := lim
ε→+

ω(X, ε), X ∈X.

Define

i(x) := sup
{∣∣x(s) – x(t)

∣∣ –
[
x(s) – x(t)

]
: t, s ∈ I, t ≤ s

}

and

i(X) := sup
{

i(x) : x ∈ X
}

.

It is noteworthy that all functions of X are nondecreasing on I if and only if i(X) = .
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Further, we define the function β of the family MC+ (I) by the formula

β(X) := ω(X) + i(X).

It has been shown in [] that the function β is a MNC in the space C+(I).
We consider the following assumptions:

(B) the function a : I → (, +∞) is continuous with M = max{|a(t)| : t ∈ I}, nondecreas-
ing, and nonnegative on I ,

(B) the function h : I × R → R is continuous in t, x such that h(I × R+) ⊆ R+ with
M = max{|h(t, )| : t ∈ I} and there exists a continuous and nondecreasing function
ϕ : R+ →R+ with ϕ() =  and

∣∣h(t, x) – h(t, y)
∣∣ ≤

√
ϕ
(|x – y|) (.)

for all t ∈ I and all x, y ∈R. Additionally we assume that ϕ is superadditive, i.e., ϕ(t) +
ϕ(s) ≤ ϕ(t + s) for all t, s ∈R+,

(B) the superposition operator H generated by the function h(t, x) satisfies for any non-
negative function x the condition

i(Hx) ≤
√

�
(
i(x)

)
,

where � : R+ →R+ with �(t) = ϕ(t) is the same function as in (B) and Theorem .,
(B) the function g : I × I ×R →R is continuous such that g(I × I ×R+) ⊆R+ and

G = sup
{∣∣g(

t, s, x(s)
)∣∣ : t, s ∈ I, x ∈ C+(I)

}
< ∞,

(B) the function f : I →R+ is C
+ and nondecreasing,

(B) the inequality

M�(γ + ) +
(√

ϕ
(
r

)
+ M

)
G

(
f () – f ()

)γ ≤ �(γ + )r (.)

has a positive solution r such that λ =
√

G(f ()–f ())γ
�(γ +) < .

Theorem . Under assumptions (B)-(B), equation (.) has a positive solution x = x(t),
which belongs to the space C+(I).

Proof For x ∈ C+(I), consider the operators F and T defined on the space C+(I) by the
formulas

(Fx)(t) =


�(γ )

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds,

(Tx)(t) = a(t) + h
(
t, x(t)

)
(Fx)(t).

Firstly, we prove that F is self-mapping on C+(I). To this end, it suffices to verity that
if x ∈ C+(I), then Fx ∈ C+(I). Fix ε > , let x ∈ C+(I), and let t, t ∈ I (without loss of
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generality assume that t ≥ t) and |t – t| ≤ ε. Then we get

�(γ )
∣∣(Fx)(t) – (Fx)(t)

∣∣

=
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds –

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds

∣∣∣∣

≤
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds –

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds –

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds

∣∣∣∣

+
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds –

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds

∣∣∣∣

≤
∫ t



f ′(s)
(f (t) – f (s))–γ

∣∣g(
t, s, x(s)

)
– g

(
t, s, x(s)

)∣∣ds

+
∫ t

t

f ′(s)
(f (t) – f (s))–γ

∣∣g(
t, s, x(s)

)∣∣ds

+
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

–
f ′(s)

(f (t) – f (s))–γ

∣∣∣∣
∣∣g(

t, s, x(s)
)∣∣ds.

Therefore, if we denote

ωg(ε, ·) = sup
{∣∣g(t, s, x) – g

(
t′, s, x

)∣∣ : t, t′, s ∈ I,
∣∣t – t′∣∣ ≤ ε, x ∈ [–r, r]

}
,

then

�(γ )
∣∣(Fx)(t) – (Fx)(t)

∣∣

≤ ωg(ε, ·)
γ

(
f (t) – f ()

)γ +
G

γ

(
f (t) – f (t)

)γ

+
G

γ

[(
f (t) – f (t)

)γ –
(
f (t) – f (t)

)γ –
(
f (t) – f (t)

)γ ]

≤ ωg(ε, ·)
γ

(
f (t) – f ()

)γ +
G

γ

(
f (t) – f (t)

)γ

≤ ωg(ε, ·)
γ

(
f () – f ()

)γ +
G

γ
ω(f , ε)γ .

