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Abstract
It is shown in a previous work that Faber-Pandharipande-Zagier’s and Miki’s identities
can be derived from a polynomial identity, which in turn follows from the Fourier
series expansion of sums of products of Bernoulli functions. Motivated by and
generalizing this, we consider three types of functions given by sums of products of
higher-order Bernoulli functions and derive their Fourier series expansions. Moreover,
we express each of them in terms of Bernoulli functions.
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1 Introduction
Let r be a nonnegative integer. Then the Bernoulli polynomials B(r)

n (x) of order r are given
by the generating function (see [–])

(
t

et – 

)r

ext =
∞∑

m=

B(r)
m (x)

tm

m!
. (.)

When x = , B(r)
m = B(r)

m () are called the Bernoulli numbers of order r. In particular, Bm(x) =
B()

m (x) are the ordinary Bernoulli polynomials.
As we can see from (.), the higher-order Bernoulli polynomials B(r)

n (x) are Appell poly-
nomials and hence they satisfy

d
dx

B(r)
m (x) = mB(r)

m–(x), m ≥ . (.)

Further, from (.), we can easily show that

B(r)
m (x + ) = B(r)

m (x) + mB(r–)
m– (x) (m ≥ ), (.)

which in turn gives

B(r)
m () = B(r)

m + mB(r–)
m– (m ≥ ). (.)

For any real number x, we let

〈x〉 = x – [x] ∈ [, )
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denote the fractional part of x. Then we recall here the following facts about the Fourier
series expansion of the Bernoulli function Bn(〈x〉):

(a) for m ≥ ,

Bm
(〈x〉) = –m!

∞∑
n=–∞,n�=

eπ inx

(π in)m , (.)

(b) for m = ,

–
∞∑

n=–∞,n�=

eπ inx

π in
=

⎧⎨
⎩

B(〈x〉), for x /∈ Z,

, for x ∈ Z.
(.)

In this paper, we will study the following three types of sums of products of higher-order
Bernoulli functions and find Fourier series expansions for them. Moreover, we will express
them in terms of Bernoulli functions. Let r, s be positive integers.

() αm(〈x〉) =
∑m

k= B(r)
k (〈x〉)B(s)

m–k(〈x〉) (m ≥ );
() βm(〈x〉) =

∑m
k=


k!(m–k)! B

(r)
k (〈x〉)B(s)

m–k(〈x〉) (m ≥ );
() γm(〈x〉) =

∑m–
k=


k(m–k) B(r)

k (〈x〉)B(s)
m–k(〈x〉) (m ≥ ).

For elementary facts about Fourier analysis, the reader may refer, for example, to [–].
As to γm(〈x〉), we note that the polynomial identity (.) follows immediately from the

Fourier series expansion of γm(〈x〉) in Theorems . and .:

m–∑
k=


k(m – k)

B(r)
k (x)B(s)

m–k(x)

=

m

m∑
k=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk(x), (.)

where, for each integer l ≥ ,

�l =
l–∑
k=


k(l – k)

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k + k(l – k)B(r–)

k– B(s–)
l–k–

)
, (.)

and Hm =
∑m

j=

j are the harmonic numbers.

It is remarkable that the famous Faber-Pandharipande-Zagier identity (see [, ]) and
the Miki identity (see [–]) can be easily derived from (.) and (.), with r = s = .
Below, we will give an outline for this and thus this may be viewed as our main motivation
for the present study.

Indeed, from (.) and (.), with r = s = , we get

m–∑
k=


k(m – k)

Bk(x)Bm–k(x)

=


m

(
Bm +




)
+


m

m–∑
k=


m – k

(
m
k

)
Bm–kBk(x) +


m

Hm–Bm(x) (m ≥ ). (.)
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Simple modification of (.) yields

m–∑
k=


k(m – k)

Bk(x)Bm–k(x) +


m – 
B(x)Bm–(x)

=

m

m∑
k=


k

(
m
k

)
BkBm–k(x) +


m

Hm–Bm(x)

+


m – 
B(x)Bm– (m ≥ ). (.)

