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Abstract
The main goal of this paper is to estimate the Hölder norm of a fractal version of the
Hilbert transform in the Douglis analysis context acting from Hölder spaces of Douglis
algebra valued functions defined on h-summable curves.
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1 Introduction
Douglis analysis is an alternative approach to complex methods for the investigation of
linear and uniformly elliptic systems of n equations for n desired real-valued functions.

The function theory associated with the Douglis operator inR
 (identifyingR withC in

the usual way) plays a very important role in problems in pure mathematics, mathematical
physics, and engineering, such as plane elasticity theory and hydromechanics.

The well-known Douglis system, that is, an elliptic system of first order in two inde-
pendent variables, can be represented by a single “hypercomplex” equation. Solutions of
such equation (null solutions of the Douglis system) are termed hyperanalytic functions.
In [] Douglis presented a complete study of the hyperanalytic function theory. For greater
details the reader is directed to [] and to [] for a thorough treatment of this theory.

In more recent times hyperanalytic function theory has been developed for solving
problems of mathematical physics such as plate and shell problems. In [, ] the authors
provided conditions for the solvability of the Riemann boundary value problem for hy-
peranalytic functions on classes of fractal closed curves. Hence, this can be regarded of
as a good motivation for finding conditions on the boundary, which give boundedness
of certain singular integral operators, such as the Hilbert transform when the boundary
is permitted to be fractal. To this end, in [] the authors gave an estimate for the upper
bound of the Hölder norm a fractal version of the Hilbert transform for domains with
d-summable boundary; a geometric notion introduced in [], which is essential for inte-
gration of a form over a fractal boundary.

Serving as a generalization of the concept of d-summability, the authors of [] proposed
a novel modification by the use of a gauge function (dimension function) in order to use
different functions of diameter. Explicit examples were given to illustrate how the notion
of h-summability can be applied to describe the geometry of a simply connected bounded
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open subset of the plane in a more delicate manner than the latter one. Several geometric
facts related to d-summable sets can be generalized to h-summable sets.

The present paper aims to give an explicit expression for the upper bound of the norm of
a fractal version of the Hilbert transform involving domains with h-summable boundary.
This makes our results much more general to that given in [].

2 Preliminaries
In this section we set up notation and terminology on Douglis analysis and fractal geom-
etry to be used throughout the paper.

2.1 Douglis algebras and hyperanalytic functions
We consider the Douglis algebra D generated by i and e, subjected to the multiplication
rules

i = –, e = , ie = ei, er = ,

where r is a positive integer.
Any arbitrary element a ∈D is a hypercomplex number of the form

a =
r–∑

k=

akek ,

where each ak is a complex number, a is called the complex part of a and A =
∑r–

k= akek

the nilpotent part.
It is possible to introduce the conjugate element of a which is defined as

ā :=
r–∑

k=

ākek ,

and the norm of a is defined by ‖a‖ :=
∑r–

k= |ak|. Note that the Douglis algebra is commu-
tative and associative.

The multiplicative inverse a– of a with complex part a �=  is given by

a– = a–


r–∑

k=

(–)k
(

A
a

)k

.

Observe that if a = , then a does not have multiplicative inverse and is called nilpotent.
The Douglis analysis is then the study of the Douglis algebra valued functions. Let f be a
D-valued function (hypercomplex function) then f may be written as f =

∑r–
k= fkek , where

fk are complex-valued functions.
The Douglis operator ∂

J
z̄ is given by

∂
J
z̄ := ∂z̄ + J(z)∂z, z = x + iy,

where J(z) is a known nilpotent hypercomplex function and

∂z̄ :=



(∂x + i∂y), ∂z :=



(∂x – i∂y).



