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Abstract
In this paper, we discuss the superconvergence of the local discontinuous Galerkin
methods for nonlinear convection-diffusion equations. We prove that the numerical
solution is (k + 3/2)th-order superconvergent to a particular projection of the exact
solution, when the upwind flux and the alternating fluxes are used. The proof is valid
for arbitrary nonuniform regular meshes and for piecewise polynomials of degree k
(k ≥ 1). The numerical experiments reveal that the property of superconvergence
actually holds true for general fluxes.
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1 Introduction
In this paper, we discuss the nonlinear convection-diffusion equations given by

ut + ∂xf (u) = νuxx, (x, t) ∈ [, π ] × [, T],

u(x, ) = u(x), x ∈ [, π ],
(.)

with the periodic boundary condition, where ν >  is a constant. We study the supercon-
vergence of the local dicontinuous Galerkin (LDG) solutions towards a particular projec-
tion of the exact solution.

The high-order numerical methods have been applied in a variety of fields [–]. The
LDG method is one of those numerical methods, which were first constructed by Cock-
burn and Shu and motivated by Bassi and Rebay [, ] to solve the convection-diffusion
equations. Since then, the LDG method has been used to solve the time-dependent equa-
tions with high spatial derivatives, such as the Korteweg-de Vries (KdV) equations [],
time-dependent fourth-order problems [] and the general fifth-order KdV equations [].
See more details in []. We now state some theoretical results, which represent the cru-
cial technique to treat the nonlinear parts of the equations. In [], Zhang and Shu study
the error estimate of the discontinuous Galerkin (DG) method with second-order Runge-
Kutta time discretization. They obtain the optimal error estimate of the (k + )th order for
upwind numerical fluxes and a suboptimal error estimate of the (k + /)th order for gen-
eral monotone fluxes, where k is the order of the piecewise polynomial space. The proof
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holds true for arbitrary meshes under the reasonable assumptions. Then Zhang and Shu
extend the results in [] to the third-order TVD Runge-Kutta time discretization case,
which is more popular in the computation []. In [], Wang and Shu obtain the opti-
mal error estimate of the LDG method with implicit-explicit time-marching for nonlinear
convection-diffusion problems, when the fluxes are chosen to be the general monotone
fluxes and alternating fluxes. In the above three papers, the Taylor expansion and an a
priori assumption are used to estimate the nonlinear parts.

We would like to mention the superconvergence results for DG and LDG methods. In
[], Cheng and Shu study the superconvergence of the (k + /)th order of the DG solu-
tion towards a particular projection for linear conservation laws. The limitations of []
are that the proof is only valid for uniform meshes and linear piecewise polynomial space.
Cheng and Shu overcome this limitation in [], which implies that the result in [] holds
true for arbitrary meshes and kth-order finite element spaces. Cheng and Shu also extend
the result to the linear convection-diffusion problems. For the linear equations with high-
order spatial derivatives, Hufford obtains the superconvergence of the (k + /)th order
for linear KdV equations [] and Meng gets the same result for the linear fourth-order
problems []. But for above linear problems, the numerical experiments imply that the
numerical solution is superconvergent to the exact solution at a rate of the (k + )th order.
It is highly nontrivial to obtain this half-order increase theoretically. For linear conserva-
tion laws and linear parabolic equations, Yang and Shu use a new technique to carry out
the optimal order of the superconvergence [, ]. In addition, they prove that DG and
LDG solutions are (k + )th-order superconvergent to the exact solutions at Radau points.
In [–], Cao and Zhang present another framework to demonstrate the superconver-
gence at Radau points for linear -D and -D hyperbolic problems and -D linear parabolic
problems. The first superconvergence proof with the DG method for nonlinear conserva-
tion laws is obtained in [], when the upwind fluxes are used, under the condition that
the absolute value of the convection term f has a positive low bound. In this paper, we
obtain a similar result for the nonlinear convection-diffusion problems, when the upwind
fluxes and alternating fluxes are used under the assumption that |f ′| ≥ . Due to the char-
acter of the LDG method, there is no need of a strict positive bound of the absolute value
of the convection term. In [], Cao obtains the superconvergence of DG methods based
on upwind-biased fluxes for -D linear hyperbolic equations. Guo and Yang show the DG
solution is (k + )th-order accurate at the downwind points and (k + )th-order accurate
at all the other downwind-biased Radau points in [].

The outline of this paper is as follows. In Section , we present the semi-discrete LDG
schemes for nonlinear convection-diffusion problems. In Section , we state the main
proofs of our theorems. Some numerical experiments are presented in Section , and in
Section , we give the conclusion and our future work. Finally, we give a proof of a lemma
in the Appendix.

2 The local discontinuous Galerkin method for nonlinear convection-diffusion
equations

2.1 The local discontinuous Galerkin method
In this subsection, we will present the semi-discrete LDG method for equation (.). We
first divide the computational domain � = [, π ] into N subintervals. We have

 = x/ < x/ < · · · < xN+/ = π .
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We denote each subinterval by Ij = [xj–/, xj+/] and the union of all Ij by Ih. Let hj = xj+/ –
xj–/ be the length of the subinterval and h = max≤j≤N hj. We denote the left and right
limits of the function vh at the element interface xj+/ by (vh)–

j+/ and (vh)+
j+/, respectively.