Letting x =  in (.) gives a slightly different version of the well-known Miki identity
(see []):

m–∑
k=


k(m – k)

BkBm–k

=

m

m∑
k=


k

(
m
k

)
BkBm–k +


m

Hm–Bm (m ≥ ). (.)

Setting x = 
 in (.) with Bm = ( –m–

m– )Bm = (–m – )Bm = Bm( 
 ), we have

m–∑
k=


k(m – k)

BkBm–k

=

m

m∑
k=


k

(
m
k

)
BkBm–k +


m

Hm–Bm (m ≥ ), (.)

which is the Faber-Pandharipande-Zagier identity (see []). Some of the different proofs
of Miki’s identity can be found in [–]. Miki in [] exploits a formula for the Fer-
mat quotient ap–a

p modulo p, Shiratani-Yokoyama in [] employs p-adic analysis, Ges-
sel in [] is based on two different expressions for Stirling numbers of the second
kind S(n, k), and Dunne-Schubert in [] uses the asymptotic expansion of some spe-
cial polynomials coming from the quantum field theory computations As we can see, all
of these proofs are quite involved. On the other hand, our proofs of Miki’s and Faber-
Pandharipande-Zagier’s identities follow from the polynomial identity (.), which in turn
follows immediately the Fourier series expansion of γm(〈x〉) in Theorems . and ., with
r = s = , together with the elementary manipulations outlined in (.)-(.). Some related
recent work can be found in [–].

2 The function αm(〈x〉)
Let αm(x) =

∑m
k= B(r)

k (x)B(s)
m–k(x) (m ≥ ). Then we will consider the function

αm
(〈x〉) =

m∑
k=

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉) (m ≥ ),

defined on R, which is periodic with period .
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The Fourier series of αm(〈x〉) is

∞∑
n=–∞

A(m)
n eπ inx, (.)

where

A(m)
n =

∫ 


αm

(〈x〉)e–π inx dx =
∫ 


αm(x)e–π inx dx. (.)

To continue our discussion, we need to observe the following:

α′
m(x) =

m∑
k=

(
kB(r)

k–(x)B(s)
m–k(x) + (m – k)B(r)

k (x)B(s)
m–k–(x)

)

=
m∑

k=

kB(r)
k–(x)B(s)

m–k(x) +
m–∑
k=

(m – k)B(r)
k (x)B(s)

m–k–(x)

=
m–∑
k=

(k + )B(r)
k (x)B(s)

m––k(x) +
m–∑
k=

(m – k)B(r)
k (x)B(s)

m––k(x)

= (m + )
m–∑
k=

B(r)
k (x)B(s)

m––k(x) = (m + )αm–(x). (.)

From this, we obtain
(

αm+(x)
m + 

)′
= αm(x) (.)

and
∫ 


αm(x) dx =


m + 

(
αm+() – αm+()

)
. (.)

For m ≥ , we set

�m = αm() – αm() =
m∑

k=

(
B(r)

k ()B(s)
m–k() – B(r)

k B(s)
m–k

)

=
m∑

k=

((
B(r)

k + kB(r–)
k–

)(
B(s)

m–k + (m – k)B(s–)
m–k–

)
– B(r)

k B(s)
m–k

)

=
m∑

k=

(
(m – k)B(r)

k B(s–)
m–k– + kB(r–)

k– B(s)
m–k + k(m – k)B(r–)

k– B(s–)
m–k–

)
. (.)

Now, we have

αm() = αm() ⇐⇒ �m =  (.)

and
∫ 


αm(x) dx =


m + 

�m+. (.)
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We now would like to determine the Fourier coefficients A(m)
n .

Case : n �= .

A(m)
n =

∫ 


αm(x)e–π inx dx

= –


π in
[
αm(x)e–π inx]

 +


π in

∫ 


α′

m(x)e–π inx dx

= –


π in
(
αm() – αm()

)
+

m + 
π in

∫ 


αm–(x)e–π inx dx

=
m + 
π in

A(m–)
n –


π in

�m, (.)

from which by induction on m, we can easily derive that

A(m)
n = –


m + 

m∑
j=

(m + )j

(π in)j �m–j+. (.)