Using the notion of uniform continuity of the function g on the set I × [–r, r] and f on
the set I , we have ωg(ε, ·) −→  and ω(f , ε) −→  as ε −→ . Consequently Fx ∈ C+(I) and
thus Tx ∈ C+(I). Also, we have

∣∣(Fx)(t)
∣∣ ≤ 

�(γ )

∫ t



f ′(s)
(f (t) – f (s))–γ

∣∣g(
t, s, x(s)

)∣∣ds

≤ G

�(γ )

∫ t



f ′(s)
(f (t) – f (s))–γ

ds

≤ G(f () – f ())γ

�(γ + )
(.)
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for all t ∈ I . Therefore

∣∣(Tx)(t)
∣∣ ≤ ∣∣a(t)

∣∣ +
∣∣h(t, x)

∣∣∣∣Fx(t)
∣∣

≤ M +
[∣∣h(t, x) – h(t, )

∣∣ +
∣∣h(t, )

∣∣]G(f () – f ())γ

�(γ + )

≤ M +
(√

ϕ
(‖x‖

)
+ M

)G(f () – f ())γ

�(γ + )
.

Hence,

‖Tx‖ ≤ M +
(√

ϕ
(‖x‖

)
+ M

)G(f () – f ())γ

�(γ + )
.

Thus, if ‖x‖ ≤ r we obtain from assumption (B) the estimate

‖Tx‖ ≤ M +
(√

ϕ
(
r


)

+ M

)G(f () – f ())γ

�(γ + )
≤ r.

Consequently, the operator T maps the ball Br ⊂ C+(I) into itself, i.e., T(Br ) ⊆ Br , where
Br = {x ∈ C+(I) : ‖x‖ ≤ r}. Therefore, the mapping T : Br → Br is well defined. Next,
what we want to do is to show that the operator T is continuous on Br . For this purpose,
let {xn} be a sequence in Br such that xn → x. We have to show that Txn → Tx. In fact, for
each t ∈ I , we have

∣∣(Txn)(t) – (Tx)(t)
∣∣

=
∣∣h(

t, xn(t)
)
(Fxn)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
≤ ∣∣h(

t, xn(t)
)
(Fxn)(t) – h

(
t, x(t)

)
(Fxn)(t)

∣∣
+

∣∣h(
t, x(t)

)
(Fxn)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
≤ ∣∣h(

t, xn(t)
)

– h
(
t, x(t)

)∣∣∣∣(Fxn)(t)
∣∣

+
∣∣h(

t, x(t)
)∣∣∣∣(Fxn)(t) – (Fx)(t)

∣∣

≤
√

ϕ(|xn(t) – x(t)|)
�(γ )

∫ t



f ′(s)
(f (t) – f (s))–γ

∣∣g(
t, s, xn(s)

)∣∣ds

+
(√

ϕ
(∣∣x(t)

∣∣) + M
) (f () – f ())γ

�(γ + )
Gε ,

where

Gε = sup
{∣∣g(t, s, x) – g(t, s, y)

∣∣ : t, s ∈ I, |x|, |y| ≤ r, |x – y| ≤ ε
}

.

Indeed,

�(γ )
∣∣(Fxn)(t) – (Fx)(t)

∣∣

=
∣∣∣∣
∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, xn(s)

)
ds –

∫ t



f ′(s)
(f (t) – f (s))–γ

g
(
t, s, x(s)

)
ds

∣∣∣∣
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≤
∫ t



f ′(s)
(f (t) – f (s))–γ

∣∣g(
t, s, xn(s)

)
– g

(
t, s, x(s)

)∣∣ds

≤ (f () – f ())γ

γ
Gε .

It follows that

‖Txn – Tx‖ ≤
√

ϕ(‖xn – x‖)
�(γ + )

(
f () – f ()

)γ G +
(√

ϕ
(‖x‖

)
+ M

) (f () – f ())γ

�(γ + )
Gε .

Note that, from the uniform continuity of the function g in I × I × [–r, r], it is clear that
limε→+ Gε = . As consequence, we have

‖Txn – Tx‖ ≤
√

ϕ(‖xn – x‖)
�(γ + )

(
f () – f ()

)γ G +
(√

ϕ
(‖x‖

)
+ M

)

× (f () – f ())γ

�(γ + )
Gε →  as ε → +.

This proves that T is continuous on Br . Consider the operator T on the subset B+
r of the

ball Br defined in the following way:

B+
r =

{
x ∈ Br : x(t) ≥ , for t ∈ I

}
.

Obviously, the set B+
r is nonempty, bounded, closed, and convex. In view of our assump-

tions, if x(t) ≥ , then (Tx)(t) ≥  for all t ∈ I . Thus T transforms the set B+
r into itself.