We also set [vh]j+/ = (vh)+
j+/ – (vh)–

j+/ and denote the center of Ij by xj = (xj+/ + xj–/)/.
We would like to assume our mesh is regular, which means that there exists a constant
λ >  such that λh < hj.

We choose the finite element space as the kth-order piecewise polynomial space that is
denoted by

V k
h =

{
vh : vh|Ij ∈ Pk(Ij)

}
,

where Pk(Ij) is the space of polynomials of degree at most k on Ij. In addition, we define
the broken Sobolev space on � = [, π ] as

Hl
h =

{
φ : φ|Ij ∈Hl,(Ij)

}
.

Before we construct the LDG method, we need an auxiliary variable q, so we rewrite
equation (.) as a first-order system. We have

ut + ∂xf (u) =
√

νqx, (.a)

q =
√

νux. (.b)

Then the semi-discrete LDG scheme is formulated as follows: find uh, qh ∈ V k
h such that

for any wh, vh ∈ V k
h

∫

Ij

(uh)tvh dx + f̂
(
u–

h , u+
h
)
v–

h
∣∣
j+/ – f̂

(
u–

h , u+
h
)
v+

h
∣∣
j–/ –

∫

Ij

f (uh)(vh)x dx

=
√

ν

(
q̂hv–

h
∣∣
j+/ – q̂hv+

h
∣∣
j–/ –

∫

Ij

qh(vh)x dx
)

, (.a)

∫

Ij

qhwh dx =
√

ν

(
ûhw–

h
∣∣
j+/ – ûhw+

h
∣∣
j–/ –

∫

Ij

uh(wh)x dx
)

, (.b)

where f̂ (a, b) is usually a monotone flux, which satisfies:
• f̂ (a, b) is consistent with the physical flux f , namely f̂ (p, p) = f (p).
• f̂ (a, b) is a Lipschitz continuous function in both arguments.
• f̂ (a, b) is a nondecreasing function in a and a nonincreasing function in b.

Here ûh, q̂h are the alternating fluxes, of which we have two choices:

ûh = u–, q̂h = q+, (.)

ûh = u+, q̂h = q–. (.)

A new technique is necessary when the sign of the derivative of the convection term
changes. Hence we only consider the case of a sign-preserving derivative, which implies



Bi and Qian Journal of Inequalities and Applications  (2017) 2017:223 Page 4 of 20

that we could use the upwind flux. We have

f̂
(
p–

h , p+
h
)

=

⎧
⎨

⎩
f (p–

h ), f ′(ph) ≥ ,
f (p+

h), f ′(ph) < .

2.2 Norms
In this subsection, we give some norms used in this paper. We denote the standard L

norm on Ij by ‖ · ‖Ij . Then the norm of Sobolev space Hl(Ij) is defined as

‖u‖l,Ij =
{ ∑

≤α≤l

∥∥Dαu
∥∥

Ij

}/

,

where l is a natural number and Dα is the αth-order spatial derivative operator.
We denote the norm of Hl

h by

‖u‖l =

{ N∑

j=

‖u‖
l,Ij

}/

.

For convenience, we set ‖ · ‖ = ‖ · ‖. Moreover, the L∞ norm of the whole computational
domain is

‖u‖∞ = max
≤j≤N

‖u‖∞,Ij ,

where ‖u‖∞,Ij is the standard L∞ norm on Ij. The norm on the boundary of Ij is defined
as

‖u‖∂Ij =
{(

u–
h
)

j+/ +
(
u+

h
)

j–/

}/.

Then we have

‖u‖∂Ih =

{ N∑

j=

‖u‖
∂Ij

}/

.

2.3 Properties of the finite element space
We first present the Gauss-Radau projections, from Hk+

h into V k
h , which are denoted by

P–
h and P+

h . If k ≥ , we define the P–
h u to be the projection of u into V k

h , such that for any Ij

∫

Ij

(
u – P–

h u
)
vh dx = , ∀vh ∈ Pk–(Ij), (.a)

P–
h u

(
x–

j+/
)

= u–
j+/. (.b)

In addition, we define P+
h u as

∫

Ij

(
u – P+

h u
)
vh dx = , ∀vh ∈ Pk–(Ij), (.a)

P+
h u

(
x+

j–/
)

= u+
j–/, (.b)

for any Ij.
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We denote the projection error (u – P–
h u) or (u – P+

h u) by ηu. Thanks to the standard
approximation theory [], it is easy to obtain the following approximation property. Sup-
pose u(x) ∈Hk+(Ij) and is sufficiently smooth. Then we have

‖ηu‖Ij + h/‖ηu‖∞,Ij + h/‖ηu‖∂Ij ≤ Chk+
j , (.)

where C is a positive constant independent of hj.
Here and below, we use C to denote the corresponding constant of the estimate for

projection errors. Now we turn to the three inverse properties of the finite element space
V k

h . For any vh ∈ V k
h , there exists a positive constant μ independent of h and j, such that

∥∥(vh)x
∥∥

Ij
≤ μh–‖vh‖Ij , (.a)

‖vh‖∂Ij ≤ μh–/‖vh‖Ij , (.b)

‖vh‖∞,Ij ≤ μ–/h–/‖vh‖Ij . (.c)

For more details on these inverse properties, we refer the reader to [].