Case : n = .

A(m)
 =

∫ 


αm(x) dx =


m + 

�m+. (.)

αm(〈x〉) (m ≥ ) is piecewise C∞. In addition, αm(〈x〉) is continuous for those positive in-
tegers m with �m = , and discontinuous with jump discontinuities at integers for those
positive integers with �m �= .

Assume first that �m = , for a positive integer m. Then αm() = αm(). Hence αm(〈x〉)
is piecewise C∞ and continuous. Thus the Fourier series of αm(〈x〉) converges uniformly
to αm(〈x〉), and

αm
(〈x〉) =


m + 

�m+ +
∞∑

n=–∞,n�=

(
–


m + 

m∑
j=

(m + )j

(π in)j �m–j+

)
eπ inx

=


m + 
�m+ +


m + 

m∑
j=

(
m + 

j

)
�m–j+

(
–j!

∞∑
n=–∞,n�=

eπ inx

(π in)j

)

=


m + 
�m+ +


m + 

m∑
j=

(
m + 

j

)
�m–j+Bj

(〈x〉)

+ �m ×
⎧⎨
⎩

B(〈x〉), for x /∈ Z,

, for x ∈ Z.
(.)

We are now ready to state our first result.

Theorem . For each positive integer l, let

�l =
l∑

k=

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k + k(l – k)B(r–)

k– B(s–)
l–k–

)
.
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Assume that �m = , for a positive integer m. Then we have the following.
(a)

∑m
k= B(r)

k (〈x〉)B(s)
m–k(〈x〉) has the Fourier series expansion

m∑
k=

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉)

=


m + 
�m+ +

∞∑
n=–∞,n�=

(
–


m + 

m∑
j=

(m + )j

(π in)j �m–j+

)
eπ inx, (.)

for all x ∈ R, where the convergence is uniform.

(b)
m∑

k=

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉) =


m + 

m∑
j=,j �=

(
m + 

j

)
�m–j+Bj

(〈x〉), (.)

for all x in R.

Assume next that �m �= , for a positive integer m. Then αm() �= αm(). Hence αm(〈x〉)
is piecewise C∞, and discontinuous with jump discontinuities at integers.

The Fourier series of αm(〈x〉) converges pointwise to αm(〈x〉), for x /∈ Z, and converges
to



(
αm() + αm()

)
= αm() +



�m, (.)

for x ∈ Z.
Now, we are ready to state our second result.

Theorem . For each positive integer l, let

�l =
l∑

k=

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k + k(l – k)B(r–)

k– B(s–)
l–k–

)
.

Assume that �m �= , for a positive integer m. Then we have the following.

(a)


m + 
�m+ +

∞∑
n=–∞,n�=

(
–


m + 

m∑
j=

(m + )j

(π in)j �m–j+

)
eπ inx

=

⎧⎨
⎩

∑m
k= B(r)

k (〈x〉)B(s)
m–k(〈x〉), for x /∈ Z,∑m

k= B(r)
k B(s)

m–k + 
�m, for x ∈ Z.

(.)

(b)


m + 

m∑
j=

(
m + 

j

)
�m–j+Bj

(〈x〉)

=
m∑

k=

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉), for x /∈ Z; (.)
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m + 

m∑
j=,j �=

(
m + 

j

)
�m–j+Bj

(〈x〉)

=
m∑

k=

B(r)
k B(s)

m–k +


�m, for x ∈ Z. (.)

3 The function βm(〈x〉)
Let βm(x) =

∑m
k=


k!(m–k)! B

(r)
k (x)B(s)

m–k(x) (m ≥ ). Then we will study the function

βm
(〈x〉) =

m∑
k=


k!(m – k)!

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉) (m ≥ ),

defined on R, which is periodic with period .
The Fourier series of βm(〈x〉) is

∞∑
n=–∞

B(m)
n eπ inx, (.)

where

B(m)
n =

∫ 


βm

(〈x〉)e–π inx dx =
∫ 


βm(x)e–π inx dx. (.)

Before proceeding, we need to observe the following:

β ′
m(x) =

m∑
k=

{
k

k!(m – k)!
B(r)

k–(x)B(s)
m–k(x) +

(m – k)
k!(m – k)!

