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Abstract
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1 Introduction
In this article, we consider the following quasi-linear elliptic problem:

⎧
⎨

⎩

–�pu – μ
|u|p–u

|x|p = |u|p∗–u + β|x|α–p|u|p–u + λ|u|q–u in �,

u =  on ∂�,
(.)

where � ⊂ R
N (N ≥ ) is a bounded domain with the smooth boundary ∂� such that

 ∈ �. �pu = div(|∇u|p–∇u) is the p-Laplacian operator of u,  < p < N ,λ >  is a positive
real number.  ≤ μ < μ (μ = (N–p)p

p is the best Hardy constant).  < q < p and p∗ = Np
N–p

is the critical Sobolev exponent.  < α < p – ,  < β < β (β is the first eigenvalue that
–�pu – μ

|u|p–u
|x|p = |x|α–p|u|p–u under Dirichlet boundary condition).

Definition . The function u ∈ W ,p
 (�) is called a weak solution of (.) if u satisfies

∫

�

(

|∇u|p–∇u · ∇v – μ
|u|p–uv

|x|p
)

dx

=
∫

�

(|u|p∗–uv + β|x|α–p|u|p–uv + λ|u|q–uv
)

dx (.)

for all v ∈ W ,p
 (�).

In this paper, we use the following norm of W ,p
 (�):

‖u‖ =
(∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx
) 

p
.
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By the Hardy inequality (see [, ])
∫

�

|u|p
|x|p dx ≤ 

μ

∫

�

|∇u|p dx, ∀u ∈ W ,p
 (�),

so this norm is equivalent to (
∫

�
|∇u|p dx)


p , the usual norm in W ,p

 (�).
The norm in Lp(�) is represented by ‖u‖p = (

∫

�
|u|p dx)


p . According to Hardy inequal-

ity, the following best Sobolev constant is well defined for  < p < N , and  ≤ μ < μ:

Sμ, = inf
u∈W ,p

 (�)\{}

∫

�
(|∇u|p – μ

|u|p
|x|p ) dx

(
∫

�
|u|p∗ dx)

p
p∗

. (.)

The quasi-linear problems on Hardy inequality have been studied extensively, either in
the smooth bounded domain or in the whole space R

N . More and more excellent results
have been obtained, which provide us opportunities to understand the singular problems.
However, compared with the semilinear case, the quasi-linear problems related to Hardy
inequality are more complicated [–]. Abdellaoui, Felli and Peral [] considered the ex-
tremal function which achieves the best constant Sμ,, and gave the properties of the ex-
tremal functions. The conclusions obtained in [] can be applied in the problems with
critical Sobolev exponent and Hardy term.

Wang, Wei and Kang [] investigated the following problem:
⎧
⎨

⎩

–�pu – λ
|u|p–

|x|p u = μf (x)|u|q–u + g(x)|u|p∗–u, x ∈ �,

u(x) = , x ∈ ∂�,
(.)

where  < q < p,μ > , f and g are non-negative functions and p∗ = Np
N–p is the critical

Sobolev exponent. The property of the Nehari manifold was used to prove the existence
of multiple positive solutions for (.). Furthermore, Hsu [, ] improved and comple-
mented the main results obtained in []. Recently, Goyal and Sreenadh [] investigated
a class of singular N-Laplacian problems with exponential nonlinearities in R

N . Very re-
cently, Xiang [] established the asymptotic estimates of weak solutions for p-Laplacian
equation with Hardy term and critical Sobolev exponent.

We should mention that Liu, Guo and Lei [] studied the existence and multiplicity
of positive solutions of Kirchhoff equation with critical exponential nonlinearity. Inspired
by [, ], we study the problem (.) on critical Sobolev exponent. Comparing with the
main results obtained in [, , –], in this paper, on the one hand, we will analysis the
effect of β|x|α–p|u|p–u, and the more careful estimates are needed. On the other hand, we
establish an lower bound for λ∗ (λ∗ is defined in Theorem .).

Define the energy functional associated to problem (.) as follows:

Iλ(u) =

p
‖u‖p –

β

p

∫

�

|u|p|x|α–p dx –


p∗

∫

�

|u|p∗
dx –

λ

q

∫

�

|u|q dx. (.)

We obtain the following result.

Theorem . Suppose that  < q < p,  < α < p – . Then there exists λ∗ >  such that
problem (.) admits at least two solutions and one of the solutions is a ground state solution
for all λ ∈ (,λ∗).
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2 Preliminaries
Firstly, we introduce the Nehari manifold

Nλ =
{

u ∈ W ,p
 (�)\{} :

〈
I ′
λ(u), u

〉
= 

}
.

Furthermore u ∈Nλ if and only if

‖u‖p –
∫

�

|u|p∗
dx – β

∫

�

|u|p|x|α–p dx – λ

∫

�

|u|q dx = . (.)

Let

ψ(u) := ‖u‖p – β

∫

�

|u|p|x|α–p dx –
∫

�

|u|p∗
dx – λ

∫

�

|u|q dx,

then

〈
ψ ′(u), u

〉
= p‖u‖p – pβ

∫

�

|u|p|x|α–p dx – p∗
∫

�

|u|p∗
dx – qλ

∫

�

|u|q dx.

Nλ can be divided into the following three parts:

N +
λ =

{

u ∈Nλ : p‖u‖p – pβ

∫

�

|x|α–p|u|p dx

– p∗
∫

�

|u|p∗
dx – qλ

∫

�

|u|q dx > 
}

, (.)

N 
λ =

{

u ∈Nλ : p‖u‖p – pβ

∫

�

|x|α–p|u|p dx

– p∗
∫

�

|u|p∗
dx – qλ

∫

�

|u|q dx = 
}

, (.)

N –
λ =

{

u ∈Nλ : p‖u‖p – pβ

∫

�

|x|α–p|u|p dx

– p∗
∫

�

|u|p∗
dx – qλ

∫

�

|u|q dx < 
}

. (.)

