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Abstract
The present study considers the robust stability for impulsive complex-valued neural
networks (CVNNs) with discrete time delays. By applying the homeomorphic
mapping theorem and some inequalities in a complex domain, some sufficient
conditions are obtained to prove the existence and uniqueness of the equilibrium for
the CVNNs. By constructing appropriate Lyapunov-Krasovskii functionals and
employing the complex-valued matrix inequality skills, the study finds the conditions
to guarantee its global robust stability. A numerical simulation illustrates the
correctness of the proposed theoretical results.
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1 Introduction
Robustness is the ability of maintaining the performance of the controlling system un-
der certain parameter perturbations. When these inner structural disturbances result in
the instability of the system, additional control mechanisms should be used to improve
these flimsy properties. When the control method is introduced, the uncertainty and error
brought by the control itself also become another disturbance factor of the system. In real
life and engineering practices, perturbations of system characteristics or parameters are
often unavoidable. Perturbations exist for two main reasons. One is that the actual mea-
surement is not accurate and usually deviates from its designed value. The other is slow
drift of characteristics or parameters, which is influenced by the environmental factors in
the running process of the system. When these uncertainties or random disturbances ex-
ist, the questions how and in what range to control the quality of the system or maintain its
characteristics are of great importance. Therefore, robustness has become an important
research topic in control theory, and it is also a basic problem that must be considered
in the design of almost all kinds of control systems, such as image and signal process-
ing, combinatorial optimization problems, pattern recognition, etc. It has attracted great
attention of the scholars that work with neural networks [–].

For many applications of neural networks, on the one hand, the states change rapidly at
a fixed time, and the duration of these abrupt changes is often neglected, assuming that
they are caused by jumps. Such processes are studied by impulsive differential equations
(for the relative theorems, we refer to []), and there are numerical applications of such
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equations in science and technology, mass services, etc. [–]. On the other hand, due to
the neural processing and signal transmission, a time delay often occurs, which may cause
instability and a poor performance of the system []. Generally, delays may be caused by
the measuring process and therefore the effect of time delay is common. Also many efforts
are being made as regards the delay-dependent stability analysis of neural networks [–
].

In the application of neural networks, complex signals are usually preferable [–],
so it is necessary to analyze complex-valued neural networks (CVNNs), which deal with
the complex-valued date, weight and neuron activation functions. However, much work
mainly focuses on the boundedness, μ-stability, power-stability, exponent-stability, etc.
[, , –], and little work considers the robust stability of neural networks with time
delay and impulse in the complex domain. In [, ], the authors investigated a kind of re-
current CVNNs with time delays, but the activation functions are separated by real and
imaginary parts and the analysis methods are also similar to those in their real domain.
Therefore, the stability criteria cannot be applied if the activation functions cannot be
expressed by separating their real and imaginary parts or if they are unbounded. More-
over, compared to real-valued neural networks, the advantage of CVNNs is that they can
directly deal with two-dimensional data, which can also be processed by real-valued neu-
ral networks but then require double neurons. Consequently, as a class of complex-valued
systems, CVNNs have undergone a growing number of studies that explore the application
of neural networks. Therefore, the present study considers the robust stability of CVNNs
with discrete time delay and impulse, which is valid regardless of whether the activation
functions are separated or not. The relative results are extension of those in reference [,
]. Therefore, the robust stability for impulsive CVNNs with time delays is considered in
this paper. Furthermore, compared with [] and [], the robust stability criteria for the
addressed neural networks are valid regardless of whether the activation functions can be
separated or not.

The structure of this paper is arranged as follows. Section  gives some preliminaries,
including some notations and important lemmas, introducing the complex-valued recur-
rent networks model. The existence and uniqueness of the equilibrium are proved by using
the homeomorphism mapping principle in Section . In Section , the global robust sta-
bility of the neural networks is investigated by building the proper Lyapunov functions.
An example is given to illustrate the correction of our results. In Section , we conclude
the paper.