B(r)
k (x)B(s)

m–k–(x)
}

=
m∑

k=


(k – )!(m – k)!

B(r)
k–(x)B(s)

m–k(x)

+
m–∑
k=


k!(m – k – )!

B(r)
k (x)B(s)

m–k–(x)

=
m–∑
k=


k!(m –  – k)!

B(r)
k (x)B(s)

m––k(x)

+
m–∑
k=


k!(m –  – k)!

B(r)
k (x)B(s)

m––k(x)

= βm–(x). (.)

From this, we get

(
βm+(x)



)′
= βm(x) (.)

and

∫ 


βm(x) dx =



(
βm+() – βm+()

)
. (.)
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For m ≥ , we put

�m = βm() – βm()

=
m∑

k=


k!(m – k)!

(
B(r)

k ()B(s)
m–k() – B(r)

k B(s)
m–k

)

=
m∑

k=


k!(m – k)!

((
B(r)

k + kB(r–)
k–

)(
B(s)

m–k + (m – k)B(s–)
m–k–

)
– B(r)

k B(s)
m–k

)

=
m∑

k=


k!(m – k)!

(
(m – k)B(r)

k B(s–)
m–k– + kB(r–)

k– B(s)
m–k

+ k(m – k)B(r–)
k– B(s–)

m–k–
)
. (.)

Now

βm() = βm() ⇐⇒ �m =  (.)

and

∫ 


βm(x) dx =



�m+. (.)

We now want to determine the Fourier coefficients B(m)
n .

Case : n �= 

B(m)
n =

∫ 


βm(x)e–π inx dx

= –


π in
[
βm(x)e–π inx]

 +


π in

∫ 


β ′

m(x)e–π inx dx

= –


π in
(
βm() – βm()

)
+


π in

∫ 


βm–(x)e–π inx dx

=


π in
B(m–)

n –


π in
�m. (.)

From this, we easily get the following result by induction on m:

B(m)
n = –

m∑
j=

j–

(π in)j �m–j+. (.)

Case : n = 

B(m)
 =

∫ 


βm(x) dx =



�m+. (.)

βm(〈x〉) (m ≥ ) is piecewise C∞. Moreover, βm(〈x〉) is continuous for those positive in-
tegers m with �m =  and discontinuous with jump discontinuities at integers for those
positive integers m with �m �= .
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Assume first that �m = , for a positive integer m. Then βm() = βm(). Hence βm(〈x〉)
is piecewise C∞ and continuous. Thus the Fourier series of βm(〈x〉) converges uniformly
to βm(〈x〉), and

βm
(〈x〉) =



�m+ +

∞∑
n=–∞,n�=

(
–

m∑
j=

j–

(π in)j �m–j+

)
eπ inx

=


�m+ +

m∑
j=

j–

j!
�m–j+

(
–j!

∞∑
n=–∞,n�=

eπnx

(π in)j

)

=


�m+ +

m∑
j=

j–

j!
�m–j+Bj

(〈x〉) + �m ×
⎧⎨
⎩

B(〈x〉), for x /∈ Z,

, for x ∈ Z.
(.)

Now, we can state our first result.

Theorem . For each positive integer l, let

�l =
l∑

k=


k!(l – k)!

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k + k(l – k)B(r–)

k– B(s–)
l–k–

)
. (.)

Assume that �m = , for a positive integer m. Then we have the following.
(a)

∑m
k=


k!(m–k)! B

(r)
k (〈x〉)B(s)

m–k(〈x〉) has the Fourier expansion

m∑
k=


k!(m – k)!

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉)

=


�m+ +

∞∑
n=–∞,n�=

(
–

m∑
j=

j–

(π in)j �m–j+

)
eπ inx, (.)

for all x ∈ R, where the convergence is uniform.

(b)
m∑

k=


k!(m – k)!

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉) =
m∑

j=,j �=

j–

j!
�m–j+Bj

(〈x〉), (.)

for all x ∈ R.