Applying the Hölder inequality and the Sobolev inequality, for all u ∈ W ,p
 (�)\{} we have

∫

�

|u|q dx ≤
(∫

�

|u|q· p∗
q dx

) q
p∗ (∫

�

 dx
)– q

p∗
= |�|

p∗–q
p∗

(∫

�

|u|p∗
dx

) q
p∗

. (.)

Lemma . Assume that λ ∈ (, T) with

T =
( (β–β)(p–p∗)

β(q–p∗) )
q–p∗
p–p∗ ( q–p

p–p∗ )
q–p

p–p∗ S
q–p∗
p–p∗
μ,

|�|
p∗–q

p∗
.

Then (i) N±
λ �= ∅, and (ii) N 

λ = ∅.
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Proof (i) We define a function 	 ∈ C(R+,R) by

	(s) =
(

 –
β

β

)

sp–p∗‖u‖p – λsq–p∗
∫

�

|u|q dx.

Let 	′(s) = , that is,

	′(s) =
(

 –
β

β

)
(
p – p∗)sp–p∗–‖u‖p – λ

(
q – p∗)sq–p∗–

∫

�

|u|q dx = .

We can deduce that

smax := s =
[

(β – β)(p – p∗)‖u‖p

βλ(q – p∗)
∫

�
|u|q dx

] 
q–p

.

It is easy to check that 	′(s) >  for all  < s < smax and 	′(s) <  for all s > smax. Conse-
quently, 	(s) attains its maximum at smax, that is,

	(smax) =
(

 –
β

β

){[
(β – β)(p – p∗)‖u‖p

βλ(q – p∗)
∫

�
|u|q dx

] 
q–p

}p–p∗

‖u‖p

– λ

{[
(β – β)(p – p∗)‖u‖p

βλ(q – p∗)
∫

�
|u|q dx

] 
q–p

}q–p∗ ∫

�

|u|q dx

=
(

(β – β)(p – p∗)
β(q – p∗)

) q–p∗
q–p

(
q – p
p – p∗

) ‖u‖ p(q–p∗)
q–p

(λ
∫

�
|u|q dx)

p–p∗
q–p

.

Since

	̃(s) := sp–p∗‖u‖p – βsp–p∗
∫

�

|u|p|x|α–p dx – λsq–p∗
∫

�

|u|q dx

≥ sp–p∗
(

 –
β

β

)

‖u‖p – λsq–p∗
∫

�

|u|q dx.

By (.) and (.), we have

	̃(smax) –
∫

�

|u|p∗
dx

≥ 	(smax) –
∫

�

|u|p∗
dx

=
(

(β – β)(p – p∗)
β(q – p∗)

) q–p∗
q–p

(
q – p
p – p∗

) ‖u‖ p(q–p∗)
q–p

(λ
∫

�
|u|q dx)

p–p∗
q–p

–
∫

�

|u|p∗
dx

>
(

(β – β)(p – p∗)
β(q – p∗)

) q–p∗
q–p

(
q – p
p – p∗

) ‖u‖ p(q–p∗)
q–p

[λ|�|
p∗–q

p∗ (
∫

�
|u|p∗ dx)

q
p∗ ]

p–p∗
q–p

–
∫

�

|u|p∗
dx

=
{(

(β – β)(p – p∗)
β(q – p∗)

) q–p∗
q–p

(
q – p
p – p∗

)


[λ|�|
p∗–q

p∗ ]
p–p∗
q–p

( ‖u‖p

(
∫

�
|u|p∗ dx)

p
p∗

) q–p∗
q–p

– 
}
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×
∫

�

|u|p∗
dx

≥
{(

(β – β)(p – p∗)
β(q – p∗)

) q–p∗
q–p

(
q – p
p – p∗

)


[λ|�|
p∗–q

p∗ ]
p–p∗
q–p

S
q–p∗
q–p

μ, – 
}∫

�

|u|p∗
dx

> ,

where  < λ < T. Thus, there exist constants s+ and s– such that

 < s+ = s+(u) < smax < s– = s–(u), s+u ∈N +
λ and s–u ∈N –

λ .

(ii) We prove that N 
λ = ∅ for all λ ∈ (, T). By contradiction, assume that there exists

u �=  such that u ∈N 
λ . From (.), we have

‖u‖p –
∫

�

|u|p∗
dx – β

∫

�

|u|p|x|α–p dx – λ

∫

�

|u|q dx = , (.)

combining with (.), we obtain

(
p – p∗)‖u‖p =

(
p – p∗)β

∫

�

|u|p|x|α–p dx +
(
p∗ – q

)
λ

∫

�

|u|q dx. (.)

Equations (.) and (.) imply that

(p – q)‖u‖p – (p – q)β
∫

�

|u|p|x|α–p dx =
(
p∗ – q

)
∫

�

|u|p∗
dx,

that is,

∫

�

|u|p∗
dx ≥ p – q

p∗ – q

(

 –
β

β

)

‖u‖p. (.)

Similarly,

(
p – p∗)‖u‖p –

(
p – p∗)β

∫

�

|u|p|x|α–p dx = λ
(
q – p∗)

∫

�

|u|q dx,

that is,

λ

∫

�

|u|q dx ≥ p – p∗

q – p∗

(

 –
β

β

)

‖u‖p. (.)