2 Problems formulation and preliminaries
Some notations of this paper are presented here firstly. i denotes the imaginary unit, i.e.,
i =

√
–. Cn, Rm×n, and C

m×n represent the set of n-dimensional complex vectors, m × n
real matrices, and complex matrices, respectively. The subscripts T and ∗ denote matrix
transposition and matrix conjugate transposition, respectively. For complex vector z ∈C

n,
let |z| = (|z|, |z|, . . . , |zn|)T be the module of the vector z and ‖z‖ =

√∑n
i= |zi| be the

norm of the vector z. For complex matrix A = (aij)n×n ∈ C
n×n, let |A| = (|aij|)n×n denote

the module of the matrix A and ‖A‖ =
√∑n

i=
∑n

j= |aij| denote the norm of the matrix A.
I denotes the identity matrix with appropriate dimensions. The notation X ≥ Y (or X > Y )
means that X – Y is positive semi-definite (or positive definite). In addition, λmax(P) and
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λmin(P) are defined as the largest and the smallest eigenvalue of positive definite matrix P,
respectively.

Motivated by [], we consider the following impulsive CVNN model with time delays:

⎧
⎪⎪⎨
⎪⎪⎩

żi(t) = –cizi(t) +
∑n

j= aijfj(zj(t))

+
∑n

j= bijfj(zj(t – τj)) + Ji, t ≥ , t �= tk ,

�zi(tk) = Iik(zi(t–
k )), k = , , . . . , i = , , . . . , n,

()

where n is the number of neurons, zi(t) ∈ C denotes the state of neuron i at time t, fj(t)
is the complex-valued activation function, τj (j = , , . . . , n) are constant time delays and
satisfy  ≤ τj ≤ ρ , ci ∈ R with ci >  is the self-feedback connection weight, aij ∈ C and
bij ∈ C are the connection weights, and Ji ∈ C is the external input. Here Iik is a linear
map, �zi(tk) = zi(t+

k ) – zi(t–
k ) is the jump of zi at moments tk , and  < t < t < · · · is a strictly

increasing sequence such that limk→∞ tk = +∞.
We rewrite () in the equivalent matrix-vector form

⎧
⎨
⎩

ż(t) = –Cz(t) + Af (z(t)) + Bf (z(t – τ )) + J ,

�z(tk) = I(z(t–
k )), k = , , . . . ,

()

where z(t) = (z(t), z(t), . . . , zn(t))T ∈ C
n, C = diag(c, c, . . . , cn), A = (aij)n×n ∈ C

n×n, B =
(bij)n×n ∈C

n×n, f (z(t)) = (f(z(t)), f(z(t)), . . . , fn(zn(t)))T , f (z(t –τ )) = (f(z(t –τ)), f(z(t –
τ)), . . . , fn(zn(t – τn)))T , J = (J, J, . . . , Jn)T ∈ Cn, �z(tk) = (�z(tk),�z(tk), . . . ,�zn(tk))T ,
and I(z(t–

k )) = (Ik(z(t–
k )), Ik(z(t–

k )), . . . , Ink(z(t–
k )))T .

Assume that system () or () is supplemented with the initial values given by

zi(s) = ϕi(s), s ∈ [–ρ, ], i = , , . . . , ()

or in the equivalent vector form

z(s) = ϕ(s), s ∈ [–ρ, ], ()

where ϕi(·) is a complex-valued continuous function defined on [–ρ, ] and ϕ(s) =
(ϕ(s),ϕ(s), . . . ,ϕn(s))T ∈ C([–ρ, ],Cn) with the norm ‖ϕ(s)‖ = sups∈[–ρ,]

√∑n
i= |ϕi(t)|.

