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Abstract
It is well known that second-order information is a basic tool notably in optimality
conditions and numerical algorithms. In this work, we present a generalization of
optimality conditions to strongly convex functions of order γ with the help of first-
and second-order approximations derived from (Optimization 40(3):229-246, 2011)
and we study their characterization. Further, we give an example of such a function
that arises quite naturally in nonlinear analysis and optimization. An extension of
Newton’s method is also given and proved to solve Euler equation with second-order
approximation data.
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1 Introduction
The concept of approximations of mappings was introduced by Thibault []. Sweetser []
considered approximations by subsets of the space of continuous linear maps L(X, Y ),
where X and Y are Banach spaces, and Ioffe [] by the so-called fans. This approach was
revised by Jourani and Thibault []. Another approach belongs to Allali and Amahroq [].
Following the same ideas, Amahroq and Gadhi [, ] have established optimality condi-
tions to some optimization problems under set-valued mapping constraints.

In this work, we explore the notion of strongly convex functions of order γ ; see, for in-
stance, [–] and references therein. Let f be a mapping from a Banach space X into R,
and let C ⊂ X be a closed convex set. It is well known that the notion of strong convex-
ity plays a central role. On the one hand, it ensures the existence and uniqueness of the
optimal solution for the problem

(P) min
x∈C

f (x).

On the other hand, if f is twice differentiable, then the strong convexity of f implies that its
Hessian matrix is nonsingular, which is an important tool in numerical algorithms. Here
we adopt the definition of a second-order approximation [] to detect some equivalent
properties of strongly convex functions of order γ and to characterize the latter. Further-
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more, for a C, function f on a finite-dimensional setting, we show some simple facts. We
also provide an extension of Newton’s method to solve an Euler equation with second-
order approximation data.

The rest of the paper is written as follows. Section  contains basic definitions and pre-
liminary results. Section  is devoted to mains results. In Section , we point out an ex-
tension of Newton’s method and prove its local convergence.

2 Preliminaries
Let X and Y be two Banach spaces. We denote by L(X, Y ) the set of all continuous linear
mappings from X into Y , by B(X × X, Y ) the set of all continuous bilinear mappings from
X × X into Y , and by BY the closed unit ball of Y centered at the origin.

Throughout this paper, X∗ and Y ∗ denote the continuous duals of X and Y , respectively,
and we write 〈·, ·〉 for the canonical bilinear forms with respect to the dualities 〈X∗, X〉 and
〈Y ∗, Y 〉.

Definition  ([]) Let f be a mapping from X into Y , x̄ ∈ X. A set of mappings Af (x̄) ⊂
L(X, Y ) is said to be a first-order approximation of f at x̄ if there exist δ >  and a function
r : X →R satisfying limx→x̄ r(x) =  such that

f (x) – f (x̄) ∈Af (x̄)(x – x̄) + ‖x – x̄‖r(x)BY ()

for all x ∈ x̄ + δBX .

It is easy to check that Definition  is equivalent to the following: for all ε > , there exists
δ >  such that

f (x) – f (x̄) ∈Af (x̄)(x – x̄) + ε‖x – x̄‖BY ()

for all x ∈ x̄ + δBX .

Remark  If Af (x̄) is a first-order approximation of f at x̄, then () means that for any
x ∈ x̄ + δBX , there exist A(x) ∈Af (x̄) and b ∈ BY such that

f (x) – f (x̄) = A(x)(x – x̄) + ε‖x – x̄‖b.

Hence, for any x ∈ B(x̄, δ) and A(x) ∈Af (x̄),

∥
∥f (x) – f (x̄) – A(x)(x – x̄)

∥
∥ ≤ ε‖x – x̄‖. ()

IfAf (x̄) is norm-bounded (resp. compact), then it is called a bounded (resp. compact) first-
order approximation. Recall thatAf (x̄) is a singleton if and only if f is Fréchet differentiable
at x̄.