Note that (.) holds for u ∈N 
λ \{}. Then


 :=
(|�|

p∗–q
p∗ )

p–p∗
q–p

S
q–p∗
q–p

μ,

‖u‖
p(q–p∗)

q–p

(
∫

�
(u+

)q dx)
p–p∗
q–p

–
∫

�

|u|p∗
dx

>
[



S
q–p∗
q–p

μ,

( ‖u‖p

(
∫

�
|u|p∗ dx)

p
p∗

) q–p∗
q–p

– 
]∫

�

|u|p∗
dx ≥ .
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It follows from (.) and (.) that


 =
(|�|

p∗–q
p∗ )

p–p∗
q–p

S
q–p∗
q–p

μ,

λ
p–p∗
q–p

‖u‖
p(q–p∗)

q–p

(λ
∫

�
(u+

)q dx)
p–p∗
q–p

–
∫

�

|u|p∗
dx

≤ (|�|
p∗–q

p∗ )
p–p∗
q–p

S
q–p∗
q–p

μ,

λ
p–p∗
q–p

‖u‖p

[( p–p∗
q–p∗ )( – β

β
)]

p–p∗
q–p

–
(

p – q
p∗ – q

)(

 –
β

β

)

‖u‖p

=
[

(|�|
p∗–q

p∗ )
p–p∗
q–p

S
q–p∗
q–p

μ,

λ
p–p∗
q–p

[( p–p∗
q–p∗ )( – β

β
)]

p–p∗
q–p

–
(

p – q
p∗ – q

)(

 –
β

β

)]

‖u‖p

< ,

for  < λ < T. This is a contradiction. �

Lemma . Iλ is coercive and bounded below on Nλ.

Proof For u ∈Nλ, we can deduce from (.) and (.) that

Iλ(u) =

p
‖u‖p –

β

p

∫

�

|u|p|x|α–p dx –


p∗

∫

�

|u|p∗
dx –

λ

q

∫

�

|u|q dx

=
(


p

–


p∗

)

‖u‖p –
(


p

–


p∗

)

β

∫

�

|u|p|x|α–p dx –
(


q

–


p∗

)

λ

∫

�

|u|q dx

≥
(


p

–


p∗

)(

 –
β

β

)

‖u‖p – λ

(

q

–


p∗

)

|�|
p∗–q

p∗ S
– q

p
μ,‖u‖q.

Note that  < q < p and  < β < β, we see that Iλ is coercive and bounded below on Nλ. �

From Lemma ., we know that N +
λ and N –

λ are nonempty. Furthermore, taking into
account Lemma ., we define

κλ = inf
u∈Nλ

Iλ(u), κ+
λ = inf

u∈N +
λ

Iλ(u), κ–
λ = inf

u∈N–
λ

Iλ(u).

Lemma . κλ ≤ κ+
λ < .

Proof For u ∈N +
λ , using (.) and (.), we have

(p – q)‖u‖p – (p – q)β
∫

�

|u|p|x|α–p dx >
(
p∗ – q

)
∫

�

|u|p∗
dx

and

(p – q)‖u‖p
(

 –
β

β

)

>
(
p∗ – q

)
∫

�

|u|p∗
dx,

that is,
∫

�

|u|p∗
dx <

p – q
p∗ – q

(

 –
β

β

)

‖u‖p. (.)
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By (.), we get

Iλ(u) =
(


p

–

q

)

‖u‖p –
(


p

–

q

)

β

∫

�

|u|p|x|α–p dx –
(


p∗ –


q

)∫

�

|u|p∗
dx

<
(


p

–

q

)(

 –
β

β

)

‖u‖p –
(


p∗ –


q

)(

 –
β

β

)(
p – q
p∗ – q

)

‖u‖p

=
(

 –
β

β

)

(q – p)
(


qp

–


qp∗

)

‖u‖p

< .

Therefore, we have κλ ≤ κ+
λ < . �

Lemma . For u ∈ Nλ, there exist ε >  and a differentiable function f̂ = f̂ (ω) : B(, ε) ⊂
W ,p

 (�) −→R
+ such that

f̂ () = , f̂ (ω)(u + ω) ∈Nλ, ∀ω ∈ B(, ε).

Proof Define

F̂ : R× W ,p
 (�) −→R

as follows:

F̂(s,ω) = sp–q
∫

�

(
∣
∣∇(u + ω)

∣
∣p – μ

|u + ω|p
|x|p

)

dx – sp–qβ

∫

�

|u + ω|p|x|α–p dx

– sp∗–q
∫

�

|u + ω|p∗
dx – λ

∫

�

|u + ω|q dx, u ∈Nλ.

It is clear that

F̂(, ) =
∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx – β

∫

�

|u|p|x|α–p dx –
∫

�

|u|p∗
dx – λ

∫

�

|u|q dx

and

F̂s(s,ω) = (p – q)sp–q–
∫

�

(
∣
∣∇(u + ω)

∣
∣p – μ

|u + ω|p
|x|p

)

dx

– (p – q)sp–q–β

∫

�

|u + ω|p|x|α–p dx

–
(
p∗ – q

)
sp∗–q–

∫

�

|u + ω|p∗
dx,

which implies that

F̂s(, ) = (p – q)
∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx – (p – q)β
∫

�

|u|p|x|α–p dx

–
(
p∗ – q

)
∫

�

|u|p∗
dx.
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Lemma . tells us that F̂s(, ) �= . Thus, by the implicit function theorem at the point
(, ), there exist ε > , and a differentiable function

f̂ : B(, ε) ⊂ W ,p
 (�) −→ R

+

such that

f̂ () = , f̂ (ω) >  and f̂ (ω)(u + ω) ∈Nλ, ∀ω ∈ B(, ε). �

Lemma . For u ∈ N –
λ , there exist ε >  and a differentiable function f̃ = f̃ (v) : B(, ε) ⊂

W ,p
 (�) −→R

+ such that

f̃ () =  and f̃ (v)(u + v) ∈N –
λ , ∀v ∈ B(, ε).

Proof The proof is similar to that of Lemma ., and we omit it here. �

Lemma . If {un} ⊂Nλ is a minimizing sequence of Iλ, for every φ ∈ W ,p
 (�), then

–
|f ′

n()|‖un‖ + ‖φ‖
n

≤ 〈
I ′
λ(un),φ

〉 ≤ |f ′
n()|‖un‖ + ‖φ‖

n
. (.)