Peña Pérez et al. Journal of Inequalities and Applications  (2017) 2017:213 Page 3 of 11

Suppose � ∈C to be a domain, a smooth hypercomplex function f defined in � is said to
be hyperanalytic in � if ∂

J
z̄ f =  in �. As an example for hyperanalytic function we take

the generating solution of the Douglis operator, see [, Section , p.], given by

W (z) = z +
r–∑

k=

Wk(z)ek ,

where its nilpotent part posses bounded and continuous derivate up to order two in C.
Other important example for hyperanalytic function is the so-called hypercomplex
Cauchy kernel, i.e., the fundamental solution of the Douglis operator, given by

ez(ζ ) :=


π

∂ζ W (ζ )
W (ζ ) – W (z)

, ζ �= z.

The singularity of ez(ζ ) at ζ = z is the same as 
ζ–z .

We continue this section by compiling some of the important facts of fractal geometry.

2.2 Summable sets in C

By definition, presented in [], a set E ⊂ R
 is said to be d-summable if the improper

integral

∫ 


NE(t)td– dt,

converges, where NE(t) stands for the least number of t-balls needed to cover E.
A quite natural generalization, inspired by the idea of a gauge function (dimension func-

tion), may be obtained by the use of different functions of diameter than just td and re-
quiring the convergence of the corresponding improper integral.

Let E be an arbitrary bounded subset of R, whose diameter will be denoted by |E|.

Definition  ([, Definition ]) Let h be a finite, positive, non-decreasing function in
(, +∞) with limt→+ h(t) = . The set E is said to be h-summable if the improper inte-
gral

∫ δ


NE(t)

h(t)
t

dt

converges, for some δ > .

The notion of h-summable set remains unchanged if NE(t) is taking as the number of
k-squares needed to cover E with –k ≤ t < –k+. A square Q is called a k-square if it is of
the form

[l–k , (l + )–k] × [
l–k , (l + )–k],

where k, l, l are integers.
Of course, E is d-summable if it is h-summable with h(t) = td . Several geometric facts

related to d-summable sets can be generalized to h-summable sets; see [].
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In what follows, let � ⊂ C be a Jordan domain, the boundary of which is denoted by γ .
The following lemma is a generalization of that appeared in [] and reveals the specific
importance of the h-summability.

Lemma  ([, Lemma ]) If � is a Jordan domain of C and its boundary γ is h-summable,
then the expression s(h) :=

∑
Q∈W h(|Q|), called h-sum of the Whitney decomposition W of

�, is finite.

For further details of the Whitney decomposition we refer to []. We write s(d) instead
of s(h) =

∑
Q∈W |Q|d , when h(t) = td . If γ is a rectifiable curve, the following useful lemma

holds.

Lemma  ([, Lemma .]) If γ is a rectifiable curve with length l[γ ], then for every ε > 

s( + ε) ≤ c
l[γ ]
ε

. ()

Here and subsequently, c will denote a positive constant, not necessarily the same at
different occurrences.

2.3 Functional spaces in C

A positive real function φ defined in (, +∞), with limt→+ φ(t) =  is said to be a majorant
if φ(t) is non-decreasing and φ(t)

t is non-increasing.
If in addition

∫ δ



φ(t)
t

dt + δ

∫ ∞

δ

φ(t)
t dt ≤ cφ(δ),

for a suitable constant c = c(φ) and δ ∈ (, ), then we will say that φ belongs to the Bari-
Stechkin class 
.

Let us recall that a non-negative function φ is said to be almost increasing (or almost
decreasing) if there exists a constant c ≥  such that φ(x) ≤ cφ(y) for all x ≤ y (y ≤ x, re-
spectively). Note that functions of the form φ(t) = tα ,  < α < , belong to 
.

Remark  According to [, Lemma .] we can ensure that φ ∈ 
 if and only if there
exist numbers αφ , βφ in (, ) such that the functions φ(t)

tαφ and φ(t)
tβφ

are almost decreasing
and almost increasing in (, +∞], respectively.

Therefore, a constant c >  may be found to guarantee the relation

c–tαφ ≤ φ(t) ≤ ctβφ .