The following proposition proved by Allali and Amahroq [] plays an important role in
the sequel in a finite-dimensional setting.
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Proposition  ([]) Let f : Rp → R be a locally Lipschitz function at x̄. Then the Clarke
subdifferential of f at x̄,

∂cf (x̄) := co
{

lim∇f (xn) : xn ∈ dom∇f and xn → x̄
}

, ()

is a first-order approximation of f at x̄.

In [], it is also shown that when f is a continuous function, it admits as an approximation
the symmetric subdifferential defined and studied in [].

The next proposition shows that Proposition  holds also when f is a vector-valued func-
tion. Let us first recall the definition of the generalized Jacobian for a vector-valued func-
tion (see [, ] for more details) and the definition of upper semicontinuity.

Definition  The generalized Jacobian of a function g : Rp → R
q at x̄, denoted ∂cg(x̄), is

the convex hull of all matrices M of the form

M = lim
n→+∞Jg(xn),

where xn → x̄, g is differentiable at xn for all n, and Jg denotes the q × p usual Jacobian
matrix of partial derivatives.

Definition  A set-valued mapping F : Rp ⇒ R
q is said to be upper semicontinuous at a

point x̄ ∈R
p if, for every ε > , there exists δ >  such that

F(x) ⊂ F(x̄) + εB

for every x ∈R
p such that ‖x – x̄‖ < δ.

Proposition  Let g : Rp → R
q be a locally Lipschitz function at x̄. Then the generalized

Jacobian ∂cg(x̄) of g at x̄ is a first-order approximation of g at x̄.

Proof Since the set-valued mapping ∂cg(·) is upper semicontinuous, for all ε > , there
exists r >  such that

∂cg(x) ⊂ ∂cg(x̄) + εBL(Rp ,Rq) for all x ∈ x̄ + rBRp .

We may assume that g is Lipschitzian in x̄ + rBRp . Let x ∈ x̄ + rBRp . We apply [],
Prop. .., to derive that there exits c ∈ ]x, x̄[ such that

g(x) – g(x̄) ∈ ∂cg(c)(x – x̄) ⊂ ∂cg(x̄)(x – x̄) + εBL(Rp ,Rq)(x – x̄).

Since

BL(Rp ,Rq)(x – x̄) ⊂ ‖x – x̄‖BRq ,

we have

g(x) – g(x̄) ∈ ∂cg(x̄)(x – x̄) + ε‖x – x̄‖BRq ,

which means that ∂cg(x̄) is a first-order approximation of g at x̄. �
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Recall that a mapping f : X → Y is said to be C, at x̄ if it is Fréchet differentiable in
neighborhood of x̄ and if its Fréchet derivative ∇f (·) is Lipschitz at x̄.

Let x̄ ∈R
p, and let f : Rp →R be a C, function at x̄. The generalized Hessian matrix of

f at x̄ was introduced and studied by Hiriart-Urruty et al. [] is the compact nonempty
convex set

∂
H f (x̄) := co

{

lim∇f (xn) : (xn) ∈ dom∇f and xn → x̄
}

, ()

where dom∇f is the effective domain of ∇f (·).

Corollary  Let x̄ ∈R
p, and f : Rp →R be a C, function at x̄. Then, ∇f admits ∂

H f (x̄) as
a first-order approximation at x̄.

Definition  ([]) We say that f : X → Y admits a second-order approximation at x̄ if
there exit two sets Af (x̄) ⊂L(X, Y ) and Bf (x̄) ⊂ B(X × X, Y ) such that

(i) Af (x̄) is a first-order approximation of f at x̄;
(ii) For all ε > , there exists δ >  such that

f (x) – f (x̄) ∈Af (x̄)(x – x̄) + Bf (x̄)(x – x̄)(x – x̄) + ε‖x – x̄‖
BY

for all x ∈ x̄ + δBX .

In this case the pair (Af (x̄),Bf (x̄)) is called a second-order approximation of f at x̄. It is
called a compact second-order approximation if Af (x̄) and Bf (x̄) are compacts.