Proof It follows from Lemma . that Iλ is coercive on Nλ. Using the Ekeland variational
principle [], we can find a minimizing sequence {un} ⊂Nλ of Iλ satisfying

Iλ(un) < κλ +

n

, Iλ(un) ≤ Iλ(w) +

n

‖w – un‖ ∀w ∈Nλ. (.)

Without loss of generality, we can assume that un ≥ . By Lemma ., we know that {un} is
bounded in W ,p

 (�). As a consequence, there exist a subsequence (still denoted by {un})
and u∗ in W ,p

 (�) such that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u∗ weakly in W ,p
 (�),

un → u∗ strongly in Lp(�) ( ≤ p < p∗),

un(x) → u∗(x) a.e. in �.

(.)

From Lemma ., for s >  sufficiently small and φ ∈ W ,p
 (�), and set u = un, ω = sφ ∈

W ,p
 (�), we can find that fn(s) = fn(sφ) such that fn() =  and fn(s)(un + sφ) ∈Nλ. Since

‖un‖p –
∫

�

|un|p∗
dx – β

∫

�

|un|p|x|α–p dx – λ

∫

�

|un|q dx = . (.)

By (.), we obtain


n

[∣
∣fn(s) – 

∣
∣‖un‖ + sfn(s)‖φ‖] ≥ 

n
∥
∥fn(s)(un + sφ) – un

∥
∥

≥ Iλ(un) – Iλ
[
fn(s)(un + sφ)

]
. (.)



Sang and Guo Journal of Inequalities and Applications  (2017) 2017:217 Page 9 of 20

Notice that

Iλ
[
fn(s)(un + sφ)

]
=


p
∥
∥fn(s)(un + sφ)

∥
∥p –

β

p

∫

�

|x|α–p∣∣fn(s)(un + sφ)
∣
∣p dx

–


p∗

∫

�

∣
∣fn(s)(un + sφ)

∣
∣p∗

dx –
λ

q

∫

�

∣
∣fn(s)(un + sφ)

∣
∣q dx

=
f p
n (s)
p

‖un + sφ‖p –
β

p
f p
n (s)

∫

�

|x|α–p∣∣(un + sφ)
∣
∣p dx

–
f p∗
n (s)
p∗

∫

�

∣
∣(un + sφ)

∣
∣p∗

dx –
λ

q
f q
n (s)

∫

�

∣
∣(un + sφ)

∣
∣q dx.

Therefore

Iλ(un) – Iλ
[
fn(s)(un + sφ)

]

=

p
‖un‖p –

f p
n (s)
p

‖un‖p +
f p∗
n (s)
p∗

∫

�

|un + sφ|p∗
dx –


p∗

∫

�

|un + sφ|p∗
dx

+
λ

q
f q
n (s)

∫

�

|un + sφ|q dx –
λ

q

∫

�

|un + sφ|q dx +
β

p
f p
n (s)

∫

�

|x|α–p|un + sφ|p dx

–
β

p

∫

�

|x|α–p|un + sφ|p dx +
f p
n (s)
p

‖un‖p –
f p
n (s)
p

‖un + sφ‖p +


p∗

∫

�

|un + sφ|p∗
dx

–


p∗

∫

�

|un|p∗
dx +

λ

q

∫

�

|un + sφ|q dx –
λ

q

∫

�

|un|q dx

+
β

p

∫

�

|x|α–p|un + sφ|p dx –
β

p

∫

�

|un|p|x|α–p dx

=
 – f p

n (s)
p

‖un‖p +
f p∗
n (s) – 

p∗

∫

�

|un + sφ|p∗
dx +

λ

q
(
f q
n (s) – 

)
∫

�

|un + sφ|q dx

+
β

p
(
f p
n (s) – 

)
∫

�

|x|α–p|un + sφ|p dx +
f p
n (s)
p

(‖un‖p – ‖un + sφ‖p)

+


p∗

(∫

�

|un + sφ|p∗
dx –

∫

�

|un|p∗
dx

)

+
λ

q

∫

�

(|un + sφ|q – |un|q
)

dx

+
β

p

∫

�

[|un + sφ|p – |un|p
]|x|α–p dx.

Dividing by s >  and taking the limit for s → , combining with (.) and (.), we have

|f ′
n()|‖un‖ + ‖φ‖

n

≥ –f ′
n()‖un‖p + f ′

n()
∫

�

|un|p∗
dx + λf ′

n()
∫

�

|un|q dx

+ βf ′
n()

∫

�

|un|p|x|α–p dx –
∫

�

|∇un|p–∇un∇φ dx

+ μ

∫

�

|un|p–unφ

|x|p dx +
∫

�

|un|p∗–φ dx

+ λ

∫

�

|un|q–φ dx + β

∫

�

|un|p–φ|x|α–p dx
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= –f ′
n()

[

‖un‖p –
∫

�

|un|p∗
dx – λ

∫

�

|un|q dx – β

∫

�

|un|p|x|α–p dx
]

–
〈
I ′
λ,φ

〉

= –
〈
I ′
λ,φ

〉
.

Consequently

–
|f ′

n()|‖un‖ + ‖φ‖
n

≤ 〈
I ′
λ,φ

〉
(.)

for every φ ∈ W ,p
 (�). Note that (.) holds equally for –φ, we see that (.) holds. �

Lemma . (see [, ]) Set D,p(RN ) = {u ∈ Lp∗ (RN ) : |∇u| ∈ Lp(RN )}. Assume that  <
p < N and  ≤ μ < μ. Then the limiting problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu – μ up–

|x|p = up∗– in R
N\{},

u >  in R
N\{},

u ∈ D,p(RN )

(.)

has radially symmetric ground states

Vε(x) = ε
p–N

p Up,μ

(
x
ε

)

= ε
p–N

p Up,μ

( |x|
ε

)

∀ε > ,

such that

∫

RN

(
∣
∣∇Vε(x)

∣
∣p – μ

|Vε(x)|p
|x|p

)

dx =
∫

RN

∣
∣Vε(x)

∣
∣p∗

dx = S
N
p
μ,,

where the function Up,μ(x) = Up,μ(|x|) is the unique radial solution of the above limiting
problem with

Up,μ() =
(

N(μ – μ)
N – p

) 
p∗–p

.