We will denote by Hϕ(E) the set of all generalized Hölder continuous hypercomplex
functions f for which

|f |ϕ,E := sup
x,y∈E,x �=y

‖f (x) – f (y)‖
ϕ(|x – y|) < ∞,

where ϕ ∈ 
. For example, ϕ(t) = tν , t ∈ (, |E|],  < ν ≤ , is a majorant and we have the
usual Hölder class Hν(E).
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One can define

‖f ‖ϕ,E := |f |ϕ,E + max
x∈E

∥∥f (x)
∥∥.

In closing this introductory section let us remember that a Whitney extension (see [])
of f ∈ Hϕ(E), E ⊂ C being compact, is a function E(f ) that belongs to Hϕ(C) and has
partial derivatives of all orders at any point z ∈ C \ E. Moreover, there exists a constant
c >  such that

∥∥∂
J
z̄E(f )(z)

∥∥ ≤ c|f |ϕ,E
ϕ(dist(z, E))

dist(z, E)
, z ∈C \ E. ()

Here and in the sequel we denote by dist(A, B) the distance between sets A and B.
If X (z) denotes the characteristic function of the set � ∪ γ , we shall write f ω(z) :=

X (z)E(f )(z).

3 The hypercomplex Cauchy type integral on h-summable curves
In this section we define and characterize the hypercomplex Cauchy type integral on h-
summable curves. This definition is inspired by the Borel-Pompeiu formula derived in
[, Theorem .]. We deal with an appropriate extension for hypercomplex functions f
defined on a h-summable curve γ , which is obtained by the Whitney extension operator
E.

Definition  Let ϕ ∈ 
 and � be a domain with h-summable boundary γ where h(t) =
ϕ(t)t, for t ∈ [, |γ |]. We define the Cauchy type integral of f ∈Hϕ(γ ) by the formula

(
C∗

γ f
)
(z) = f ω(z) – T�

[
∂

J
z̄Ef

]
(z), z ∈C \ γ , ()

where

T�

[
∂

J
z̄Ef

]
(z) :=

∫

�

ez(ζ )∂ J
ζ̄
E(f )(ζ ) dξ dη, ζ = ξ + iη.

The following proposition makes this definition legitimate.

Proposition  The hypercomplex function () is correctly defined for any z ∈C \ γ and its
value does not depend on the particular choice of E(f )

Proof It is enough to prove that

∫

�

∥∥∂
J
ζ
E(f )(ζ )

∥∥dξ dη < ∞.

We follow [] considering the Whitney decomposition of �, W =
⋃

k Wk , which consists
of disjoint squares Q satisfying

|Q| ≤ dist(Q,γ ) ≤ |Q|.
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Then we have
∫

�

∥∥∂
J
ζ
E(f )(ζ )

∥∥dξ dη =
∑

Q∈W

∫

Q

∥∥∂
J
ζ
E(f )(ζ )

∥∥dξ dη

≤ c
∑

Q∈W

∫

Q

(
dist(ζ ,γ )

)–
ϕ
(
dist(ζ ,γ )

)
dξ dη,

where the last inequality is a consequence of (). Taking account that ϕ(t)
t does not increase,

we have

ϕ(dist(ζ ,γ ))
dist(ζ ,γ )

≤ ϕ(dist(Q,γ ))
dist(Q,γ )

≤ ϕ(|Q|)
|Q| ()

for all ζ ∈ Q.
Consequently

∫

�

∥∥∂
J
ζ
E(f )(ζ )

∥∥dξ dη ≤ c
∑

Q∈W
ϕ
(|Q|)|Q| = c

∑

Q∈W
h
(|Q|) ≤ c.