The following assumptions will be needed in the study:
(H) The parameters C = diag(c, c, . . . , cn), A = (aij)n×n, B = (bij)n×n, and J = (J, J, . . . ,

Jn)T in neural system () are assumed to be norm-bounded and satisfy

CI = [C, C] =
{

C = diag(c, c, . . . , cn) :  < ci ≤ ci ≤ ci, i = , , . . . , n
}

,

AI = [A, A] =
{

A = (aij)n×n : aR
ij ≤ aR

ij ≤ aR
ij , aI

ij ≤ aI
ij ≤ aI

ij, i, j = , , . . . , n
}

,

BI = [B, B] =
{

B = (bij)n×n : bR
ij ≤ bR

ij ≤ bR
ij , bI

ij ≤ bI
ij ≤ bI

ij, i, j = , , . . . , n
}

,

JI = [J , J] =
{

J = (J, J, . . . , Jn)T : JR
i ≤ JR

i ≤ JR
i , JI

i ≤ JI
i ≤ JI

i , i = , , . . . , n
}

,

where aij = aR
ij + iaI

ij, bij = bR
ij + ibI

ij, Ji = JR
i + iJI

i , C = diag(c, c, . . . , cn), C = diag(c, c, . . . , cn),
A = (aij)n×n, A = (aij)n×n, B = (bij)n×n, B = (bij)n×n, J = (J, J, . . . , Jn)T , J = (J, J, . . . , Jn)T

with aij = aR
ij + iaI

ij, aij = aR
ij + iaI

ij, bij = bR
ij + ibI

ij, bij = bR
ij + ibI

ij, J i = JR
i + iJI

i , and J i = JR
i + iJ I

i .
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(H) For i = , , . . . , n, the neuron activation function fi is continuous and satisfies

∣∣fi(z) – fi(z)
∣∣ ≤ γi|z – z|,

for any z, z ∈C, where γi is a real constant. Furthermore, define � = diag(γ,γ, . . . ,γn).

Definition  A function z(t) ∈ C([τ , +∞),Cn) is a solution of system () satisfying the
initial value condition (), if the following conditions are satisfied:

(i) z(t) is absolutely continuous on each interval (tk , tk+) ⊂ [–τ , +∞), k = , , . . . ,
(ii) for any tk ∈ [, +∞), k = , , . . . , z(t+

k ) and (z(t–
k )) exist and z(t+

k ) = z(tk).

Definition  The neural network defined by () with the parameter ranges defined
by (H) is globally asymptotically robust stable if the unique equilibrium point ž =
(ž, ž, . . . , žn)T of the neural system () is globally asymptotically stable for all C ∈ CI ,
A ∈ AI , B ∈ BI , and J ∈ JI .

Lemma  ([]) For any a, b ∈C
n, if P ∈C

n×n is a positive definite Hermitian matrix, then
a∗b + b∗a ≤ a∗Pa + b∗P–b.

Lemma  (See []) A given Hermitian matrix

S =

(
S S

S S

)
< ,

where S∗
 = S, S∗

 = S, and S∗
 = S, is equivalent to any of the following conditions:

(i) S <  and S – SS–
S < ,

(ii) S <  and S – SS–
 S < .

Lemma  ([]) If H(z) : Cn → C
n is a continuous map and satisfies the following condi-

tions:
(i) H(z) is injective on C

n,
(ii) lim‖z‖→∞ ‖H(z)‖ = ∞,

then H(z) is a homeomorphism of Cn onto itself.

Lemma  Suppose A ∈ AI . Let R and S be real positive diagonal matrices. The function fi

(i = , , . . . , n) satisfies (H). Then, for any z = (z, z, . . . , zn)T , z̃ = (z̃, z̃, . . . , z̃n)T ∈ C
n, the

following inequalities hold:

z∗A∗Az ≤ |z|∗Â∗Â|z|, ()

z∗RA∗SARz ≤ |z|∗RÂ∗SÂR|z|, ()
(
f (z) – f (z̃)

)∗A∗A
(
f (z) – f (z̃)

) ≤ |z – z̃|∗�Â∗Â�|z – z̃|, ()

where Â = (âij)n×n, âij = max{|aij|, |aij|}, and f (z) = (f(z), f(z), . . . , fn(zn))T .
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Proof It should be noted that |aij| ≤ âij since A ∈ AI . Then we calculate directly that

z∗A∗Az =
n∑

i=

∣∣∣∣∣
n∑

j=

aijzj

∣∣∣∣∣


≤
n∑

i=

( n∑
j=

|aij||zj|
)

≤
n∑

i=

( n∑
j=

âij|zj|
)

= |z|∗Â∗Â|z|.