Every C mapping f : X → Y at x̄ admits (∇f (x̄),∇f (x̄)) as a second-order approxima-
tion, where ∇f (x̄) and ∇f (x̄) are, respectively, the first- and second-order Fréchet deriva-
tives of f at x̄.

Proposition  ([]) Let f : Rp →R be a C, function at x̄. Then f admits (∇f (x̄), 
∂

H f (x̄))
as a second-order approximation at x̄.

Proposition  Let f : X → Y be a Fréchet-differentiable mapping. If (∇f (x̄),Bf (x̄)) is a
bounded second-order approximation of f at x̄. Then ∇f (·) is stable at x̄, that is, there exist
c, r >  such that

∥
∥∇f (x) – ∇f (x̄)

∥
∥ ≤ c‖x – x̄‖ ()

for all x ∈ x̄ + rBX .

To derive some results for γ -strong convex functions, the following notions are needed.

Definition  ([]) Let γ > . We say that a map f : X →R∪ {+∞} is γ -strongly convex if
there exist c ≥  and g : [, ] →R

+ satisfying

g() = g() =  and lim
θ→

g(θ )
θ

=  ()
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and such that

f
(

θx + ( – θ )y
) ≤ θ f (x) + ( – θ )f (y) – cg(θ )‖x – y‖γ ()

for all θ ∈ [, ] and x, y ∈ X.

Of course, when c = , f is called a convex function. Otherwise, f is said γ -strongly convex.
This class has been introduced by Polyak [] when γ =  and g(θ ) = θ ( – θ ) and studied
by many authors. Recently, a characterization of γ -strongly convex functions has been
shown in []. For example, if f is C and γ ≥ , then () is equivalent to

〈∇f (x), y – x
〉 ≤ f (y) – f (x) –

c
γ

‖y – x‖γ , ∀x, y ∈ X. ()

Let f : X →R∪ {+∞} and x̄ ∈ dom f := {x ∈ X, f (x) < +∞} (the effective domain of f ). The
Fenchel-subdifferential of f at x̄ is the set

∂Fenf (x̄) =
{

x∗ ∈ X∗ :
〈

x∗, y – x̄
〉 ≤ f (y) – f (x̄),∀y ∈ X

}

. ()

Let γ >  and c > . The (γ , c)-subdifferential of f at x̄ is the set

∂(γ ,c)f (x̄) =
{

x∗ ∈ X∗ :
〈

x∗, y – x̄
〉 ≤ f (y) – f (x̄) – c‖x̄ – y‖γ ,∀y ∈ X

}

. ()

For more details on (γ , c)-subdifferential, see []. Note that if x /∈ dom f , then ∂(γ ,c)f (x̄) =
∂Fenf (x̄) = ∅. Clearly, we have ∂(γ ,c)f (x̄) ⊂ ∂Fenf (x̄). Note that the Fenchel-subdifferential
defined by () coincides with the Clarke subdifferential of f at x̄ if the function f is convex.
We also need to recall the following definitions.

Definition  ([]) We say that a map f : X → R ∪ {+∞} is -paraconvex if there exists
c >  such that

f
(

θx + ( – θ )y
) ≤ θ f (x) + ( – θ )f (y) + c min(θ ,  – θ )‖x – y‖ ()

for all θ ∈ [, ] and x, y ∈ X.

It has been proved in [] that if f is a C mapping, then () is equivalent to

〈∇f (x), y – x
〉 ≤ f (y) – f (x) + c‖y – x‖, ∀x, y ∈ X. ()

3 Main results
In this section, we obtain the main results of the paper related to strongly convex functions
of order γ defined by ()-(). We begin by showing some interesting facts of functions that
admit a first-order approximation.

For any subset A of X∗, we define the support function of A as

s(A, x) = sup
{〈

x∗, x
〉

, x∗ ∈ A
}

. ()
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It is well known that, for any convex function f : X →R∪{+∞}, the ‘right-hand’ directional
derivative at x in dom f (the domain of f ) exists and, for each h ∈ X, is

d+f (x)(h) = lim
t→+

f (x + th) – f (x)
t

.