In the following, we define � = 
N S

N
p
μ,.

Lemma . Let {un} ⊂N –
λ be a minimizing sequence for Iλ with κ–

λ < � – Dλ
p

p–q , where

D =
p – q

p

[
p∗ – q

p∗q
|�|

p∗–q
p∗ S

– q
p

μ,

(
β – β

Nβ

)– q
p
] p

p–q
. (.)

Then there exists u ∈ W ,p
 (�) such that un → u in Lp∗ (�).

Proof Since

Iλ(un) → κ–
λ as n → +∞. (.)
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By Lemma ., we know that {un} is bounded in W ,p
 (�). In fact, we can deduce from (.)

and (.) that

 + κ–
λ + o

(‖un‖
)

≥ Iλ(un) –


p∗
〈
I ′
λ(un), un

〉

=

p
‖un‖p –

β

p

∫

�

|un|p|x|α–p dx –


p∗

∫

�

|un|p∗
dx –

λ

q

∫

�

|un|q dx

–


p∗

(

‖un‖p –
∫

�

|un|p∗
dx – λ

∫

�

|un|q dx – β

∫

�

|un|p|x|α–p dx
)

=
(


p

–


p∗

)

‖un‖p –
(


p

–


p∗

)

β

∫

�

|un|p|x|α–p dx

+
(


p∗ –


q

)

λ

∫

�

|un|q dx

≥
(


p

–


p∗

)(

 –
β

β

)

‖un‖p +
(


p∗ –


q

)

λ

∫

�

|un|q dx

≥
(


p

–


p∗

)(

 –
β

β

)

‖un‖p

+
(


p∗ –


q

)

λ|�|
p∗–q

p∗
(∫

�

|un|p∗
dx

) q
p∗

≥
(


p

–


p∗

)(

 –
β

β

)

‖un‖p +
(


p∗ –


q

)

λ|�|
p∗–q

p∗ S
– q

p
μ,‖un‖q,

where  < β < β,  < q < p, we see that {un} is bounded in W ,p
 (�). We can choose a

subsequence (still denoted by {un}) and u ∈ W ,p
 (�) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u weakly in W ,p
 (�),

un → u strongly in Lp(�) ( ≤ p < p∗).

un(x) → u(x) a.e. in �.

(.)

In term of the concentration compactness principle, going if necessary to a subsequence,
there exist an at most countable set J , a set of points {xj}j∈J ⊂ � \ {}, and real numbers
μj, νj, χ̃ such that

|∇un|p ⇀ dμ ≥ |∇u|p +
∑

j∈J
μjδxj + μδ,

|un|p∗
⇀ dν = |u|p∗

+
∑

j∈J
νjδxj + νδ,

|un|p
|x|p ⇀ dχ̃ =

|u|p
|x|p + χ̃δ,

where δxj is the Dirac mass at xj.
Let ε be sufficient small satisfying  /∈ B(xj, ε) and B(xj, ε) ∩ B(xi, ε) = ∅ for i �= j, i, j =

, , . . . , k. Let ψε,j(x) be a smooth cut-off function centered at xj such that  ≤ ψε,j(x) ≤ ,
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ψε,j(x) =  for x ∈ B(xj, ε
 ), ψε,j(x) =  for x ∈ �\B(xj, ε) and |∇ψε,j(x)| ≤ 

ε
. Note that

〈
I ′
λ(un), unψε,j(x)

〉

=
∫

�

|∇un|pψε,j(x) dx +
∫

�

un|∇un|p–∇un∇ψε,j(x) dx – μ

∫

�

|un|p
|x|p ψε,j(x) dx

–
∫

�

|un|p∗
ψε,j(x) dx – λ

∫

�

|un|qψε,j(x) dx – β

∫

�

|un|p|x|α–pψε,j(x) dx.

Furthermore, we have

lim
n→∞

∫

�

|∇un|pψε,j(x) dx =
∫

�

ψε,j(x) dμ ≥
∫

�

|∇u|pψε,j(x) dx + μj,

lim
n→∞

∫

�

|un|p∗
ψε,j(x) dx =

∫

�

ψε,j(x) dν =
∫

�

|u|p∗
ψε,j(x) dx + νj,

lim
ε→

lim
n→∞

∣
∣
∣
∣

∫

�

un|∇un|p–∇un · ∇ψε,j(x)
∣
∣
∣
∣ = ,

lim
ε→

lim
n→∞

∣
∣
∣
∣

∫

�

|un|p
|x|p ψε,j(x)

∣
∣
∣
∣ = .

By (.), we deduce that

∣
∣
∣
∣

∫

�

|un|qψε,j dx
∣
∣
∣
∣ ≤

∫

B(xj ,ε)
|un|q dx

≤
(∫

B(xj ,ε)
|un|q

p∗
q dx

) q
p∗ (∫

B(xj ,ε)
dx

) p∗–q
p∗

≤ S
– q

p
μ,‖un‖q

(∫

B(xj ,ε)
dx

) p∗–q
p∗

≤ S
– q

p
μ,

(∫ ε


rN– dr

) p∗–q
p∗

‖un‖q

=
(


N

) p∗–q
p∗

S
– q

p
μ,ε

N(p∗–q)
p∗ ‖un‖q

and

∣
∣
∣
∣

∫

�

|un|p|x|α–pψε,j(x) dx
∣
∣
∣
∣ ≤

(∫

B(xj ,ε)
|un|p

p∗
p dx

) p
p∗ (∫

B(xj ,ε)
|x|

p∗(α–p)
p∗–p dx

) p∗–p
p∗

≤
(∫

B(xj ,ε)
|un|p

p∗
p dx

) p
p∗ (∫

B(xj ,ε)
|x – xj|

p∗(α–p)
p∗–p dx

) p∗–p
p∗

≤ S–
μ,‖un‖p

(∫ ε


rN–r

p∗(α–p)
p∗–p dr

) p∗–p
p∗

= S–
μ,‖un‖p

(
p

Nα
ε

Nα
p

) p∗–p
p∗

.
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Since {un} is bounded in W ,p
 (�), and un ⇀ u weakly in Lp∗ (�), we conclude that

lim
ε→

lim
n→∞

∫

�

|un|qψε,j(x) dx = 

and

lim
ε→

lim
n→∞

∫

�

|un|p|x|α–pψε,j(x) dx = .