At this stage we are reduced to Lemma , concerning the finiteness of the sum
∑

Q∈W h(|Q|).
Now suppose that E 

(f ) and E
 (f ) are two different Whitney extensions of f . Then

E(g) := E 
(f ) – E

 (f ), is a Whitney extension of the null function and hence E(g)|γ = . If
we prove that the hypercomplex function

gω(z) –
∫

�

ez(ζ )∂ J
ζ̄
E(g)(ζ ) dξ dη ()

vanishes in C \ γ , the assertion follows.
Define

�k =
{

x ∈ Q : Q ∈W j for some j ≤ k
}

and �k = �\�k . The boundary of �k , denoted by γk , is composed of certain sides of some
squares Q ∈Wk . We have

∫

�

ez(ζ )∂ J
ζ̄
E(g)(ζ ) dξ dη = lim

k→∞

(∫

�k

+
∫

�k

)
ez(ζ )∂ J

ζ̄
E(g)(ζ ) dξ dη. ()

Let z ∈ � and let k be so large chosen such that z ∈ �k and dist(z,γk) ≥ |Q| for k > k,
where Q is a square of Wk . By the Borel-Pompeiu formula we deduce

gω(z) –
∫

�k

ez(ζ )∂ J
ζ̄
E(g)(ζ ) dξ dη =

∫

γk

ez(ζ )nJ (ζ )gω(ζ ) ds, z ∈ �k , ()

where nJ (ζ ) = n(ζ ) + n(ζ )J(ζ ) being n(ζ ) the exterior unit normal vector at the point ζ on
γ in Federer’s sense (see []), and ds denotes the arclength differential.

Next, let ζ ∈ γk , Q ∈Wk a square containing ζ , and ζ∗ ∈ γ such that |ζ – ζ∗| = dist(ζ ,γ ).
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Since E(g)|γ = , we have

∥∥E(g)(ζ )
∥∥ =

∥∥E(g)(ζ ) – E(g)(ζ∗)
∥∥ ≤ cϕ

(|ζ – ζ∗|
) ≤ cϕ

(|Q|).

If � denotes a side of γk and Q ∈Wk is the k-square containing �, we have for k > k

∥∥∥∥
∫

�

ez(ζ )nJ (ζ )gω(ζ ) ds
∥∥∥∥ ≤ c

|Q|
∫

�

∥∥gω(ζ )
∥∥ds ≤ c

|Q|
ϕ(|Q|)
|Q|– .

As noticed before, each side of γk is one of those  of some Q ∈Wk . Therefore, for k > k

∥∥∥∥
∫

γk

ez(ζ )nJ (ζ )gω(ζ ) ds
∥∥∥∥ ≤ c

|Q|
∑

Q∈Wk

ϕ
(|Q|)|Q|.

The finiteness of
∑

Q∈W h(|Q|) [, Lemma ] implies that

lim
k→∞

∫

γk

ez(ζ )nJ (ζ )gω(ζ ) ds = .

Combining () with () shows that () vanishes for z ∈ �.
The same conclusion is obtained for z ∈ C \ {� ∪ γ }. The key idea is to note that

dist(z,γk) ≥ dist(z,γ ) for z ∈C \ {� ∪ γ }. �

A natural question to ask is whether C∗
γ f has a continuous extension to � ∪ γ . It is

generally a highly nontrivial question. However, on the positive side, the next theorem
sheds some light on the answer and one can therefore also introduce the following fractal
hypercomplex Hilbert transform:

(
H∗

γ f
)
(t) := 

(
C∗

γ
+f

)
(t) – f (t), t ∈ γ .

Here C∗
γ

+f denotes the trace on γ of the continuous extension of C∗
γ f to � ∪ γ . This ap-

proach is an alternative to the more conventional hypercomplex Hilbert transform, which
is defined to be the Cauchy principal value singular integral

(Hγ f )(t) :=
∫

γ

et(ζ )
(
f (ζ ) – f (t)

)
dζ + f (t), t ∈ γ .

Theorem  Let ϕ and ψ be given in 
 with αψ ≤ βϕ (see Remark ) and let γ be an h-
summable curve with h(t) = ϕ(t)pt–p for p = 

–αψ
. Then for any function f ∈ Hϕ(γ ) the

Cauchy type integral C∗
γ f has a continuous extension to � ∪ γ . Furthermore, H∗

γ f ∈Hψ (γ ).