2.4 Initial projection
In order to complete the proof, an initial condition compatible with the superconvergence
order would be constructed with care. Fortunately, a (k + /)th-order initial condition Ph

presented in [] is valid in our proof, that is, for any function u, Phu ∈ V k
h . Moreover, we

suppose qh ∈ V k
h is the unique solution to

∫

Ij

qhwh dx = (Phu)–
h w–

h
∣∣
j+/ – (Phu)–

h w+
h
∣∣
j–/ –

∫

Ij

Phuh(wh)x dx,

for any Ij. Also, we require

∫

Ij

(
P–

h u – Phu
)
vh dx =

∫

Ij

(
P+

h q – qh
)
vh dx, ∀vh ∈ Pk–(Ij), (.)

(u – Phu)–
j+/ = (q – qh)+

j+/. (.)

We would like to remark that Ph exists and is unique. Moreover, we have the following
estimate:

∥∥P–
h u – Phu

∥∥ ≤ CIPhk+/, (.)

where CIP = CIP(‖u‖k+,λ) is a positive constant.

3 Superconvergence
In this section, we will give the main proof of superconvergence. Similar to [], we assume
that the exact solution u(x, t) is sufficiently smooth. We have

‖u‖k+,‖u‖k+,‖ut‖k+,‖utt‖k+ ≤ S, (.)
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where S is a constant independent of t and h. Also, the flux function f is smooth enough,
for example f ∈ C, and its derivatives are bounded on R. We have

∣∣f ′(p)
∣∣,

∣∣f ′′(p)
∣∣,

∣∣f ′′′(p)
∣∣ ≤ Cm, ∀p ∈ R. (.)

We would like to remark that this assumption is reasonable with the original or a suitably
modified flux f , if we only consider the smooth solution. See for more details [].

Without loss of generality, we assume f ′ >  and ν = . Then the fluxes are chosen as

f̂
(
u–

h , u+
h
)

= f
(
u–

h
)
, ûh = u–

h , q̂h = q+
h . (.)

For ease of notation, we denote the error between the exact solution u and the numerical
solution uh by eu = u – uh. Also, we set

ξu = P–
h u – uh = eu – ηu,

ξq = P+
h q – qh = eq – ηq.

Next, we will introduce three operators, namely,

H–
j (w, v) =

∫

Ij

wvx dx – w–v–∣∣
j+/ + w–v+∣∣

j–/,

H+
j (w, v) =

∫

Ij

wvx dx – w+v–∣∣
j+/ + w+v+∣∣

j–/,

Kj(w, v) =
∫

Ij

f (w)vx dx – f
(
w–)

v–∣∣
j+/ + f

(
w–)

v+∣∣
j–/.

When the fluxes (.) are used, we rewrite (.a)-(.b) as

∫

Ij

(uh)tvh dx – Kj(uh, vh) = –H+
j (qh, vh), (.a)

∫

Ij

qhwh dx = –H–
j (uh, wh). (.b)

For u, q are exact solutions, we get a similar system to (.a)-(.b), which is

∫

Ij

utvh dx – Kj(u, vh) = –H+
j (q, vh), (.a)

∫

Ij

qwh dx = –H–
j (u, wh). (.b)

Then we obtain the error equations

∫

Ij

(eu)tvh dx = Kj(u, vh) – Kj(uh, vh) – H+
j (eq, vh), (.a)

∫

Ij

eqwh dx = –H–
j (eu, wh). (.b)
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Due to the properties of Gauss-Radau projections and summing (.a)-(.b) over j, we
obtain

∫

�

(eu)tvh dx = K(u, vh) – K(uh, vh) – H+(ξq, vh), (.a)
∫

�

eqwh dx = –H–(ξu, wh), (.b)

where K =
∑N

j= Kj and H± =
∑N

j= H±
j .

Now we turn to an investigation of the properties of H±(·, ·) and K(·, ·). By integrating
by parts, we get

H–
j (w, v) = –

∫

Ij

wxv dx – [w]j–/v+
j–/, (.)

H+
j (w, v) = –

∫

Ij

wxv dx – [w]j+/v–
j+/. (.)

Under the periodic conditions, we have the following equation:

H–(w, v) + H+(v, w) = , (.)

whose proof is straightforward.
For the nonlinear part, the derivation of the estimate is a little involving. We would like

to remark that the following estimate inequality is not the final form, since we will adjust
it further to obtain the suitable form in different proofs.

Lemma  Under the assumptions (.) and (.), we have the following estimate of the
nonlinear part. For any vh ∈ V k

h ,

∣∣K(u, vh) – K(uh, vh)
∣∣ ≤ Cf h‖ηu‖

∥∥(vh)x
∥∥ + Cf

(‖ξq‖ + ‖ξu‖ + h–‖eu‖∞‖eu‖
)‖vh‖

+
N∑

j=

∣∣∣∣f
′(uj–/)

∫

Ij

ηqvh dx
∣∣∣∣, (.)

where Cf is a constant dependent on |f ′|, |f ′′|, μ and the exact solution u, but independent
of h.

Proof We begin with using the second-order Taylor expansion with respect to the vari-
able u. We have

f (u) – f (uh) = f ′(u)ηu + f ′(u)ξu –



Rf e
u, (.)

f (u) – f
(
u–

h
)

= f ′(u)ξ–
u + f ′(u)η–

u –



R̃f
(
e–

u
), (.)

where

Rf = f ′′(αu + ( – α)uh
) (

α ∈ (, )
)
,

R̃f = f ′′(α̃u + ( – α̃)u–
h
) (

α̃ ∈ (, )
)
.
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We remark that we have removed the subscript (j + /) in (.) for notational conve-
nience.