Hence inequality () holds.
Next we prove inequality (). Let S = diag(s, s, . . . , sn) and S̃ = diag(

√
s,

√
s, . . . ,

√
sn).

Then S = S̃. It is obvious that |Rz| = R|z| since R is a real positive diagonal matrix.
From A ∈ AI , it follows that aR

ij ≤ aR
ij ≤ aR

ij and aI
ij ≤ aI

ij ≤ aI
ij for all i, j = , , . . . , n. Then√siaR

ij ≤ √siaR
ij ≤ √siaR

ij and √siaI
ij ≤ √siaI

ij ≤ √siaI
ij, which means S̃A ∈ S̃AI . Hence√siâij = max{|√siaij|, |

√siaij|}. Noting that S̃Â = (√siâij)n×n, by inequality (), we infer

z∗RA∗SARz = (Rz)∗(S̃A)∗(S̃A)(Rz)

≤ |Rz|∗(S̃Â)∗(S̃Â)|Rz|
= |z|∗RÂ∗S̃S̃ÂR|z|
= |z|∗RÂ∗SÂR|z|.

Therefore, inequality () holds.
Next we prove inequality (). For simplicity, let wi = zi – z̃i, gi = fi(zi)– fi(z̃i) (i = , , . . . , n),

w = (w, w, . . . , wn)T , and g = (g, g, . . . , gn)T . Then |gi| ≤ γi|wi| due to assumption (H). So
we calculate directly that

g∗A∗Ag =
n∑

i=

∣∣∣∣∣
n∑

j=

aijgj

∣∣∣∣∣


≤
n∑

i=

( n∑
j=

|aij||gj|
)

≤
n∑

i=

( n∑
j=

γjâij|wj|
)

= |w|∗�Â∗Â�|w|.

Accordingly, inequality () holds. The proof is completed. �

3 Existence and uniqueness of equilibrium point
In this section, we will give the sufficient conditions to prove the existence and uniqueness
of equilibrium for system (). An equilibrium solution of () is a constant complex vector
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ž ∈C
n, which satisfies

–Cž + Af (ž) + Bf (ž) + J =  ()

and Ik(ž) = , k = , , . . . , when ž is the impulsive jump.
Hence, proving the existence and uniqueness of solution () is equivalent to proving the

existence of a unique zero point of map H : Cn →C
n, where

H(z) = –Cz + Af (z) + Bf (z) + J . ()

We have the following theorem.

Theorem  For the CVNN defined by (), assume that the network parameters and the ac-
tivation function satisfy assumptions (H) and (H), respectively. Then the neural network
() has a unique equilibrium point for every input vector J = (J, J, . . . , Jn)T ∈ C

n, if there
exist two real positive diagonal matrices U and V such that the following linear matrix
inequality (LMI) holds:

(
–UC + �V� U(Â + B̂)

(Â∗ + B̂∗)U –V

)
< , ()

where Â = (âij)n×n, B̂ = (b̂ij)n×n, âij = max{|aij|, |aij|}, and b̂ij = max{|bij|, |bij|}.

Proof We will use the homeomorphism mapping theorem on the complex domain to
prove the theorem, that is, to show the map H(z) is a homeomorphism of Cn onto itself.