Moreover, T is continuous on B+
r . Let X be a nonempty subset of B+

r . Fix ε >  and t, t ∈ I
with |t – t| ≤ ε. Without loss of generality we assume that t ≥ t. Then we get

∣∣(Tx)(t) – (Tx)(t)
∣∣

=
∣∣a(t) + h

(
t, x(t)

)
(Fx)(t) – a(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
≤ ∣∣a(t) – a(t)

∣∣ +
∣∣h(

t, x(t)
)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
+

∣∣h(
t, x(t)

)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
+

∣∣h(
t, x(t)

)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
≤ ∣∣a(t) – a(t)

∣∣ +
∣∣h(

t, x(t)
)

– h
(
t, x(t)

)∣∣∣∣(Fx)(t)
∣∣

+
∣∣h(

t, x(t)
)

– h
(
t, x(t)

)∣∣∣∣(Fx)(t)
∣∣

+
∣∣h(

t, x(t)
)∣∣∣∣(Fx)(t) – (Fx)(t)

∣∣

≤ ω(a, ε) +
[
ζr (h, ε) +

√
ϕ
(∣∣x(t) – x(t)

∣∣)]G(f (t) – f ())γ

�(γ + )

+
(√

ϕ
(‖x‖

)
+ M

)[ωg(ε, ·)
γ

(
f () – f ()

)γ +
G

γ

(
f (t) – f (t)

)γ

]
, (.)

where

ζr (h, ε) = sup
{∣∣h(t, x) – h

(
t′, x

)∣∣ : t, t′ ∈ I, x ∈ [, r],
∣∣t – t′∣∣ ≤ ε

}
.
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By means of the mean value theorem on [t, t], we get

∣∣f (t) – f (t)
∣∣γ ≤ mγ |t – t|γ . (.)

Now, plugging equation (.) into (.), we get

∣∣(Tx)(t) – (Tx)(t)
∣∣

≤ ω(a, ε) +
[
ζr (h, ε) +

√
ϕ
(∣∣x(t) – x(t)

∣∣)]G(f () – f ())γ

�(γ + )

+
(√

ϕ
(‖x‖

)
+ M

)[ωg(ε, ·)
γ

(
f () – f ()

)γ +
G

γ
(mε)γ

]
,

hence,

ω(Tx, ε) ≤ ω(a, ε) +
[
ζr (h, ε) +

√
ϕ
(
ω(x, ε)

)]G(f () – f ())γ

�(γ + )

+
(√

ϕ
(
r


)

+ M

)[
ωg(ε, ·)

γ

(
f () – f ()

)γ +
G

γ
(mε)γ

]
.

Thus, taking the supremum on X, we obtain

ω(TX, ε) ≤ ω(a, ε) +
[
ζr (h, ε) +

√
ϕ
(
ω(X, ε)

)]G(f () – f ())γ

�(γ + )

+
(√

ϕ
(
r


)

+ M

)[
ωg(ε, ·)

γ

(
f () – f ()

)γ +
G

γ
(mε)γ

]
.

From the uniform continuity of the function g on the set I × I × R+ and h on the set
I × [, r] and the continuity of the function a on I , we have ωg(ε, ·) → , ζr (h, ε) →  and
ω(a, ε) →  as ε → . So we let ε →  to obtain

ω(TX) ≤ G(f () – f ())γ

�(γ + )

√
ϕ
(
ω

(X)
) ≤ λ

√
ϕ
(
ω

(X)
) ≤

√
ϕ
(
ω

(X)
)
. (.)

Let x ∈ X and t, t ∈ I with t < t. Then

∣∣(Tx)(t) – (Tx)(t)
∣∣ –

[
(Tx)(t) – (Tx)(t)

]

=
∣∣a(t) + h

(
t, x(t)

)
(Fx)(t) – a(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
–

[
a(t) + h

(
t, x(t)

)
(Fx)(t) – a(t) – h

(
t, x(t)

)
(Fx)(t)

]

≤ {∣∣a(t) – a(t)
∣∣ –

[
a(t) – a(t)

]}

+
∣∣h(

t, x(t)
)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
+

∣∣h(
t, x(t)

)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

∣∣
–

[
h
(
t, x(t)

)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

]

+
[
h
(
t, x(t)

)
(Fx)(t) – h

(
t, x(t)

)
(Fx)(t)

]

≤ {∣∣h(
t, x(t)

)
– h

(
t, x(t)

)∣∣ –
[
h
(
t, x(t)

)
– h

(
t, x(t)

)]}
(Fx)(t)
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+ h
(
t, x(t)

){∣∣(Fx)(t) – (Fx)(t)
∣∣ –

[
(Fx)(t) – (Fx)(t)

]}

≤ i(Hx)
G(f () – f ())γ

�(γ + )
.