Noting that (η–
u )j+/ = , we divide (K(u, vh) – K(uh, vh)) into three parts. We have

∣∣K(u, vh) – K(uh, vh)
∣∣ ≤ |� + � + �|
≤ |�| + |�| + |�|,

where

� =
N∑

j=

∫

Ij

f ′(u)ηu(vh)x dx,

� =
N∑

j=

∫

Ij

f ′(u)ξu(vh)x dx – f ′(u)ξ–
u v–

h
∣∣
j+/ + f ′(u)ξ–

u v+
h
∣∣
j–/,

� = –



( N∑

j=

∫

Ij

Rf e
u(vh)x dx – R̃f

(
e–

u
)v–

h
∣∣
j+/ + R̃f

(
e–

u
)v+

h
∣∣
j–/

)

.

We will estimate these three parts below:
• The estimate of |�|.

Due to property (.a)-(.b), we have

� =
N∑

j=

∫

Ij

(
f ′(u) – f ′(uj)

)
ηu(vh)x dx.

For |f ′′| is bounded, it is easy to show that |f ′(u) – f ′(uj)| ≤ Cf h. Then we employ the
Cauchy-Schwarz inequality to obtain

|�| ≤ Cf h‖ηu‖
∥∥(vh)x

∥∥. (.)

• The estimate of |�|.
Proceeding as in the estimate of |�|, we split the integration into two parts. We

have

� =
N∑

j=

∫

Ij

(
f ′(u) – f ′(uj–/)

)
ξu(vh)x dx

–
(
f ′(uj+/) – f ′(uj–/)

)
ξ–

u v–
h
∣∣
j+/

+ f ′(uj–/)
(∫

Ij

ξu(vh)x dx – ξ–
u v–

h
∣∣
j+/ + ξ–

u v+
h
∣∣
j–/

)
.

Noting that

∫

Ij

ξu(vh)x dx – ξ–
u v–

h
∣∣
j+/ + ξ–

u v+
h
∣∣
j–/ = –

∫

Ij

eqvh dx,
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with straightforward application of the Cauchy-Schwarz inequality and using
properties (.a) and (.c), we obtain

|�| ≤
N∑

j=

Ch‖ξu‖Ij

∥∥(vh)x
∥∥

Ij
+

∣∣f ′(uj–/)
∣∣‖ξq‖Ij‖vh‖Ij

+
∣∣∣∣f

′(uj–/)
∫

Ij

ηqvh dx
∣∣∣∣ + Ch‖ξu‖∂Ij‖vh‖∂Ij

≤ Cf
(‖ξu‖ + ‖ξq‖

)‖vh‖ +
N∑

j=

∣∣∣∣f
′(uj–/)

∫

Ij

ηqvh dx
∣∣∣∣. (.)

• The estimate of |�|.
Applying the Cauchy-Schwarz inequality, we obtain

|�| ≤
N∑

j=

C‖eu‖∞‖eu‖Ij

∥∥(vh)x
∥∥

Ij
+ C‖eu‖∞‖eu‖∂Ij‖vh‖∂Ij

≤ C‖eu‖∞‖eu‖
∥∥(vh)x

∥∥ + C‖eu‖∞‖eu‖∂�‖vh‖∂�.

In accordance with properties (.b) and (.c), we have

|�| ≤ Cf h–‖eu‖∞‖eu‖‖vh‖. (.)

Collecting (.), (.) and (.), we obtain the estimate (.). �

We would like to remark that the estimate is also valid on each element Ij, though we
only present the result on the whole computational domain �. Now we move on to the
error estimate of semi-discrete LDG schemes.

Lemma  Suppose that u, q are the exact solutions of system (.a)-(.b), which are suffi-
ciently smooth, and that uh, qh are the solutions of (.a)-(.b). Under assumptions (.)
and (.), we have the following estimate:

d
dt

‖ξu‖ + ‖ξq‖ ≤ Cf (Cf +  + Ce)‖ξu‖ + Chk+, (.)

where Ce = h–‖eu‖∞ + h–‖eu‖∞ and C is a constant independent of h.

Proof Taking (vh, wh) = (ξu, ξq) and adding up (.a) and (.b), we have




d
dt

‖ξu‖ + ‖ξq‖ = K(u, ξu) – K(uh, ξu) –
∫

�

(ηu)tξu dx –
∫

�

ηqξq dx

– H+(ξq, ξu) – H–(ξu, ξq). (.)

We deduce from property (.) that

–H+(ξq, ξu) – H–(ξu, ξq) = ,
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which implies that




d
dt

‖ξu‖ + ‖ξq‖ ≤ ∣∣K(u, ξu) – K(uh, ξu)
∣∣ +

∣∣∣∣

∫

�

(ηu)tξu dx
∣∣∣∣ +

∣∣∣∣

∫

�

ηqξq dx
∣∣∣∣. (.)

On the other hand, plugging vh = ξu back into (.), applying the Cauchy-Schwarz in-
equality to the integration term and using property (.a), we obtain

∣∣K(u, ξu) – K(uh, ξu)
∣∣

≤ μCf ‖ηu‖‖ξu‖ + Cf
(‖ηq‖‖ξu‖ + ‖ξq‖‖ξu‖ + ‖ξu‖)

+ Cf h–‖eu‖∞‖eu‖‖ξu‖. (.)