First, we prove that H(z) is an injective map on Cn. Let z, z̃ ∈ Cn with z �= z̃, such that
H(z) = H(z̃). Then

H(z) – H(z̃) = –C(z – z̃) + (A + B)
(
f (z) – f (z̃)

)
= . ()

Multiplying both sides of () by (z – z̃)∗U , we obtain

 = –(z – z̃)∗UC(z – z̃) + (z – z̃)∗U(A + B)
(
f (z) – f (z̃)

)
. ()

Then taking the conjugate transpose of () leads to

 = –(z – z̃)∗CU∗(z – z̃) +
(
f (z) – f (z̃)

)∗(A∗ + B∗)U∗(z – z̃). ()

From (), () and Lemmas  and , we have

 = –(z – z̃)∗(UC + CU)(z – z̃)

+ (z – z̃)∗U(A + B)
(
f (z) – f (z̃)

)

+
(
f (z) – f (z̃)

)∗(A∗ + B∗)U(z – z̃)

≤ –(z – z̃)∗(UC + CU)(z – z̃)

+ (z – z̃)∗U(A + B)V –(A∗ + B∗)U(z – z̃)
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+
(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

)

≤ |z – z̃|[–UC + U(Â + B̂)V –(Â∗ + B̂∗)U
]|z – z̃|

+
(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

)
. ()

Since V is a positive diagonal matrix, from assumption (H) we get

(
f (z) – f (z̃)

)∗V
(
f (z) – f (z̃)

) ≤ (z – z̃)∗�V�(z – z̃)

= |z – z̃|∗�V�|z – z̃|. ()

It follows from () and () that

 ≤ |z – z̃|∗	|z – z̃|, ()

where 	 = –UC + �V� + U(Â + B̂)V –(Â∗ + B̂∗)U . From Lemma  and the LMI (), we
know 	 < . Then z – z̃ =  due to (). Therefore, H(z) is an injective map on C

n.
Secondly, we prove ‖H(z)‖ → ∞ as ‖z‖ → ∞. Let H̃(z) = H(z) – H(). By Lemmas 

and , we have

z∗UH̃(z) + H̃(z)∗Uz

= –z∗(UC + CU)z + z∗U(A + B)
(
f (z) – f ()

)

+
(
f (z) – f ()

)∗(A∗ + B∗)Uz

≤ –z∗(UC + CU)z

+ z∗U(A + B)V –(B∗ + C∗)Uz

+
(
f (z) – f ()

)∗V
(
f (z) – f ()

)

≤ |z|[–UC + U(Â + B̂)V –(Â∗ + B̂∗)U
]|z| + |z|∗�V�|z|

≤ |z|∗	|z| ≤ –λmin(–	)‖z‖.

An application of the Cauchy-Schwarz inequality yields

λmin(–	)‖z‖ ≤ 
∥∥z∗∥∥‖U‖∥∥H̃(z)

∥∥.

When z �= , we have

∥∥H̃(z)
∥∥ ≥ λmin(–	)‖z‖

‖U‖ .

Therefore, ‖H̃(z)‖ → ∞ as ‖z‖ → ∞, which implies ‖H(z)‖ → ∞ as ‖z‖ → ∞. We know
that H(z) is a homeomorphism of Cn from Lemma , thus system () has a unique equi-
librium point. �

4 Global robust stability results
In this section, we will investigate the global robust stability of the unique equilibrium
point for system (). Firstly, the following assumption for the impulsive operators is
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needed: (H) For i = , , . . . , n and k = , , . . . , Iik(·) is such that

Iik
(
zi

(
t–
k
))

= –δik
(
zi

(
t–
k
)

– ži
)
,

where δik ∈ [, ] is a real constant, and ži is the ith component of the equilibrium point
ž = (ž, ž, . . . , žn)T . Then we have the following global robust stability theorem.

Theorem  Suppose the conditions of Theorem  and (H) hold. The equilibrium point
of system () is globally robust stable, if there exist two real positive diagonal matrices
P = diag(p, p, . . . , pn) and Q = diag(q, q, . . . , qn), such that the following linear matrix
inequalities hold:

(
–CP + �Â∗Â� P

P –I

)
<  ()

and
(

–PC + �Q� PB̂
B̂∗P –Q

)
< , ()

where Â = (âij)n×n, B̂ = (b̂ij)n×n, âij = max{|aij|, |aij|}, and b̂ij = max{|bij|, |bij|}.