By (.), we have

 = lim
ε→

lim
n→∞

〈
I ′
λ(un), unψε,j(x)

〉 ≥ μj – νj.

Since S,ν

p
p∗

j ≤ μj, we have μj = νj =  or μj ≥ (S,)
N
p .

On the other hand, let ε >  be sufficiently small satisfying xj /∈ B(, ε), ∀j ∈ J . Let ψε,(x)
a smooth cut-off function centered at the origin such that  ≤ ψε,(x) ≤ , ψε,(x) =  for
|x| ≤ ε

 , ψε,(x) =  for |x| ≥ ε and |∇ψε,(x)| ≤ 
ε

. Hence, we have

lim
n→∞

∫

�

|∇un|pψε,(x) dx =
∫

�

ψε,(x) dμ ≥
∫

�

|∇u|pψε,(x) dx + μ,

lim
n→∞

∫

�

|un|p∗
ψε,(x) dx =

∫

�

ψε,(x) dν =
∫

�

|u|p∗
ψε,(x) dx + ν,

lim
n→∞

∫

�

|un|p
|x|p ψε,(x) dx =

∫

�

ψε,(x) dχ̃ =
∫

�

|u|p
|x|p ψε,(x) dx + χ̃,

lim
ε→

lim
n→∞

∣
∣
∣
∣

∫

�

un|∇un|p–∇un · ∇ψε,(x) dx
∣
∣
∣
∣ = ,

lim
ε→

lim
n→∞

∫

�

|un|qψε,(x) dx = 

and

lim
ε→

lim
n→∞

∫

�

|un|p|x|α–pψε,(x) dx = .

Therefore

 = lim
ε→

lim
n→∞

〈
I ′
λ(un), unψε,(x)

〉 ≥ μ – μχ̃ – ν.

Combining the definition of Sμ,, we get that Sμ,ν

p
p∗

 ≤ μ – μχ̃ ≤ ν, which implies that
ν =  or ν ≥ (Sμ,)

N
p . Now, we prove that μj ≥ (S,)

N
p and ν ≥ (Sμ,)

N
p are not true. If

not, we have

κ–
λ = lim

n→∞

[

Iλ(un) –


p∗
〈
I ′
λ(un), un

〉
]

≥ lim
n→∞

[(

p

–


p∗

)

‖un‖p +
(


p∗ –


q

)

λ|�|
p∗–q

p∗ S
– q

p
μ,‖un‖q

]
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= lim
n→∞

[

N

‖un‖p +
(


p∗ –


q

)

λ|�|
p∗–q

p∗ S
– q

p
μ,‖un‖q

]

≥ 
N

(

‖u‖p +
∑

j∈J
μj + μ – μχ̃

)

+
(


p∗ –


q

)

λ|�|
p∗–q

p∗ S
– q

p
μ,‖u‖q

≥ 
N

S
N
p
μ, +


N

‖u‖p +
(


p∗ –


q

)

λ|�|
p∗–q

p∗ S
– q

p
μ,‖u‖q

=

N

S
N
p
μ, +


N

‖u‖p –
p∗ – q

p∗q
λ|�|

p∗–q
p∗ S

– q
p

μ,‖u‖q

≥ 
N

S
N
p
μ, – Dλ

p
p–q ,

where D is defined in (.). Hence, we conclude that � – Dλ
p

p–q ≤ κ–
λ < � – Dλ

p
p–q , which

is a contradiction. It follows that νj =  for j ∈ {} ∪ J , which means that
∫

�
|un|p∗ dx →

∫

�
|u|p∗ dx as n → ∞. The proof is completed. �

In the following, we need some estimates for the extremal function Vε defined in
Lemma .. Given R > , let ϕ(x) ∈ W ,p

 (�),  ≤ ϕ(x) ≤ , ϕ(x) =  for |x| ≤ R, ϕ(x) = 
for |x| ≥ R. Set vε(x) = ϕ(x)Vε(x). For  < p < N and  < q < p∗, we have the following
estimates (see [, ]):

‖vε‖p = (Sμ,)
N
p + O

(
εb(μ)p+p–N)

, (.)
∫

�

|vε |p∗
dx = (Sμ,)

N
p + O

(
εb(μ)p∗–N)

, (.)

then

∫

�

|vε |q dx =

⎧
⎪⎪⎨

⎪⎪⎩

Cε
N+q(– N

p ) N
b(μ) < q < p,

Cε
N+q(– N

p )| ln ε| q = N
b(μ) ,

Cε
q(b(μ)+– N

p )  < q < N
b(μ) ,

(.)

where b(μ) is the zero of the function

f (ξ ) = (p – )ξp – (N – p)ξp– + μ, ξ ≥ ,  ≤ μ < μ,

satisfying  < N–p
p < b(μ) < N–p

p– .

Lemma . There exists λ >  such that

sup
s≥

Iλ(svε) < � – Dλ
p

p–q , for λ ∈ (,λ),

where � and D are defined in Lemma ..