Now we turn to the estimate of the last term on the right hand side of (.), as follows:

h–‖eu‖∞‖eu‖‖ξu‖ ≤ h–‖eu‖∞
(‖ηu‖ + ‖ξu‖

)‖ξu‖
≤ h–‖eu‖∞‖ξu‖ + Chk‖eu‖∞‖ξu‖

≤ 

C

hk+ + Ce‖ξu‖, (.)

where Ce = h–‖eu‖∞ + h–‖eu‖∞. In the first step, we use the triangle inequality and prop-
erty (.). The proof of the last step is an application of Young’s inequality. Then we employ
property (.) and Young’s inequality to get

K(u, ξu) – K(uh, ξu) ≤ CKhk+ +



‖ξq‖ + Cf (Cf +  + Ce)‖ξu‖, (.)

where CK = 
μCf C

 + 
Cf C

 . Finally, applying property (.), the Cauchy-Schwarz in-
equality and Young’s inequality, we have

∣∣∣∣

∫

�

(ηu)tξu dx
∣∣
∣∣ +

∣∣
∣∣

∫

�

ηqξq dx
∣∣
∣∣ ≤ Chk+(‖ξu‖ + ‖ξq‖

)

≤ C̃hk+ + Cf ‖ξu‖ +



‖ξq‖. (.)

Collecting (.) and (.), we arrive at (.). We thus finish our demonstration. �

To estimate ‖eu‖ and ‖eq‖, we would like to follow [] to make the a priori assumption
that, if h is sufficiently small, we have

‖ξu‖ ≤ h. (.)

It follows from property (.c), property (.) and the triangle inequality that

‖eu‖ ≤ (C + )h, ‖ξu‖∞ ≤ μ/h/, ‖eu‖∞ ≤ (
C + μ–/)h/. (.)

We will verify (.) at the end of this paper.
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If assumption (.) is true, then there exists a positive constant δ such that

Ce = h–‖eu‖∞ + h–‖eu‖
∞ ≤ δ, (.)

which implies that

d
dt

‖ξu‖ + ‖ξq‖ ≤ Ĉ‖ξu‖ + Chk+, (.)

where Ĉ = Cf (Cf +  + δ).
By using the Gronwall inequality and the triangle inequality, we obtain the error estimate

as follows:

‖ξu‖ ≤ Chk+, ‖eu‖ ≤ Chk+, ‖eq‖ ≤ Chk+, (.)

where C is a constant associated with |f ′|, |f ′′|, μ, the exact solution u and the final time T .
In addition, we give a lemma to estimate ‖(eu)t‖, which will be proved in the Appendix.

Lemma  Under the assumptions (.), (.) and (.), we have the following estimate:

∥∥(eu)t
∥∥ ≤ Chk+. (.)

Next we will present a crucial lemma which will be used to derive the superconvergence.

Lemma  Suppose assumptions (.), (.) and (.) are true. Then we have the following
inequalities:

∥∥(ξu)x
∥∥

Ij
≤ Cs‖eq‖Ij , (.)

∥∥(ξq)x
∥∥

Ij
≤ Cs

(‖ηu‖Ij + ‖ηq‖Ij +
∥∥(eu)t

∥∥
Ij

+ ‖ξq‖Ij + ‖ξu‖Ij + ‖eu‖Ij

)
, (.)

where Cs is a constant independent of h.

Proof The first inequality is the same as Lemma . given in [], so only the second in-
equality will be proved. Applying property (.) to equation (.a), we get

∫

Ij

(ξq)xvh dx + [ξq]v–
h
∣∣
j+/ =

∫

Ij

(eu)tvh dx – Kj(u, vh) + Kj(uh, vh)

≤
∣∣∣∣

∫

Ij

(eu)tvh dx
∣∣∣∣ +

∣∣Kj(u, vh) – Kj(uh, vh)
∣∣. (.)

According to properties (.) and (.), we have

∣∣Kj(u, vh) – Kj(uh, vh)
∣∣ ≤ C

(‖ηu‖Ij + ‖ηq‖Ij + ‖ξq‖Ij + ‖ξu‖Ij + ‖eu‖Ij

)‖vh‖Ij . (.)

Using the Cauchy-Schwarz inequality and property (.) yields
∣∣∣∣

∫

Ij

(ξq)xvh dx + [ξq]v–
h
∣∣
j+/

∣∣∣∣

≤ C̃
(‖ηu‖Ij + ‖ηq‖Ij +

∥∥(eu)t
∥∥

Ij
+ ‖ξq‖Ij + ‖ξu‖Ij + ‖eu‖Ij

)‖vh‖Ij . (.)
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We follow [] to take

vh|Ij = (ξq)x –
(
ξ–

q
)

j+/L
(

x – xj

hj

)
,

where L(x) is the kth-order Legendre polynomial on [–, ]. Then we obtain

∥∥(ξq)x
∥∥

Ij
≤ Cs

(‖ηu‖Ij + ‖ηq‖Ij +
∥∥(eu)t

∥∥
Ij

+ ‖ξq‖Ij + ‖ξu‖Ij + ‖eu‖Ij

)
. (.)

�

We are now in a position to prove our theorem.