Theorem  Let x̄ ∈ X. If f : X → R∪{+∞} is convex and continuous at x̄ and ifAf (x̄) ⊂ X∗

is a convex w(X∗, X)-closed approximation of f at x̄, then

∂(γ ,c)f (x̄) ⊂Af (x̄).

Proof By the definition of Af (x̄), there exist δ >  and r : X →R with limx→x̄ r(x) =  such
that, for all x ∈ x̄ + δBX , t ∈], δ[, and h ∈ X, there exist A ∈Af (x̄) and b ∈ [–, ] satisfying

f (x̄ + th) – f (x̄)
t

– ‖h‖r(x̄ + th)b = 〈A, h〉 ≤ s
(

Af (x̄); h
)

.

By letting t → + the directional derivative of f at x̄ satisfies

d+f (x̄)(h) ≤ s
(

Af (x̄); h
)

, ∀h ∈ X. ()

Using [], Prop. ., we get

s
(

∂Fenf (x̄); h
) ≤ s

(

Af (x̄); h
)

.

Since ∂(γ ,c)f (x̄) ⊂ ∂Fenf (x̄), we deduce that

s
(

∂(γ ,c)f (x̄); h
) ≤ s

(

Af (x̄); h
)

.

Hence we conclude that ∂(γ ,c)f (x̄) ⊂Af (x̄). �

Proposition  Let f : X →R∪ {+∞} be a γ -strongly convex function. Assume that Af (x̄)
is a compact approximation at x̄. Then Af (x̄) ∩ ∂(γ ,c)f (x̄) �= ∅.

Proof Let d ∈ X be fixed and define xn := x̄ + 
n d. Using Definition , we get, for n large

enough, An ∈Af (x̄) and bn ∈ [–, ] such that


n

〈An, d〉 = f
(

x̄ +

n

d
)

– f (x̄) –

n

‖d‖r(xn)bn.

By γ -strong convexity we obtain


n

〈An, d〉 ≤ 
n

(

f (x̄ + d) – f (x̄)
)

– cg
(


n

)

‖d‖γ –

n

‖d‖r(xn)bn.

By the compactness of Af (x̄), extracting a subsequence if necessary, we may assume that
there exists A ∈Af (x̄) such that 〈An, d〉 → 〈A, d〉; and hence we obtain

〈A, d〉 ≤ f (x̄ + d) – f (x̄) – c‖d‖γ . ()
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Assume that A ∈Af (x̄)∩∂(γ ,c)f (x̄). By the separation theorem there exists h ∈ X with ‖h‖ =
 such that

min
A∈Af (x̄)

〈A, h〉 > sup
x∗∈∂(γ ,c)f (x̄)

〈

x∗, h
〉

.

Let t >  sufficiently small, so that

min
A∈Af (x̄)

〈A, h〉 >
f (x̄ + th) – f (x̄)

t
,

in contradiction with relation () by taking d = th. �

Following a result by Rademacher, which states that a locally Lipschitzian function be-
tween finite-dimensional spaces is differentiable (Lebesgue) almost everywhere, we can
prove the following result.

Proposition  Let γ ≥ , x̄ ∈ R
p, and let f : Rp → R be continuous at x̄. Assume that f is

a γ -strongly convex function. Then ∂cf (x̄) = ∂(γ ,c)f (x̄).

Proof Obviously, we have ∂(γ ,c)f (x̄) ⊂ ∂cf (x̄). Now let A ∈ ∂cf (x̄). For all n, there exists
xn ∈ dom∇f such that xn → x̄ and ∇f (xn) → A. Since f is γ -strongly convex and Fréchet
differentiable at xn for all n ∈N, it follows by () that

〈∇f (xn), y – xn
〉 ≤ f (y) – f (xn) – c‖y – xn‖γ , ∀y ∈R

p,∀n ∈N.