Proof By Lemma , it follows from the LMI () that the following condition holds:

–CP + �Â∗Â� + PP < . ()

By the LMI (), according to Lemma , the following condition holds:

–PC + �Q� + PB̂Q–B̂∗P < . ()

Summing () and (), we have the following matrix inequality:

–CP – PC + PP + �Â∗Â� + PB̂Q–B̂∗P + �Q� < . ()

Under the conditions of Theorem , system () has a unique equilibrium point ž. For
convenience, we shift the equilibrium to the origin by letting z̃(t) = z(t)– ž, and then system
() can be transformed into

⎧
⎨
⎩

˙̃z(t) = –Cz̃(t) + Ag(z̃(t)) + Bg(z̃(t – τ )),

�z̃(t) = Ĩ(z̃(t–
k )), k = , , . . . ,

()

where g(z̃(t)) = f (z(t)) – f (ž) and Ĩ(z̃(t–
k )) = –δik z̃i(t–

k ). Meanwhile, the initial condition ()
can be transformed into

z̃(s) = ϕ̃(s), s ∈ [–ρ, ], ()

where ϕ̃(s) = ϕ(s) – ž ∈ C([–ρ, ],Cn).
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Consider the following Lyapunov-Krasovskii functional candidate:

V
(
z̃(t)

)
= V

(
z̃(t)

)
+ V

(
z̃(t)

)
, ()

where

V
(
z̃(t)

)
=

n∑
j=

pjz̃∗
j (t)z̃j(t), ()

V
(
z̃(t)

)
=

n∑
j=

qj

∫ t

t–τj

g∗
j
(
z̃j(t)

)
gj
(
z̃j(t)

)
dt. ()

When t �= tk , k = , , . . . , calculating the upper right derivative of V along the solution
of (), applying Lemmas  and , we get

D+V
(
z̃(t)

)
= ˙̃z∗(t)Pz̃(t) + z̃∗(t)P ˙̃z(t)

= –z̃∗(t)CPz̃(t) – z̃∗(t)PCz̃(t) + g∗(z̃(t)
)
A∗Pz̃(t)

+ z̃∗(t)PAg
(
z̃(t)

)
+ g∗(z̃(t – τ )

)
B∗Pz̃(t) + z̃∗(t)PBg

(
z̃(t – τ )

)

≤ –z̃∗(t)(CP + PC)z̃(t) + g∗(z̃(t)
)
A∗Ag

(
z̃(t)

)
+ z̃∗(t)PPz̃(t)

+ g∗(z̃(t – τ )
)
Qg

(
z̃(t – τ )

)
+ z̃∗(t)PBQ–B∗Pz̃(t)

≤ ∣∣z̃(t)
∣∣∗(–CP – PC + PP + �Â∗Â� + PBQ–B∗P

)∣∣z̃(t)
∣∣

+ g∗(z̃(t – τ )
)
Qg

(
z̃(t – τ )

)

≤ ∣∣z̃(t)
∣∣∗(–CP – PC + PP + �Â∗Â� + PB̂Q–B̂∗P

)∣∣z̃(t)
∣∣

+ g∗(z̃(t – τ )
)
Qg

(
z̃(t – τ )

)
, ()

D+V
(
z̃(t)

)
= g∗(z̃(t)

)
Qg

(
z̃(t)

)
– g∗(z̃(t – τ )

)
Qg

(
z̃(t – τ )

)

≤ ∣∣z̃(t)
∣∣∗�Q�

∣∣z̃(t)
∣∣ – g∗(z̃(t – τ )

)
Qg

(
z̃(t – τ )

)
. ()

Combining () and (), by () we deduce that

D+V
(
z̃(t)

) ≤ ∣∣z̃(t)
∣∣∗(–CP – PC + PP + �Â∗Â� + PB̂Q–B̂∗P + �Q�

)∣∣z̃(t)
∣∣ ≤ . ()

When t = tk , k = , , . . . , it should be noted that V(tk) = V(t–
k ). Then we compute