From the above estimate and assumption (B), we conclude that

i(Tx) ≤ G(f () – f ())γ

�(γ + )

√
ϕ
(
i(x)

) ≤
√

ϕ
(
i(x)

)

and

i(TX) ≤ G(f () – f ())γ

�(γ + )

√
ϕ
(
i(X)

) ≤
√

ϕ
(
i(X)

)
. (.)

From (.), (.) and the definition of the MNC β , we obtain

β(TX) = ω(TX) + i(TX) ≤
√

ϕ
(
ω

(X)
)

+
√

ϕ
(
i(X)

)

≤ G(f () – f ())γ

�(γ + )

(√
ϕ
(
ω

(X)
)

+
√

ϕ
(
i(X)

))

≤
√

G(f () – f ())γ

�(γ + )

√
ϕ
(
ω

(X) + i(X)
)

≤
√

ϕ
(
ω(X) + i(X)

) ≤
√

ϕ
(
β(X)

)
.

Now, by considering the functions � ,� : [,∞) → [,∞) defined by

�(t) = t and �(t) = ϕ
(
t),

we get

�
(
β
(
T(X)

)) ≤ �
(
β(X)

)
.

Thus, we obtain Theorem .. �

Finally, we present an illustrative example for Theorem ..

Example Consider the integral equation of the form

x(t) =



+ t +
tx(t)

( + t)�( 
 )

∫ t



s√
t – s

t
( + s)( + x(s))

ds,  ≤ t ≤ . (.)

Observe that equation (.) is a special case of equation (.). In this example, we have

a(t) =



+ t, f (t) = t, g(t, s, x) =
t

( + s)( + x)
, h(t, x) =

tx
 + t

.

Let us check that all the assumptions of Theorem . are satisfied:
• Assumption (B). It is trivial and M = 

 .
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• Assumption (B). For t ∈ I and x, y ∈R, we have

∣∣h(t, x) – h(t, y)
∣∣ ≤

∣∣∣∣ tx
 + t

–
ty

 + t

∣∣∣∣ =
t

 + t
|x – y| ≤ √

|x – y| =
√

ϕ
(|x – y|),

where ϕ(t) = t, t ≥ . So assumption (B) is satisfied with M = .
• Assumption (B). It is trivial. Indeed, taking an arbitrary nonnegative function

x ∈ C+(I) and t, t ∈ I such that t ≤ t, we obtain

∣∣(Hx)(t) – (Hx)(t)
∣∣ –

[
(Hx)(t) – (Hx)(t)

]

=
∣∣h(

t, x(t)
)

– h
(
t, x(t)

)∣∣ –
[
h
(
t, x(t)

)
– h

(
t, x(t)

)]

=
∣∣∣∣tx(t)

( + t)
–

tx(t)
( + t)

∣∣∣∣ –
[

tx(t)
( + t)

–
tx(t)
( + t)

]

≤
∣∣∣∣tx(t)

( + t)
–

tx(t)
( + t)

∣∣∣∣ +
∣∣∣∣tx(t)

( + t)
–

tx(t)
( + t)

∣∣∣∣
–

[
tx(t)
( + t)

–
tx(t)
( + t)

+
tx(t)
( + t)

–
tx(t)
( + t)

]

≤ t

( + t)
∣∣x(t) – x(t)

∣∣ +
∣∣∣∣ t

( + t)
–

t

( + t)

∣∣∣∣x(t)

–
t

( + t)
[
x(t) – x(t)

]
–

[
t

( + t)
–

t

( + t)

]
x(t)

≤ t

( + t)
{∣∣x(t) – x(t)

∣∣ –
[
x(t) – x(t)

]}

≤ t

( + t)
i(x) ≤ i(x) =

√
i(x) =

√
ϕ
(
i(x)

)

≤
√

�
(
i(x)

)
.

• Assumption (B). It is trivial with G ≤ 
 .

• Assumption (B). It is trivial.
• Assumption (B). In this case inequality (.) has the form



�

(



+ 
)

+
√

ϕ
(
r


) 


≤ �

(



+ 
)

r

or




�

(



)
+

√



r ≤ 


�

(



)
r,

and this admits

r =
�( 

 )
�( 

 ) –
√



as a positive solution since �( 
 ) = ..
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Thus, from all the above mentioned observations, it is clear that equation (.) satisfies all
the requirements of Theorem . and hence, the functional integral equation (.) has a
positive solution in C+(I).

6 Conclusions
In this work we studied the problem of the existence of positive solutions of fractional
integral equations by means of the MNC in the association with DFPT. For this purpose
we first established a new DFPT and its coupled version that generalized some existing
results. To support our results, an illustrative example is provided.
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