Letting n → +∞, we get

〈A, y – x̄〉 ≤ f (y) – f (x̄) – c‖y – x̄‖γ , ∀y ∈R
p,

which means that ∂cf (x̄) ⊂ ∂(γ ,c)f (x̄). �

Corollary  Let γ ≥ , x̄ ∈ R
p, and let f : Rp → R be continuous at x̄. Assume that f is a

γ -strongly convex function. Then, for all ε > , there exists r >  such that

f (x) – f (x̄) ∈ ∂(γ ,c)f (x̄)(x – x̄) + ε‖x – x̄‖BR ()

for all x ∈ x̄ + rBRp , which means that ∂(γ ,c)f (x̄) is a first-order approximation of f at x̄.

Proof It is clear that ∂cf (x̄) is a first-order approximation of at x̄. We end the proof by
Propositions  and . �

The converse of Proposition  holds if () is valid for any A ∈Af (x) and x ∈ X.

Proposition  Let γ ≥  and f : X → R ∪ {+∞}. Assume that, for each x ∈ X, f admits a
first-order approximation Af (x) such that Af (x) ⊂ ∂(γ ,c)f (x). Then f is γ -strongly convex.
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Proof Define xθ := θu + ( – θ )v for θ ∈ [, ] and u, v ∈ X. Let us take A ∈Af (xθ ). Then

〈A, u – xθ 〉 ≤ f (u) – f (xθ ) – c‖u – xθ‖γ .

Multiplying this inequality by θ , we obtain

(

a′) θ ( – θ )〈A, u – v〉 ≤ θ f (u) – θ f (xθ ) – c( – θ )γ θ‖u – v‖γ .

In a similar way, since

〈A, v – xθ 〉 ≤ f (v) – f (xθ ) – c‖v – xθ‖γ ,

we get

(

a′′) –θ ( – θ )〈A, u – v〉 ≤ ( – θ )f (v) – ( – θ )f (xθ ) – c( – θ )θγ ‖u – v‖γ .

We deduce by addition of (a′) and (a′′) that

f (xθ ) ≤ θ f (u) + ( – θ )f (v) – cg(θ )‖u – v‖γ for all u, v ∈ X,

where g(θ ) = ( – θ )θγ + ( – θ )γ θ , so that f is γ -strongly convex. �

The next results are devoted to presenting some useful properties of the generalized
Hessian matrix for a C, function in the finite-dimensional setting and a characterization
of γ -strongly convex functions with the help of a second-order approximation.

Proposition  Let x̄ ∈ X, and let f : X → R ∪ {+∞} be convex and Fréchet differentiable
at x̄. Suppose that f admits (∇f (x̄),Bf (x̄)) as a second-order approximation at x̄ and that
Bf (x̄) is compact. Then there exists B ∈ Bf (x̄) such that

sup
B∈Bf (x̄)

〈Bd, d〉 ≥ , ∀d ∈ X. ()

If f is -strongly convex, then we obtain

sup
B∈Bf (x̄)

〈Bd, d〉 ≥ c‖d‖, ∀d ∈ X, ()

for some c > .

Proof We prove only the case where f is convex. In a similar way, we can prove the other
case. Let d ∈ X and ε >  be fixed. We get for n large enough Bn ∈ Bf (x̄) and bn ∈ [–, ]
such that

f
(

x̄ +

n

d
)

– f (x̄) =

n

〈∇f (x̄), d
〉

+


n 〈Bnd, d〉 + ε


n ‖d‖bn.

Since f is convex, we obtain

〈Bnd, d〉 + ε‖d‖bn ≥ .
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By the compactness of Bf (x̄), extracting a subsequence if necessary, we may assume that
there exits B ∈ Bf (x̄) such that Bn converges to B; therefore

〈Bd, d〉 ≥ ,

and hence

sup
B∈Bf (x̄)

〈Bd, d〉 ≥ , ∀d ∈ X. �

When X is a finite-dimensional space, we get the following essential result.