Proof For two positive constants s and s (independent of ε, λ), we show that there
exists sε >  with  < s ≤ sε ≤ s < ∞ such that sups≥ Iλ(svε) = Iλ(sεvε). In fact, since
lims→+∞ Iλ(svε) = –∞, we can deduce that

sp–
ε ‖vε‖p – βsp–

ε

∫

�

|vε |p|x|α–p dx – sp∗–
ε

∫

�

|vε |p∗
dx – λsq–

ε

∫

�

|vε |q dx =  (.)
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and

(p – )sp–
ε ‖vε‖p – (p – )βsp–

ε

∫

�

|vε |p|x|α–p dx

–
(
p∗ – 

)
sp∗–
ε

∫

�

|vε |p∗
dx – (q – )λsq–

ε

∫

�

|vε |q dx < . (.)

Equations (.) and (.) imply that

(p – )sp–
ε ‖vε‖p – (p – )βsp–

ε

∫

�

|vε |p|x|α–p dx –
(
p∗ – 

)
sp∗–
ε

∫

�

|uε |p∗
dx

< (q – )sp–
ε ‖vε‖p – (q – )βsp–

ε

∫

�

|vε |p|x|α–p dx – (q – )sp∗–
ε

∫

�

|vε |p∗
dx.

That is,

(p – q)sp–
ε ‖vε‖p – (p – q)βsp–

ε

∫

�

|vε |p|x|α–p dx <
(
p∗ – q

)
sp∗–
ε

∫

�

|vε |p∗
dx. (.)

Hence, we can obtain from (.) that sε is bounded below. Moreover, it is clear to see from
(.) that sε is bounded above for all ε >  small enough. Therefore, our claim holds.

Set

h(sεvε) =
sp
ε

p
‖vε‖p –

sp∗
ε

p∗

∫

�

|vε |p∗
dx.

In the following, we prove that

h(sεvε) ≤ � + O
(
ε

p(b(μ)– N
p +)). (.)

Let

h̃(s) =
sp

p
‖vε‖p –

sp∗

p∗

∫

�

|vε |p∗
dx.

Direct computations give us that lims→∞ h̃(s) = –∞ and h̃() = . Thus sups≥ h̃(s) is
obtained at some Sε > , and

Sε =
( ‖vε‖p

∫

�
|vε |p∗ dx

) 
p∗–p

.

Since h̃′(s)|Sε = , that is,

Sp–
ε ‖vε‖p – Sp∗–

ε

∫

�

|vε |p∗
dx = .

It is easy to check that h(s) is increasing in [, Sε), according to (.) and (.), we have

h(sεvε) ≤ h̃(Sε)

=
(


p

–


p∗

)
(‖vε‖p)

p∗
p∗–p

(
∫

�
|uε |p∗ dx)

p
p∗–p
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=
(


p

–


p∗

)
((Sμ,)

N
p + O(εb(μ)p+p–N ))

p∗
p∗–p

((Sμ,)
N
p + O(εb(μ)p∗–N ))

p
p∗–p

≤
(


p

–


p∗

)
(Sμ,)

N
p

p∗
p∗–p

(Sμ,)
N
p

p
p∗–p

+ O
(
εb(μ)p+p–N)

=
(


p

–


p∗

)

(Sμ,)
N
p + O

(
ε

p(b(μ)– N
p +))

= � + O
(
ε

p(b(μ)– N
p +)). (.)

Therefore, by (.), we have

Iλ(sεvε) = h(sεvε) –
βsp

ε

p

∫

�

|vε |p|x|α–p dx –
λsq

ε

q

∫

�

|vε |q dx

≤ � + Cε
p(b(μ)– N

p +) –
β

p
sp



∫

�

|vε |p|x|α–p dx –
λsq


q

∫

�

|vε |q dx. (.)

Now, we consider the following cases:

(i) N
b(μ) < q < p. Choose ε = λ


(p–q)(b(μ)– N

p +) , for λ < λ := ( C+D
C

)
(p–q)(b(μ)– N

p +)
N–qb(μ) , we have

Cε
p(b(μ)– N

p +) – λCε
N+q(– N

p ) = Cλ
p

p–q – λCλ

N+q(– N
p )

(p–q)(b(μ)– N
p +)

= Cλ
p

p–q – Cλ

N+q(– N
p )

(p–q)(b(μ)– N
p +)

+

= λ
p

p–q
(
C – Cλ

N–qb(μ)
(p–q)(b(μ)– N

p +) )

< –Dλ
p

p–q .

(ii) q = N
b(μ) . We still choose ε = λ


(p–q)(b(μ)– N

p +) , for λ < λ := e–( C+D
C

), we have

Cε
p(b(μ)– N

p +) – λCε
N+q(– N

p )| ln ε| = Cλ
p

p–q – λCλ

N+q(– N
p )

(p–q)(b(μ)– N
p +) | lnλ|

= Cλ
p

p–q – Cλ

N+q(– N
p )

(p–q)(b(μ)– N
p +)

+
| lnλ|

< λ
p

p–q
(
C – C| lnλ|)

< –Dλ
p

p–q ,

where C = C
(p–q)(b(μ)– N

p +)
.