Theorem  Suppose that u, q are the exact solutions of (.a)-(.b), which are sufficiently
smooth, and that uh, qh are the solutions of (.a)-(.b). We also assume that f ∈ C and
|f ′|, |f ′′|, |f ′′′| are bounded on R. The initial projection is chosen asPh and the fluxes (.) are
used in (.a)-(.b). For regular triangulations of � = [, π ], if the piecewise polynomial
space V k

h (k ≥ ) is chosen to be the finite element space, there exists a positive constant h,
such that, for any h < h, we have

‖ξu‖ ≤ C∗hk+/, (.)

where the positive constant C∗ is independent of h, but maybe depends on u, f and T .

Proof Recall inequality (.). To obtain the half-order increase, we shall use Lemma  to
estimate the first term on the right side of (.). We have

Cf h‖ηu‖ · ∥∥(ξu)x
∥∥ ≤ CCf Cshk+‖eq‖. (.)

Set ξ̄
j
u = 

hj

∫
Ij
ξu dx. Then, according to the orthogonality of the Gauss-Radau projection,

we get

N∑

j=

∣∣∣∣f
′(uj–/)

∫

Ij

ηqξu dx
∣∣∣∣ =

N∑

j=

∣∣∣∣f
′(uj–/)

∫

Ij

ηq
(
ξu – ξ̄ j

u
)

dx
∣∣∣∣

≤ Cm

N∑

j=

‖ηq‖Ij

∥∥ξu – ξ̄ j
u
∥∥

Ij

≤ Cm

N∑

j=

h‖ηq‖Ij

∥∥(ξu)x
∥∥

Ij

≤ hCmCs

N∑

j=

‖ηq‖Ij‖eq‖Ij

≤ CCmCshk+‖eq‖. (.)

It is a simple application of the Cauchy-Schwarz inequality to obtain the second inequal-
ity. The third one follows from the Poincaré inequality. Applying Lemma , the Cauchy-
Schwarz inequality and property (.), we arrive at the last two inequalities.
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Collecting (.), (.) and (.) and using Young’s inequality, we obtain

∣∣K(u, ξu) – K(uh, ξu)
∣∣ ≤ 


Cf C

hk+ + Cqhk+‖eq‖ +



‖ξq‖ + Cu‖ξu‖, (.)

where Cq = (CCf Cs + CCmCs), Cu = Cf (Cf +  + Ce) and Ce = (h–‖eu‖∞ + h–‖eu‖∞).
The estimates of the remaining two arguments are quite similar to (.), so we only

present the results as follows:

∫

�

(ηu)tξu dx ≤ CCshk+‖eq‖, (.)
∫

�

ηqξq dx ≤ CCshk+(‖ηu‖ + ‖ηq‖ +
∥∥(eu)t

∥∥ + ‖ξu‖ + ‖eu‖
)

+



‖ξq‖ + C
C

s hk+. (.)

According to Lemma  and estimate (.), we have

d
dt

‖ξu‖ + ‖ξq‖ ≤ Cf (Cf +  + Ce)‖ξu‖ + Chk+. (.)

Recalling estimate (.), we obtain

d
dt

‖ξu‖ + ‖ξq‖ ≤ C̄‖ξu‖ + Chk+, (.)

where C , C̄ are constants independent of h.
Integrating with respect to t, it follows from Gronwall’s inequality and the estimate of

the initial projection that

‖ξu‖ ≤ C∗hk+/. (.)

Finally, we will verify the a priori assumption (.) to complete our demonstration. We
first mention that there exists a positive h, for any h < h, such that C∗hk+/ < 

 h and
CIPhk+/ < 

 h, where C is the constant in (.) and CIP is the constant in (.). Then,
when t = , for any h < h, we have

∥∥ξu(·, )
∥∥ ≤ CIPhk+/ <




h < h. (.)

We now define

M =
{

s ∈ [, T] :
∥∥ξu(·, t)

∥∥ ≤ h, t ∈ [, s]
}

. (.)

For M not empty, we denote the supremum value of M by tsup. If tsup < T , it follows from
the continuity of ‖ξu(·, t)‖ that

∥∥ξu(·, tsup)
∥∥ = h. (.)
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Then we actually have

∥∥ξu(·, tsup)
∥∥ ≤ Chk+/ <




h < h, (.)

which is a contradiction to (.). Hence, we have tsup = T , which justifies the a priori
assumption (.). Thus we finish our proof. �

4 Numerical experiments
In this section, we will give some numerical results to support our theorems. In all exper-
iments, the time discretization is the third-order IM-EX Runge-Kutta scheme []. The
time steps are chosen to be τ = .h in the piecewise linear polynomial case and τ = .h
when the quadrature piecewise polynomials are used. Especially, we use more restrictive
time steps, say τ = .h, to demonstrate that smaller time steps lead to better super-
convergence results, when the final time is .. The initial projections are the particular
projections Ph used in the proof. The following three examples have the same exact solu-
tion

u(x, t) = exp(–.t) sin(x). (.)

4.1 Example 1
We first consider the following equation with periodic boundary condition:

ut +
(
u/

)
x = .uxx + exp(–.t) sin(x) cos(x), x ∈ [, π ],

u(x, ) = sin(x).
(.)

In this case, f ′ = u > , which implies that we can use upwind fluxes. In Table  and Table ,
we present the L errors of eu and ξu and their orders on a nonuniform mesh, which is a
% random perturbation of the uniform mesh, at the final time T =  in the P piecewise
polynomial case and the final time T = . in the P piecewise polynomial case, respec-
tively.