Proposition  Let f : Rp → R be a C, function at x̄. Assume that f is γ -strongly convex.
Then, for any B ∈ ∂

Hf (x̄), we have the following inequality:

〈Bd, d〉 ≥ c‖d‖γ , ∀d ∈R
p, ()

for some c > .

Proof It is clear that (∇f (x̄), 
∂

Hf (x̄)) is a second-order approximation of f at x̄. Now let
B ∈ ∂

Hf (x̄), so that there exists a sequence (xn) ∈ dom∇f such that xn → x̄ and ∇f (xn) →
B. Since f is γ -strongly convex, there exists c >  such that

〈∇f (xn)d, d
〉 ≥ c‖d‖γ , ∀d ∈R

p,∀n ∈N.

Letting n → +∞, we have

〈Bd, d〉 ≥ c‖d‖γ , ∀d ∈R
p. �

The preceding result shows that γ -strongly convex functions enjoy a very desirable prop-
erty for generalized Hessian matrices. In fact, in this case, any matrix B ∈ ∂

Hf (x̄) is invert-
ible. The next result proves the converse of Proposition . Let us first recall the following
characterization of l.s.c. γ -strongly convex functions.

Theorem  (Amahroq et al. []) Let f : X → R ∪ {+∞} be a proper and l.s.c. function.
Then f is γ -strongly convex iff ∂cf is γ -strongly monotone, that is, there exists a positive
real number c such that, for all x, y ∈ X, x∗ ∈ ∂cf (x), and y∗ ∈ ∂cf (y), we have

〈

x∗ – y∗, x – y
〉 ≥ c‖x – y‖γ .

We are now in position to state our main second result.

Theorem  Let f : Rp →R be a C, function. Assume that ∂
H f (·) satisfies relation () at

any x ∈ R
p. Then f is γ -strongly convex.

Proof Let t ∈ [, ] and u, v ∈ R
p. Define ϕ : R →R as

ϕ(t) := f
(

u + t(v – u)
)

,
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so that ϕ′(t) := 〈∇f (u + t(v – u)), v – u〉. By the Lebourg mean value theorem [] there
exists t ∈ ], [ such that

ϕ′() – ϕ′() ∈ ∂cϕ
′(t).

By using calculus rules it follows that

ϕ′() – ϕ′() ∈ ∂cϕ
′(t) ⊂ ∂

H f
(

u + t(v – u)
)

(v – u)(v – u).

Hence, there exists Bt ∈ ∂
H f (u + t(v – u)) such that 〈∇f (v) –∇f (u), v – u〉 = 〈Bt (v – u), v –

u〉. The result follows from Theorem . �

Hiriart-Urruty et al. [] have presented many examples of C, functions. The next
proposition shows another example of a C, function.

Theorem  Let f : H → R be continuous on a Hilbert space H. Suppose that f is convex
(or -strongly convex) and that –f is -paraconvex. Then f is Fréchet differentiable on H,
and for some c > , we have that

∥
∥∇f (x) – ∇f (y)

∥
∥ ≤ c‖x – y‖ for all x, y ∈ H . ()

Proof Let x ∈ X. Clearly, f is locally Lipschitzian at x. Now let x∗
 and x∗

 be arbitrary
elements of ∂cf (x) and ∂c(–f )(x), respectively. By [], Thm. ., there exists c >  such
that ∂c(–f )(x) = ∂ (,c)(–f )(x), and for any y ∈ H and positive real θ , we have

(a) θ
〈

x∗
, y

〉 ≤ –f (x + θy) + f (x) + cθ‖y‖

and

(

a′) θ
〈

x∗
 , y

〉 ≤ f (x + θy) – f (x).

Adding (a) and (a′), we get

θ
〈

x∗
 + x∗

, y
〉 ≤ cθ‖y‖,

and hence

〈

x∗
 + x∗

, y
〉 ≤ cθ‖y‖.