V
(
z̃(tk)

)
– V

(
z̃
(
t–
k
))

=
n∑

j=

pjz̃∗
j (tk)z̃j(tk) –

n∑
j=

pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)

=
n∑

j=

( – δjk)pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)

–
n∑

j=

pjz̃∗
j
(
t–
k
)
z̃j
(
t–
k
)

≤ . ()
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It follows from () and () that V (t) is non-increasing for t ≥ . Then, by the definition
of V (t), we infer

V (t) ≤ V () =
n∑

j=

pjz̃∗
j ()z̃j() +

n∑
j=

qj

∫ 

–τj

g∗
j
(
z̃j(t)

)
gj
(
z̃j(t)

)
dt

≤
n∑

j=

pj
∣∣ϕ̃j()

∣∣ +
n∑

j=

qjγ

j

∫ 

–τj

∣∣ϕ̃j(t)
∣∣ dt

≤
n∑

j=

(
pj + ρqjγ


j
)

sup
t∈[–ρ,]

n∑
j=

∣∣ϕ̃j(t)
∣∣

=
n∑

j=

(
pj + ρqjγ


j
)∥∥ϕ̃(t)

∥∥. ()

�

On the other hand, by the definition of V (t), we have

V (t) ≥ V(t) ≥
n∑

j=

pj
∥∥z̃(t)

∥∥, t ≥ . ()

From () and (), we obtain

∥∥z̃(t)
∥∥ ≤

√√√√
∑n

j=(pj + τqjγ

j )∑n

j= pj

∥∥ϕ̃(t)
∥∥,

from which it can be concluded that the origin of (), or equivalently the equilibrium
point of system (), is globally asymptotically robust stable by the standard Lyapunov the-
orem. The proof is completed.

If the impulsive operator I(·) ≡  in (), we get the following CVNN without impulses:

ż(t) = –Cz(t) + Af
(
z(t)

)
+ Bf

(
z(t – τ )

)
+ J , ()

where C, A, B, J , and f (·) are defined the same as in (). Following Theorem , we obtain
the following corollary on the global robust stability conditions of ().

Corollary  Under the conditions of Theorem , the equilibrium point of system () is
globally asymptotically robust stable, if there exist two real positive diagonal matrices
P = diag(p, p, . . . , pn) and Q = diag(q, q, . . . , qn), such that the following linear matrix
inequalities hold:

(
–CP + �Â∗Â� P

P –I

)
< 

and
(

–PC + �Q� PB̂
B̂∗P –Q

)
< ,

where Â = (âij)n×n, B̂ = (b̂ij)n×n, âij = max{|aij|, |aij|}, and b̂ij = max{|bij|, |bij|}.
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Remark  In [, ], some dynamic characteristics, such as exponential stability and ex-
ponential anti-synchronization, were investigated for real-valued neural networks. Com-
pared to [, ], the neural networks model in this paper is complex-valued, which can be
viewed as an extension of real-valued neural networks.

Remark  In [, ], the criteria for the stability of CVNNs are expressed in terms of
complex-valued LMIs. As pointed out in [], complex-valued LMIs cannot be solved by
the MATLAB LMI Toolbox straightforwardly. A feasible approach is to convert complex-
valued LMIs to real-valued ones but this could double the dimension of the LMIs. In this
paper, we express the stability criteria for CVNNs directly in terms of real-valued LMIs,
which can be solved by the MATLAB LMI Toolbox straightforwardly.

Remark  In [], the authors investigated the problem of global robust stability of recur-
rent CVNNs with time delays and uncertainties. In Theorem . of [], to check robust
stability of CVNNs, the boundedness of activation function fi is required. However, in
this paper, the boundedness condition is removed. In Example , in the next section, the
activation function fi is unbounded.

5 A numerical example
The following example demonstrates the effectiveness and superiority of our results.

Example  Assume that the network parameters of system () are given as follows:

C =

(
. 
 .