Assume next that �m �= , for a positive integer m. Then βm() �= βm(). Hence βm(〈x〉) is
piecewise C∞, and discontinuous with jump discontinuities at integers. Then the Fourier
series of βm(〈x〉) converges pointwise to βm(〈x〉), for x /∈ Z, and converges to



(
βm() + βm()

)
= βm() +



�m, (.)

for x ∈ Z.
Now, we can state our second result.
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Theorem . For each positive integer l, let

�l =
l∑

k=


k!(l – k)!

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k + k(l – k)B(r–)

k– B(s–)
l–k–

)
. (.)

Assume that �m �= , for a positive integer m. Then we have the following:

(a)


�m+ +

∞∑
n=–∞,n�=

(
–

m∑
j=

j–

(π in)j �m–j+

)
eπ inx

=

⎧⎨
⎩

∑m
k=


k!(m–k)! B

(r)
k (〈x〉)B(s)

m–k(〈x〉), for x /∈ Z,∑m
k=


k!(m–k)! B

(r)
k B(s)

m–k + 
�m, for x ∈ Z.

(.)

(b)
m∑

j=

j–

j!
�m–j+Bj

(〈x〉)

=
m∑

k=


k!(m – k)!

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉), for x /∈ Z;
m∑

j=,j �=

j–

j!
�m–j+Bj

(〈x〉)

=
m∑

k=


k!(m – k)!

B(r)
k B(s)

m–k +


�m, for x ∈ Z.

(.)

4 The function γm(〈x〉)
Let γm(x) =

∑m–
k=


k(m–k) B(r)

k (x)B(s)
m–k(x) (m ≥ ). Then we will investigate the function

γm
(〈x〉) =

m–∑
k=


k(m – k)

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉),

defined on R, which is periodic with period .
The Fourier series of γm(〈x〉) is

∞∑
n=–∞

C(m)
n eπ inx, (.)

where

C(m)
n =

∫ 


γm

(〈x〉)e–π inx dx =
∫ 


γm(x)e–π inx dx. (.)

To proceed, we need to observe the following:

γ ′
m(x) =

m–∑
k=


m – k

B(r)
k–(x)B(s)

m–k(x) +
m–∑
k=


k

B(r)
k (x)B(s)

m–k–(x)

=
m–∑
k=


m –  – k

B(r)
k (x)B(s)

m––k(x) +
m–∑
k=


k

B(r)
k (x)B(s)

m––k(x)
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=
m–∑
k=

(


m –  – k
+


k

)
B(r)

k (x)B(s)
m––k(x) +


m – 

B(s)
m–(x) +


m – 

B(r)
m–(x)

= (m – )
m–∑
k=


k(m –  – k)

B(r)
k (x)B(s)

m––k(x) +


m – 
B(s)

m–(x) +


m – 
B(r)

m–(x)

= (m – )γm–(x) +


m – 
B(s)

m–(x) +


m – 
B(r)

m–(x). (.)

From this, we easily obtain

γm(x) =
(


m

(
γm+(x) –


m(m + )

B(r)
m+(x) –


m(m + )

B(s)
m+(x)

))′
(.)

and

∫ 


γm(x) dx =


m

[
γm+(x) –


m(m + )

B(r)
m+(x) –


m(m + )

B(s)
m+(x)

]



=

m

(
γm+() – γm+() –


m(m + )

(
B(r)

m+() – B(r)
m+()

)

–


m(m + )
(
B(s)

m+() – B(s)
m+()

))

=

m

(
γm+() – γm+() –


m

B(r–)
m –


m

B(s–)
m

)
. (.)

Let � = , and for m ≥ , we let

�m = γm() – γm()

=
m–∑
k=


k(m – k)

(
B(r)

k ()B(s)
m–k() – B(r)

k B(s)
m–k

)

=
m–∑
k=


k(m – k)

((
B(r)

k + kB(r–)
k–

)(
B(s)

m–k + (m – k)B(s–)
m–k–

)
– B(r)

k B(s)
m–k

)

=
m–∑
k=


k(m – k)

(
(m – k)B(r)

k B(s–)
m–k– + kB(r–)

k– B(s)
m–k

+ k(m – k)B(r–)
k– B(s–)

m–k–
)
. (.)