Table 1 The L2 errors and the order of the LDG method with the piecewise P1 space at T = 1

N eu ξu

L2 error Order L2 error Order

10 0.0283 - 0.0030 -
20 0.0073 1.9485 3.7684e-04 2.9757
40 0.0018 2.0136 5.4173e-05 2.9889
80 4.7371e-04 1.9365 7.2521e-06 2.9011

Table 2 The numerical results of the LDG method with the piecewise P2 space at T = 0.1

N eu ξu

L2 error Order L2 error Order

10 0.00168 - 5.2129e-04 -
20 1.9712e-04 3.0985 3.1025e-05 4.0705
40 2.4428e-05 3.0124 2.0038e-06 3.9526
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Table 3 The numerical results of the LDG method with the piecewise P1 space at the final
time T = 1

N eu ξu

L2 error Order L2 error Order

10 0.0337 - 0.0057 -
20 0.0071 2.2469 7.9057e-04 2.8560
40 0.0018 2.0580 8.4326e-05 2.6283
80 4.6624e-04 1.9272 1.0537e-05 3.0005

Table 4 The numerical results of the LDG method with the piecewise P2 space at the final
time T = 0.5

N eu ξu

L2 error Order L2 error Order

10 0.0018 - 6.5777e-04 -
20 1.9464e-04 2.9438 5.3149e-05 3.6295
40 2.3866e-05 3.0277 3.3170e-06 3.8606

4.2 Example 2
We take the equation

ut +
(
.u)

x = .uxx + . exp(–t) sin(x), x ∈ [–π ,π ],

u(x, ) = sin(x),
(.)

of which the flux function changes its sign on the computational domain. Hence, we use
the Godunov flux in this example. The numerical results on the nonuniform mesh, which
is a % random perturbation of the uniform mesh, are presented by Table  and Table ,
which imply that the superconvergence property is still valid in the case that the flux func-
tion is not sign preserving.

4.3 Example 3
In this example, we take an equation with a non-polynomial flux function. We have

ut +
(
exp(u)

)
x

= .uxx + exp
(
exp(–.t) sin(x)

)
exp(–.dt) cos(x), x ∈ [, π ],

u(x, ) = sin(x).

(.)

The boundary condition is a periodic boundary condition. The mesh is also a % random
perturbation of the uniform mesh. It results from Table  and Table  that the supercon-
vergence property is true for a strong nonlinear flux function.

5 Conclusion
In this paper, we investigate the superconvergence of the LDG method for nonlinear
convection-diffusion problems. The order of the superconvergence of the LDG method
with Pk (k ≥ ) piecewise polynomial as the finite element space is proved to be the
(k + /)th-order when the fluxes are upwind fluxes and alternating fluxes. The numer-
ical experiments demonstrate that the superconvergence property is valid for general flux
functions.
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Table 5 The numerical results of the LDG method with the piecewise P1 at the final time T = 1

N eu ξu

L2 error Order L2 error Order

10 0.0252 - 0.0031 -
20 0.0072 1.8027 4.3012e-04 2.8375
40 0.0018 2.0197 5.2154e-05 3.2029
80 4.4483e-04 2.0049 7.0841e-06 2.8801

Table 6 The numerical results of the LDG method with the piecewise P2 at the final time T = 1

N eu ξu

L2 error Order L2 error Order

10 0.0016 - 4.2441e-04 -
20 1.9520e-04 3.0909 3.0008e-05 3.7303
40 2.5205e-05 2.9531 2.2068e-06 3.7653

Future work includes the study of superconvergence of the LDG method for the nonlin-
ear equations with high-order spatial derivatives in -D. The superconvergence properties
of general monotone numerical flux will also be considered.

Appendix
In the appendix, we will give the proof of Lemma , which is the estimate of ‖(eu)t‖.

Proof We begin by estimating ‖(ξu)t(·, )‖. We deduce from (.) and (.) that

–H+
j
(
ξq(·, ), vh

)
= –H–

j
(
ξu(·, ), vh

)
=

∫

Ij

eq(·, )vh dx. (A.)

When t = , (.a) actually holds. If vh = (ξu)t , then we have

∥∥(ξu)t(·, )
∥∥ = –

∫

�

(ηu)t(ξu)t dx – K
(
u, (ξu)t

)

+ K
(
uh, (ξu)t

)
+

∫

�

eq(ξu)t dx. (A.)

If assumption (.) holds true, we employ Lemma , the Cauchy-Schwarz inequality and
estimate (.) to obtain

∥∥(ξu)t(·, )
∥∥ ≤ Chk+. (A.)

Differentiating (.a)-(.b) with respect of t, we get

∫

�

(eu)ttvh dx = NL(u, uh, vh) – H+(
(ξq)t , vh

)
, (A.a)

∫

�

(eq)twh dx = –H–(
(ξu)t , wh

)
, (A.b)
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where

NL(u, uh, vh) =
N∑

j=

∫

Ij

∂t
(
f (u) – f (uh)

)
(vh)x dx – ∂t

(
f (u) – f

(
u–

h
))

v–
h
∣∣
j+/

+ ∂t
(
f (u) – f

(
u–

h
))

v+
h
∣∣
j–/.