Proof We have

∫

�

∥∥∂
J
ζ̄
E(f )(ζ )

∥∥p dξ dη =
∑

Q∈W

∫

Q

∥∥∂
J
ζ̄
E(f )(ζ )

∥∥p dξ dη

≤ c|f |pϕ,γ

∑

Q∈W

∫

Q

(
dist(ζ ,γ )–ϕ

(
dist(ζ ,γ )

))p dξ dη

by the Whitney extension theorem.
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Taking into account that ϕ(t)
t does not increase, then

(
dist(ζ ,γ )–ϕ

(
dist(ζ ,γ )

))p ≤ ϕ(|Q|)p

|Q|p

for all ζ ∈ Q.
Consequently

∫

�

∥∥∂
J
ζ̄
E(f )(ζ )

∥∥p dξ dη ≤ c|f |pϕ,γ

∑

Q∈W

ϕ(|Q|)p

|Q|p |Q| = c|f |pϕ,γ

∑

Q∈W
ϕ
(|Q|)p|Q|–p

= c|f |pϕ,γ

∑

Q∈W
h
(|Q|);

the last sum above is finite, which is obtained from the finiteness of the h-sum of the
Whitney partition.

Since p was so chosen to satisfy p = 
–αψ

> , then it follows from [, Theorem .] that
T�[∂ J

z̄Ef ] represents a continuous function in C, which belongs to H(p–)/p(C) = Hαψ
(C).

This forces C∗
γ f to admit a continuous extension to � ∪ γ .

On the other hand f ∈Hψ (γ ), which easily follows from the condition αψ ≤ βϕ .
The interior limit value of C∗

γ f is then given by

(
C∗

γ
+f

)
(t) = f (t) – T�

[
∂

J
z̄Ef

]
(t), t ∈ γ ,

whence H∗
γ f is well defined.

The above facts together with Remark  finally yield H∗
γ f ∈Hψ (γ ) and the proof is com-

plete. �

3.1 Hölder norm estimate for H∗
γ

In this subsection we show how, under conditions of Theorem , the fractal Hilbert trans-
form H∗

γ behaves as a bounded operator acting between the spaces Hϕ(γ ) and Hψ (γ ). We
also estimate its Hölder norm. The main result is of comparable strength to that of [,
Theorem .] for the case of d-summables curves.

Theorem  If ϕ, ψ and γ are as in Theorem , then H∗
γ is bounded from Hϕ(γ ) into Hψ (γ )

and

∥∥H∗
γ

∥∥ ≤  + c
ϕ(|γ |)
ψ(|γ |) + c

(
s(h)

) –αψ
 ψ

(|γ |) + c
(
s(h)

) –αψ
 , ()

where c, c, c depend only on ϕ and ψ .

Proof First of all write

ϕ(t)
ψ(t)

=
(

ϕ(t)
tβϕ

)(
tβϕ

tαψ

)(
tαψ

ψ(t)

)
.
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Taking into account the Remark  and the above expression, it easily follows that ϕ

ψ
is an

almost increasing function. This implies that, for f ∈Hϕ(γ ), we have

|f |ψ ,γ ≤ c
ϕ(|γ |)
ψ(|γ |) |f |ϕ,γ ,

where c depends only on ϕ and ψ .
On the other hand, a more careful look at the proof of Theorem  reveals that

∫

�

∥∥∂
J
ζ̄
E(f )(ζ )

∥∥p dξ dη ≤ c|f |pϕ,γ

∑

Q∈W
ϕ
(|Q|)p|Q|–p = c|f |pϕ,γ

∑

Q∈W
h
(|Q|)

= c|f |pϕ,γ s(h).

Therefore

∥∥∂
J
ζ̄
E(f )

∥∥
Lp ≤ c


p |f |ϕ,γ

(
s(h)

) 
p .