Then evidently we have

γm() = γm() ⇔ �m =  (.)

and

∫ 


γm(x) dx =


m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)
. (.)

We now would like to determine the Fourier coefficient C(m)
n .
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Case : n �= 

C(m)
n =

∫ 


γm(x)e–π inx dx

= –


π in
[
γm(x)e–π inx]

 +


π in

∫ 


γ ′

m(x)e–π inx dx

= –


π in
(
γm() – γm()

)

+


π in

∫ 



(
(m – )γm–(x) +


m – 

B(r)
m–(x) +


m – 

B(s)
m–(x)

)
e–π inx dx

=
m – 
π in

C(m–)
n –


π in

�m +


π in(m – )

∫ 


B(r)

m–(x)e–π inx dx

+


π in(m – )

∫ 


B(s)

m–(x)e–π inx dx

=
m – 
π in

C(m–)
n –


π in

�m –


π in(m – )
	(r)

m

–


π in(m – )
	(s)

m , (.)

where

	(r)
m =

m–∑
k=

(m – )k

(π in)k B(r–)
m–k–,

∫ 


B(r)

l (x)e–π inx dx =

⎧⎨
⎩

–
∑l

k=
(l)k

(π in)k B(r–)
l–k , for n �= ,

B(r–)
l , for n = .

(.)

Thus we have shown that

C(m)
n =

m – 
π in

C(m–)
n –


π in

�m –


π in(m – )
	(r)

m –


π in(m – )
	(s)

m , (.)

from which, by induction on m, we can show that

C(m)
n = –

m–∑
j=

(m – )j–

(π in)j �m–j+ –
m–∑
j=

(m – )j–

(π in)j(m – j)
(
	

(r)
m–j+ + 	

(s)
m–j+

)
. (.)

Here we note that

m–∑
j=

(m – )j–

(π in)j(m – j)
	

(r)
m–j+

=
m–∑
j=

(m – )j–

(π in)j(m – j)

m–j∑
k=

(m – j)k

(π in)k B(r–)
m–j–k

=
m–∑
j=

m–j∑
k=

(m – )j+k–

(π in)j+k(m – j)
B(r–)

m–j–k
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=
m–∑
j=


m – j

m–j∑
k=

(m – )j+k–

(π in)j+k B(r–)
m–j–k

=
m–∑
j=


m – j

m∑
k=j+

(m – )k–

(π in)k B(r–)
m–k

=
m∑

k=

(m – )k–

(π in)k B(r–)
m–k

k–∑
j=


m – j

=
m∑

k=

(m – )k–

(π in)k B(r–)
m–k (Hm– – Hm–k)

=

m

m∑
k=

(m)k

(π in)k B(r–)
m–k (Hm– – Hm–k). (.)

Finally, we get the following expression of C(m)
n , for n �= :

C(m)
n = –


m

m∑
k=

(m)k

(π in)k

(
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

))
. (.)

Case : n = 

C(m)
 =

∫ 


γm(x) dx =


m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)
. (.)

γm(〈x〉), (m ≥ ) is piecewise C∞. In addition, γm(〈x〉) is continuous for those integers
m ≥  with �m = , and discontinuous with jump discontinuities at integers for those
integer m ≥  with �m �= .

Assume first that �m = , for an integer m ≥ . Then γm() = γm(). Hence γm(〈x〉) is
piecewise C∞, and continuous. Thus the Fourier series of γm(〈x〉) converges uniformly to
γm(〈x〉), and

γm
(〈x〉) =


m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)

+

m

∞∑
n=–∞,n�=

{
–

m∑
k=

(m)k

(π in)k

(
�m–k+ + (Hm– – Hm–k)

× (
B(r–)

m–k + B(s–)
m–k

))}
eπ inx

=

m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)

+

m

m∑
k=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}

×
(

–k!
∞∑

n=–∞,n�=

eπ inx

(π in)k

)

=

m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)
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+

m

m∑
k=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk

(〈x〉)

+ �m ×
⎧⎨
⎩

B(〈x〉), for x /∈ Z,

, for x ∈ Z

=

m

m∑
k=,k �=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk

(〈x〉)

+ �m ×
⎧⎨
⎩

B(〈x〉), for x /∈ Z,

, for x ∈ Z.
(.)