)
, A =

(
–. – .i –. – .i
–. – .i –. – .i

)
,

A =

(
. + .i . + .i
. + .i . + .i

)
, B =

(
–. – .i –. + .i
–. – .i –. – .i

)
,

B =

(
. + .i . + .i
. + .i . + .i

)
, � =

(
. 
 .

)
,

and the impulsive operator I(·) satisfies assumption (H).
Using the above matrices A, A, B, and B, we have

Â =

(
. .
. .

)
, B̂ =

(
. .
. .

)
.

Then using YALMIP with the solver of LMILAB, the LMI () in Theorem , and the LMIs
() and () in Theorem , we have the following feasible solutions:

U =

(
. 

 .

)
, V =

(
. 

 .

)
,

P =

(
. 

 .

)
, Q =

(
. 

 .

)
.

Thus, the conditions of Theorems  and  are satisfied, and system () has a unique equi-
librium point which is globally asymptotically robust stable. To simulate the results, let



Tan et al. Journal of Inequalities and Applications  (2017) 2017:215 Page 12 of 15

us choose C, A, and B from the proper intervals above, and obtain the following specific
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ż(t)

ż(t)

⎞
⎠ = –

⎛
⎝. 

 .

⎞
⎠

⎛
⎝z(t)

z(t)

⎞
⎠ +

⎛
⎝. – .i . + .i

. – .i . + .i

⎞
⎠

⎛
⎝f(z(t))

f(z(t))

⎞
⎠

+

⎛
⎝ . + .i . + .i

. – .i –. + .i

⎞
⎠

⎛
⎝ f(z(t – τ))

f(z(t – τ))

⎞
⎠

+

⎛
⎝. – i

. – .i

⎞
⎠ , t �= tk ,

⎛
⎝�z(tk)

�z(tk)

⎞
⎠ =

⎛
⎝ –δk[z(t–

k ) – (. – .i)]

–δk[z(t–
k ) – (. – .i)]

⎞
⎠ , t = tk , k = , , . . . ,

()

where f(u) = f(u) = .(eu – ), δk =  + 
 sin( + k), δk =  + 

 cos(k), k = , , . . . , and
t = ., tk = tk– + .k, k = , , . . . .

Figures  and  depict the real and imaginary parts of states of the considered system ()
with τ = τ = ., where the initial conditions are with  random initial complex-valued
points.

Figures  and  depict the real and imaginary parts of states of the considered system
() with τ = τ = , where the initial conditions are with  random initial complex-
valued points.

Figure 1 Real part of the state trajectories for
system (34) with τ1 = τ2 = 0.5.

Figure 2 Imaginary part of the state
trajectories for system (34) with τ1 = τ2 = 0.5.
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Figure 3 Real part of the state trajectories for
system (34) with τ1 = τ2 = 8.

Figure 4 Imaginary part of the state trajectories
for system (34) with τ1 = τ2 = 8.

Remark  In Figures -, we see that the equilibrium point of system () is asymptoti-
cally stable, whether the delay τ = τ = . or τ = τ = . It should be noted that the criteria
(), (), and () in Theorems  and  are independent from the delays τ . Therefore, in
system (), the delays have no influence on the stability of the equilibrium point.

6 Conclusion
In this paper, we have investigated the existence and uniqueness of the equilibrium as
well as its robust stability for an impulsive CVNN with discrete time delays, by apply-
ing the homeomorphic mapping theorem and some important inequalities in the com-
plex domain. We have presented some sufficient conditions to guarantee the existence
of a unique equilibrium point for the CVNN. In addition, by constructing appropriate
Lyapunov-Krasovskii functionals and employing complex-valued matrix inequalities, we
also have obtained sufficient conditions to guarantee the robust stability of the CVNN.
Finally, a numerical simulation has illustrated the correctness of the proposed theoreti-
cal results. Moreover, the conditions in Theorems  and  are irrelevant to the parameter
τ , which illustrates that the parameter τ has no effect on the uniqueness and existence,
neither on the robust stability of system (). The figures in the article confirm this result.
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