Letting θ → , we have 〈x∗
 + x∗

, y〉 ≤ , so that x∗
 = –x∗

. Since x∗
 and x∗

 are arbitrary in
∂cf (x) and ∂c(–f )(x), it follows that ∂cf (x) is single-valued. Put ∂cf (x) = {p(x)}. Since
(a) and (a′) hold for any θ >  and y ∈ H , we deduce that, for θ = ,

〈

p(x), y
〉 ≤ f (x + y) – f (x)

and

f (x + y) – f (x) –
〈

p(x), y
〉 ≤ c‖y‖.
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Hence, for all y �= , we obtain

|f (x + y) – f (x) – 〈p(x), y〉|
‖y‖ ≤ c‖y‖. ()

Letting ‖y‖ →  in (), we conclude that f is Fréchet differentiable at x. Now since –f
is -paraconvex and f is Fréchet differentiable, we may prove that there exists c >  such
that

–
〈∇f (x), y – x

〉 ≤ –f (y) + f (x) + c‖x – y‖ for all x, y ∈ H . ()

For every z ∈ H , we have that

–f (z) ≥ –f (x) +
〈∇f (x), x

〉

–
〈∇f (x), z

〉

– c‖x – z‖.

Thus

–f (z) ≥ f ∗(∇f (x)
)

–
〈∇f (x), z

〉

– c‖x – z‖,

so that

f ∗(∇f (y)
) ≥ 〈∇f (y), z

〉

– f (z),

f ∗(∇f (y)
) ≥ 〈∇f (y), z

〉

+ f ∗(∇f (x)
)

–
〈∇f (x), z

〉

– c‖x – z‖,

and hence

f ∗(∇f (y)
)

– f ∗(∇f (x)
)

–
〈∇f (y) – ∇f (x), x

〉

≥ 〈∇f (y) – ∇f (x), z – x
〉

– c‖x – z‖

≥ sup
z∈H

{〈∇f (y) – ∇f (x), z – x
〉

– c‖x – z‖}.

This means that, for all x, y ∈ H ,

f ∗(∇f (y)
)

– f ∗(∇f (x)
)

–
〈∇f (y) – ∇f (x), x

〉 ≥ 
c

∥
∥∇f (y) – ∇f (x)

∥
∥

.

Changing the roles of x and y, we obtain

f ∗(∇f (x)
)

– f ∗(∇f (y)
)

–
〈∇f (x) – ∇f (y), y

〉 ≥ 
c

∥
∥∇f (x) – ∇f (y)

∥
∥

.

So by addition we get

〈∇f (x) – ∇f (y), x – y
〉 ≥ 

c
∥
∥∇f (x) – ∇f (y)

∥
∥

. ()

Consequently, by the Cauchy-Schwarz inequality we obtain

∥
∥∇f (x) – ∇f (y)

∥
∥ ≤ c‖x – y‖ for all x, y ∈ H . �
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4 Newton’s method
The aim of this section is to solve the Euler equation

∇f (x) =  ()

by Newton’s method. The classic assumption is that f : Rp → R a C mapping and the
Hessian matrix ∇f (x) of f at x is nonsingular. Here we prove the convergence of a natural
extension of Newton’s method to solve () assuming that ∇f (·) admits βf (·) as a first-
order approximation. Clearly, if f : Rp → R is a C, mapping, then using Corollary , we
obtain that ∇f (·) admits ∂

Hf (·) as a first-order approximation.
This algorithm has been proposed by Cominetti et al. [] with C, data. Only some

ideas were given, but it remains as an open question to state results on rate of conver-
gence and local convergence of that algorithm. In the sequel, f : Rp → R is a Fréchet-
differentiable mapping such that its Fréchet derivative admits a first-order approximation,
and x̄ is a solution of ().

Algorithm (M) Starting from an arbitrary point x ∈ B(x̄, r), generate the sequences (xk)
and (hk) as follows:

(i) hk ∈R
p is a solution of  ∈ ∇f (xk) + βf (x̄)(hk), and

(ii) xk+ = xk + hk .