Now, we are ready to state our first result.

Theorem . For each integer l ≥ , let

�l =
l–∑
k=


k(l – k)

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k

+ k(l – k)B(r–)
k– B(s–)

l–k–
)
, (.)

with � = . Assume that �m = , for an integer m ≥ . Then we have the following.
(a)

∑m–
k=


k(m–k) B(r)

k (〈x〉)B(s)
m–k(〈x〉) has the Fourier expansion

m–∑
k=


k(m – k)

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉)

=

m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)

+

m

∞∑
n=–∞,n�=

{
–

m∑
k=

(m)k

(π in)k

(
�m–k+ + (Hm– – Hm–k)

× (
B(r–)

m–k + B(s–)
m–k

))}
eπ inx, (.)

for all x ∈ R, where the convergence is uniform.

(b)
m–∑
k=


k(m – k)

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉)

=

m

m∑
k=,k �=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk

(〈x〉) (.)

for all x ∈ R.

Assume next that �m �= , for an integers m ≥ . Then γm() �= γm(). Hence γm(〈x〉) is
piecewise C∞, and discontinuous with jump discontinuities at integers. Thus the Fourier
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series of γm(〈x〉) converges pointwise to γm(〈x〉), for x /∈ Z, and converges to



(
γm() + γm()

)
= γm() +



�m, (.)

for x ∈ Z.
Now, we can state our second result.

Theorem . For each integer l ≥ , let

�l =
l–∑
k=


k(l – k)

(
(l – k)B(r)

k B(s–)
l–k– + kB(r–)

k– B(s)
l–k

+ k(l – k)B(r–)
k– B(s–)

l–k–
)
, (.)

with � = . Assume that �m �= , for an integer m ≥ . Then we have the following:

(a)

m

(
�m+ –


m

B(r–)
m –


m

B(s–)
m

)

+

m

∞∑
n=–∞,n�=

{
–

m∑
k=

(m)k

(π in)k

(
�m–k+ + (Hm– – Hm–k)

× (
B(r–)

m–k + B(s–)
m–k

))}
eπ inx

=

⎧⎨
⎩

∑m–
k=


k(m–k) B(r)

k (〈x〉)B(s)
m–k(〈x〉), for x /∈ Z,∑m–

k=


k(m–k) B(r)
k B(s)

m–k + 
�m, for x ∈ Z.

(.)

(b)

m

m∑
k=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk

(〈x〉)

=
m–∑
k=


k(m – k)

B(r)
k

(〈x〉)B(s)
m–k

(〈x〉), for x /∈ Z;


m

m∑
k=,k �=

(
m
k

){
�m–k+ + (Hm– – Hm–k)

(
B(r–)

m–k + B(s–)
m–k

)}
Bk

(〈x〉)

=
m–∑
k=


k(m – k)

B(r)
k B(s)

m–k +


�m, for x ∈ Z.

(.)

5 Results and discussion
It is shown in a previous work that Faber-Pandharipande-Zagier’s and Miki’s identities
can be derived from a polynomial identity, which in turn follows from the Fourier series
expansion of sums of products of Bernoulli functions. Motivated by and generalizing this,
we consider three types of functions given by sums of products of higher-order Bernoulli
functions and we obtain some new identities arising from Fourier series expansions associ-
ated with sums of products of higher-order Bernoulli functions. Moreover, we will express
each of them in terms of Bernoulli functions. The Fourier series expansion of the sums of
products of higher-order Bernoulli functions are useful in computing the special values
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of the zeta and multiple zeta function. It is expected that the Fourier series of the sums
of products of higher-order Bernoulli functions will find some applications in connection
with a certain zeta function and the higher-order Bernoulli numbers.

6 Conclusion
In this paper, we considered the Fourier series expansion of the sums of products of higher-
order Bernoulli functions which are obtained by extending by periodicity of period the
Bernoulli polynomials on [, ). The Fourier series are explicitly determined.
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