(iii)  < q < N
b(μ) . Put ε

p(b(μ)– N
p +) ≤ λ

p
p–q , for λ < λ := ( C–D

C
)

p–q
pq–p with C > D, we have

Cε
p(b(μ)– N

p +) – λCε
q(b(μ)+– N

p ) := Cλ
pq

p–q – λCλ
q

p–q

= λ
p

p–q
(
Cλ

pq–p
p–q – C

)

< –Dλ
p

p–q .
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Consequently, for λ < λ := min{λ,λ,λ}, we deduce that

Iλ(sεvε) < � – Dλ
p

p–q . �

3 Proof of main result
We can find a constant δ >  such that � – Dλ

p
p–q >  for λ < δ. Let λ∗ = min{T, δ,λ}. For

λ ∈ (,λ∗), Lemmas .-., . and . hold.
Let {un} ⊂ Nλ be a minimizing sequence of Iλ. It is easy to see that {un} is bounded in

W ,p
 (�) and there exist a subsequence of {un} (still denoted by {un}) and uλ ∈ W ,p

 (�)
such that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ uλ weakly in W ,p
 (�),

un → uλ strongly in Ls(�) ( ≤ s < p∗),

un(x) → uλ(x) a.e. in �,

(.)

as n → ∞.
Firstly, by Lemma ., we can know that f ′

n() is bounded with respect to n ∈N. Letting
n → ∞ in (.), we deduce that

∫

�

|∇u∗|p–∇u∗ · ∇φ – μ

∫

�

|u∗|p–u∗
|x|p φ

=
∫

�

|u∗|p∗–φ + λ

∫

�

|u∗|q–φ + β

∫

�

|u∗|p–|x|α–pφ (.)

for all φ ∈ W ,p
 (�). Equation (.) implies that uλ is a solution of (.). We claim that

uλ �≡ . If not, uλ = , since un ∈Nλ, we have

‖un‖p –
∫

�

|un|p∗
– β

∫

�

|un|p|x|α–p – λ

∫

�

|un|q = .

Note that

lim
n→∞

∫

�

|un|p|x|α–p dx = , lim
n→∞

∫

�

|un|q dx = .

Put limn→∞ ‖un‖ = m, we conclude that m ≥ S
p∗

p(p∗–p)
μ, . By Lemma ., we obtain

κλ = lim
n→∞ Iλ(un)

= lim
n→∞

[

p
‖un‖p –

β

p

∫

�

|un|p|x|α–p –


p∗

∫

�

|un|p∗
dx –

λ

q

∫

�

|un|q dx
]

≥ lim
n→∞

(

p

–


p∗

)

‖un‖p

≥ p∗ – p
pp∗ S

p∗
p∗–p
μ,

=

N

S
N
p
μ,,

which contradicts with κλ < � – Dλ
p

p–q (from Lemma .).
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Secondly, we prove that uλ ∈ N +
λ . Suppose that this is not true, i.e., uλ ∈ N –

λ . From
Lemma ., we can find positive numbers s+ and s– with s+ < smax < s– =  such that
s+uλ ∈N +

λ , s–uλ ∈N –
λ and

κλ < Iλ
(
s+uλ

)
< Iλ

(
s–uλ

)
= Iλ(uλ) = κλ,

which is a contradiction. Hence uλ ∈ N +
λ . Furthermore, combining with Lemma ., we

can obtain

Iλ(uλ) = κ+
λ = κλ < .

Therefore, we see that uλ is a non-negative ground state solution of problem (.).
In the following, we prove that problem (.) has a second solution vλ with vλ ∈ N –

λ .
Since Iλ is coercive on N –

λ , according to the Ekeland variational principle and Lemma .,
there exists a minimizing sequence {vn} ⊂N –

λ of Iλ such that
(i) Iλ(vn) < κ–

λ + 
n ;

(ii) Iλ(u) ≥ Iλ(vn) – 
n‖u – vn‖ for all u ∈N –

λ .
Note that {vn} is bounded in W ,p

 (�), there exist a subsequence (still denoted by {vn})
and vλ ∈ W ,p

 (�) such that

⎧
⎪⎪⎨

⎪⎪⎩

vn ⇀ vλ weakly in W ,p
 (�),

vn → vλ strongly in Ls(�) ( ≤ s < p∗),

vn(x) → vλ(x) a.e. in �,

(.)

as n → ∞.
Similar to the above discussion, we can deduce that vn → vλ in W ,p

 (�) and vλ is a non-
negative solution of (.). Thirdly, we show that vλ �=  in �. According to vn ∈ N –

λ , we
obtain

(p – q)‖vn‖p =
(
p∗ – q

)
∫

�

|vn|p∗
dx + (p – q)β

∫

�

|vn|p|x|α–p dx

<
(
p∗ – q

)
S

– p∗
p

μ, ‖vn‖p∗
+ (p – q)

β

β
‖vn‖p,

hence

‖vn‖ >
[ (p – q)( – β

β
)S

p∗
p

μ,

p∗ – q

] 
p∗–p

, ∀vn ∈N –
λ , (.)

together with vn → vλ in W ,p
 (�) means that vλ �≡ .

Lastly, we show that vλ ∈ N –
λ . We only need to prove that N –

λ is closed. In fact, for
{vn} ⊂N –

λ , it follows from Lemmas . and . that

lim
n→∞

∫

�

|vn|p∗
dx =

∫

�

|vλ|p∗
dx.
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In addition

(p – q)‖vn‖p –
(
p∗ – q

)
∫

�

|vn|p∗
dx – (p – q)β

∫

�

|vn|p|x|α–p dx < .

Thus

(p – q)‖vλ‖p –
(
p∗ – q

)
∫

�

|vλ|p∗
dx – (p – q)β

∫

�

|vλ|p|x|α–p dx ≤ ,

which means that vλ ∈N 
λ ∪N –

λ . Combining with Lemma . and vλ �≡ , we see that N –
λ

is closed. Note that N +
λ ∩N –

λ = ∅, we know that uλ and vλ are different.

4 Conclusions
In this paper, we study the existence and multiplicity of positive solutions for the quasi-
linear elliptic problem which consists of critical Sobolev exponent and a Hardy term.

The main conclusions of this work:
() Adding a linear perturbation in the nonlinear term of elliptic equation.
() The main challenge of this study is the lack of compactness of the embedding

W ,p
 ↪→ Lp∗ . We overcome it by the concentration compactness principle.

() We apply the Ekeland variational principle to obtain a minimizing sequence with
good properties.

5 Discussion
In the future, a natural question is whether the multiplicity of positive solutions for (.)
can be established with negative exponent 

uγ ( < γ < ).
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