Theorem  Let f : Rp → R be a Fréchet-differentiable function, and x̄ be a solution of
(). Let ε, r, K >  be such that ∇f (·) admits βf (x̄) as a first-order approximation at x̄
such that, for each x ∈ BRp (x̄, r), there exists an invertible element B(x) ∈ Bf (x) satisfying
‖B(x)–‖ ≤ K and ξ := εK < . Then the sequence (xk) generated by Algorithm (M) is well
defined for every x ∈ BRp (x̄, r) and converges linearly to x̄ with rate ξ .

Proof Since ∇f (x̄) = , we have

xk+ – x̄ = B(xk)–(∇f (x̄) – ∇f (xk) + B(xk)(xk – x̄)
)

.

We inductively obtain that

‖xk+ – x̄‖ ≤ K
∥
∥∇f (x̄) – ∇f (xk) + B(xk)(xk – x̄)

∥
∥.

Thus

‖xk+ – x̄‖ ≤ ξ‖xk – x̄‖,

which means that xk+ ∈ BRp (x̄, r), and we have ‖xk+ – x̄‖ ≤ ξ k‖x – x̄‖. Therefore the
whole sequence (xk) is well defined and converges to x̄. �

Now let us consider the following algorithm under less assumptions.

Algorithm (M′) Starting from an arbitrary point x ∈ R
p, generate the sequences (xk)

and (hk) as follows:
(i) hk ∈R

p is a solution of  ∈ ∇f (xk) + βf (x)(hk), and
(ii) xk+ = xk + hk .
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Theorem  Let U be an open set of Rp, x ∈ U , and f : Rp →R be a Fréchet-differentiable
function on U . Let ε, r, K >  be such that ∇f (·) admits βf (x) as a strict first-order approx-
imation at x such that, for each x ∈ BRp (x, r), there exists a right inverse of B(x) ∈ βf (x),
denoted by B̃(x), satisfying ‖B̃(x)(·)‖ ≤ K‖ · ‖ and ξ := εK < .

If ‖∇f (x)‖ ≤ K–( – ξ )r and ∇f is continuous, then the sequence (xk) generated by
Algorithm (M′) is well defined and converges to a solution x̄ of (). Moreover, we have
‖xk – x̄‖ ≤ rξ k for all k ∈N and ‖x̄ – x‖ ≤ ‖∇f (x)‖K( – ξ )– < r.

Proof We prove by induction that xk ∈ x + rBRp , ‖xk+ – xk‖ ≤ Kξ k‖∇f (x)‖, and
‖∇f (xk)‖ ≤ ξ k‖∇f (x)‖ for all k ∈ N. For k = , these relations are obvious. Assuming
that they are valid for k < n, we get

‖xn – x‖ ≤
n–
∑

k=

‖xk+ – xk‖ ≤ K
∥
∥∇f (x)

∥
∥

∞
∑

k=

ξ k

≤ K
∥
∥∇f (x)

∥
∥( – ξ )– < r.

Thus xn ∈ x + rBRp and since ∇f (xn–) + B(xn–)(xn – xn–) = , from Algorithm (M′) we
have

∥
∥∇f (xn)

∥
∥ ≤ ∥

∥∇f (xn) – ∇f (xn–) – B(xn–)(xn – xn–)
∥
∥ ≤ ε‖xn – xn–‖

≤ ξn∥∥∇f (x)
∥
∥

and

‖xn+ – xn‖ ≤ Kξn∥∥∇f (x)
∥
∥.

Since ξ < , the sequence (xn) is a Cauchy sequence and hence converges to some x̄ ∈ R
p

with ‖x – x̄‖ < r. Since ∇f is a continuous function, we get ∇f (x̄) = . �

5 Conclusions
In this paper, we investigate the concept of first- and second-order approximations to gen-
eralize some results such as optimality conditions for a subclass of convex functions called
strongly convex functions of order γ . We also present an extension of Newton’s method
to solve the Euler equation under weak assumptions.
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