The Hölder inequality then leads to

∥∥T�

[
∂

J
ζ̄
E(f )

]
(ζ )

∥∥ ≤ c
∥∥∂

J
ζ̄
E(f )

∥∥
Lp

(∫

�

dξ dη

‖W (ζ ) – W (z)‖q

) 
q

,

where q = p
p– as usual.

Using the basic property of W , see [, inequality (.), p.], we have

∥∥T�

[
∂

J
ζ̄
E(f )

]
(ζ )

∥∥ ≤ c
∥∥∂

J
ζ̄
E(f )

∥∥
Lp |γ | p–

p ≤ c
∥∥∂

J
ζ̄
E(f )

∥∥
Lpψ

(|γ |)

≤ c|f |ϕ,γ
(
s(h)

) 
p ψ

(|γ |)

and

∣∣T�

[
∂

J
ζ̄
E(f )

]∣∣
ψ ,γ ≤ c

∥∥∂
J
ζ̄
E(f )

∥∥
Lp ≤ c|f |ϕ,γ

(
s(h)

) 
p .

Therefore, for every ζ ∈ γ we have

∥∥H∗
γ f (ζ )

∥∥ ≤ ∥∥f (ζ )
∥∥ + 

∥∥T�

[
∂

J
ζ̄
E(f )

]
(ζ )

∥∥ ≤ ∥∥f (ζ )
∥∥ + c|f |ϕ,γ

(
s(h)

) 
p ψ

(|γ |).

Then

∥∥H∗
γ f (ζ )

∥∥ ≤ ‖f ‖ϕ,γ + c‖f ‖ϕ,γ
(
s(h)

)/p
ψ

(|γ |) ()

and

∣∣H∗
γ f

∣∣
ψ ,γ ≤ |f |ψ ,γ + 

∣∣T�

[
∂

J
ζ̄
E(f )

]∣∣
ψ ,γ ≤ c

ϕ(|γ |)
ψ(|γ |) |f |ϕ,γ + c|f |ϕ,γ

(
s(h)

)/p. ()

Finally, adding () with (), we obtain

∥∥H∗
γ f

∥∥
ψ

≤
(

 + c
ϕ(|γ |)
ψ(|γ |) + c

(
s(h)

) 
p ψ

(|γ |) + c
(
s(h)

) 
p

)
‖f ‖ϕ,γ
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or equivalently

∥∥H∗
γ f

∥∥
ψ

≤
(

 + c
ϕ(|γ |)
ψ(|γ |) + c

(
s(h)

) –αψ
 ψ

(|γ |) + c
(
s(h)

) –αψ


)
‖f ‖ϕ,γ ,

which finishes the proof. �

Theorem  Let γ be rectifiable with length l[γ ] and let be ϕ and ψ in 
 with αψ < βϕ – .
Then the Hilbert transform Hγ is bounded from Hϕ(γ ) into Hψ (γ ), and

‖Hγ ‖ ≤  + c

(
ϕ(l[γ ])
ψ(l[γ ])

)
+ c

(
l[γ ]

) –αψ
 ψ

(
l[γ ]

)
+ c

(
l[γ ]

) –αψ
 , ()

where c, c, c depend only on ϕ, ψ .

Proof Take p = 
–αψ

, then from αψ < βϕ –  it follows that


 – αψ

= p <


 – βϕ

. ()

Since γ is rectifiable, then it is  + ε-summable for any ε > . This fact, together with
() imply that γ is h-summable with h(t) = ϕ(t)pt–p, which makes legitimate the use of
Theorem . Now, the estimate () easily follows from (), the simple estimate

s(h) =
∑

Q∈W
ϕ
(|Q|)p|Q|–p ≤ c

∑

Q∈W
|Q|+pβϕ+–p

and Lemma . �

Remark  Note that the upper bound obtained in Theorem  generalizes and strengthens
Theorem . of [].
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