Substituting (vh, wh) = ((ξu)t , (ξq)t) into (A.a)-(A.b) and applying property (.) gives




d
dt

∥∥(ξu)t
∥∥ +

∥∥(ξq)t
∥∥ ≤ ∣∣NL

(
u, uh, (ξu)t

)∣∣ +
∣∣∣∣

∫

�

(ηu)tt(ξu)t dx
∣∣∣∣

+
∣∣∣∣

∫

�

(ηq)t(ξq)t dx
∣∣∣∣. (A.)

We now turn to an estimate of |NL(u, uh, (ξu)t)|. The process is similar to Lemma ,
except for the fact that we use the second-order Taylor expansion, whose remainder is of
the integral form, to deal with ∂t(f (u) – f (uh)). We have

∂t
(
f (u) – f (uh)

)
= ∂t f ′(u)ηu + f ′(u)(ηu)t + ∂t f ′(u)ξu

+ f ′(u)(ξu)t – ∂tIR(eu) – IReu(eu)t

= θ + θ + · · · + θ,

∂t
(
f (u) – f

(
u–

h
))

= ∂t f ′(u)η–
u + f ′(u)

(
η–

u
)

t + ∂t f ′(u)ξ–
u

+ f ′(u)
(
ξ–

u
)

t – ∂t ĨR
(
e–

u
) – ĨRe–

u
(
e–

u
)

t

= σ + σ + · · · + σ,

where

IR =
∫ 


( – β)f ′′(βu + ( – β)uh

)
dβ ,

ĨR =
∫ 


( – β̃)f ′′(β̃u + ( – β̃)u–

h
)

dβ̃ .

Then we set

∣∣NL
(
u, uh, (ξu)t

)∣∣ =

∣∣∣∣∣

∑

i=

( N∑

j=

∫

Ij

θi
(
(ξu)t

)
x dx – σi(ξu)–

t
∣∣
j+/ + σi(ξu)+

t
∣∣
j–/

)∣∣∣∣∣

= |� + � + � + � + � + �|.

We are now ready to estimate each part:
• Noting the properties of the Gauss-Radau projection, we have

σ(xj+/) = . (A.)
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Then

|�| =

∣∣∣∣∣

N∑

j=

∫

Ij

(
∂t f ′(u) – ∂t f ′(uj)

)
ηu

(
(ξu)t

)
x dx

∣∣∣∣∣

≤ C‖ηu‖
∥∥(ξu)t

∥∥

≤ Chk+ + C
∥∥(ξu)t

∥∥. (A.)

• If we do what we did in (A.) and (A.), we obtain

|�| ≤ Chk+ + C
∥∥(ξu)t

∥∥. (A.)

• Dividing the integration into two parts gives

|�| =

∣∣∣∣∣

N∑

j=

∫

Ij

(
∂t f ′(u) – ∂t f ′(uj–/)

)
ξu

(
(ξu)t

)
x dx

–
(
∂t f ′(uj+/) – ∂t f ′(uj–/)

)
ξ–

u
(
ξ–

u
)

t

∣∣
j+/

+ ∂t f ′(uj–/)
{∫

Ij

ξu
(
(ξu)t

)
x dx – ξ–

u
(
ξ–

u
)

t

∣∣
j+/ + ξ–

u
(
ξ+

u
)

t

∣∣
j–/

}∣∣∣∣∣

≤ Ch‖ξu‖ · ∥∥(
(ξu)t

)
x

∥∥ + Ch‖ξu‖∂�

∥∥(ξu)t
∥∥

∂�
+ C‖eq‖ · ∥∥(ξu)t

∥∥

≤ Chk+∥∥(ξu)t
∥∥

≤ Chk+ + C
∥∥(ξu)t

∥∥. (A.)

In the second inequality, we use the Cauchy-Schwarz inequality. Using properties
(.a) and (.b), we get the final step.

• Similar to the process of (A.), we obtain

|�| ≤
∣∣∣∣
∣

N∑

j=

∫

Ij

(
f ′(u) – f ′(uj–/)

)
(ξu)t

(
(ξu)t

)
x dx + f ′(uj–/)

∫

Ij

(eq)t(ξu)t dx

+
(
f ′(uj–/) – f ′(uj+/)

)(
ξ–

u
)

t

∣∣
j+/

∣∣∣∣∣

≤ C
∥∥(ξu)t

∥∥ +



∥∥(ξq)t
∥∥ + Chk+. (A.)

• If we do what we did for the estimate of |�|, we obtain

|�| ≤ Ch–‖eu‖∞‖eu‖
∥∥(ξu)t

∥∥

≤ Chk‖eu‖∞
∥∥(ξu)t

∥∥

≤ Chk+ + h–‖eu‖
∞

∥∥(ξu)t
∥∥, (A.)

|�| ≤ Ch–‖eu‖∞
∥∥(eu)t

∥∥∥∥(ξu)t
∥∥

≤ Chk‖eu‖∞
∥
∥(ξu)t

∥
∥ + Ch–‖eu‖∞

∥
∥(ξu)t

∥
∥

≤ Chk+ + C
(
h–‖eu‖∞ + h–‖eu‖

∞
)∥∥(ξu)t

∥∥. (A.)
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Hence, we get




d
dt

∥∥(ξu)t
∥∥ +

∥∥(ξq)t
∥∥ ≤ Chk+ + C

(
 + h–‖eu‖∞ + h–‖eu‖

∞
)∥∥(ξu)t

∥∥. (A.)

Following estimate (.), Gronwall’s inequality and the triangle inequality, we complete
the proof. �
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