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Abstract
In this paper, we present some extensions of interpolation between the
arithmetic-geometric means inequality. Among other inequalities, it is shown that if
A, B, X are n× nmatrices, then

∥
∥AXB∗∥∥2 ≤ ∥

∥f1(A
∗A)Xg1(B∗B)

∥
∥
∥
∥f2(A

∗A)Xg2(B∗B)
∥
∥,

where f1, f2, g1, g2 are non-negative continuous functions such that f1(t)f2(t) = t and
g1(t)g2(t) = t (t ≥ 0). We also obtain the inequality
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∣
∣,

in whichm, n, s, t are real numbers such thatm + n = s + t = 1, ||| · ||| is an arbitrary
unitarily invariant norm and p ∈ [0, 1].
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1 Introduction and preliminaries
Let Mn be the C∗-algebra of all n × n complex matrices and 〈·, ·〉 be the standard scalar
product in Cn with the identity I . The Gelfand map f (t) �→ f (A) is an isometrical ∗-
isomorphism between the C∗-algebra C(sp(A)) of continuous functions on the spectrum
sp(A) of a Hermitian matrix A and the C∗-algebra generated by A and I .

A norm ||| · ||| on Mn is said to be unitarily invariant norm if |||UAV ||| = |||A|||, for all
unitary matrices U and V . For A ∈Mn, let s(A) ≥ s(A) ≥ · · · ≥ sn(A) denote the singular
values of A, i.e. the eigenvalues of the positive semidefinite matrix |A| = (A∗A) 

 arranged
in a decreasing order with their multiplicities counted. Note that sj(A) = sj(A∗) = sj(|A|)
( ≤ j ≤ n) and ‖A‖ = s(A). The Ky Fan norm of a matrix A is defined as ‖A‖(k) =

∑k
j= sj(A)

( ≤ k ≤ n). The Fan dominance theorem asserts that ‖A‖(k) ≤ ‖B‖(k) for k = , , . . . , n
if and only if |||A||| ≤ |||B||| for every unitarily invariant norm(see [], p.). The Hilbert-
Schmidt norm is defined by ‖A‖ = (

∑n
j= s

j (A))/, which is unitarily invariant.
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The classical Cauchy-Schwarz inequality for aj ≥ , bj ≥  ( ≤ j ≤ n) states that

( n
∑

j=

ajbj

)

≤
( n

∑

j=

a
j

)( n
∑

j=

b
j

)

with equality if and only if (a, . . . , an) and (b, . . . , bn) are proportional []. Bhatia and Davis
gave a matrix Cauchy-Schwarz inequality as follows:

∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣, ()

where A, B, X ∈ Mn. For further information as regards the Cauchy-Schwarz inequality,
see [–] and the references therein. Recently, Kittaneh et al. [] extended inequality ()
to the form
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∣
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∣
∣, ()

where A, B, X ∈ Mn and p ∈ [, ]. Audenaert [] proved that, for all A, B ∈ Mn and all
p ∈ [, ], we have
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∣
∣
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In [], the authors generalized inequality () for all A, B, X ∈ Mn and all p ∈ [, ] to the
form

∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣pA∗AX + ( – p)XB∗B

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣( – p)A∗AX + pXB∗B

∣
∣
∣
∣
∣
∣. ()

Inequality () interpolates between the arithmetic-geometric mean inequality. In [], the
authors showed a refinement of inequality () for the Hilbert-Schmidt norm as follows:

∥
∥AXB∗∥∥

 ≤ (∥
∥pA∗AX + ( – p)XB∗B

∥
∥


 – r∥∥A∗AX – XB∗B

∥
∥




)

× (∥
∥( – p)A∗AX + pXB∗B

∥
∥


 – r∥∥A∗AX – XB∗B

∥
∥




)

, ()

in which A, B, X ∈ Mn, p ∈ [, ] and r = min{p,  – p}. The Young inequality for every
unitarily invariant norm states that |||ApB–p||| ≤ |||pA + ( – p)B|||, where A, B are positive
definite matrices and p ∈ [, ] (see [] and also [, ]). Kosaki [] extended the last
inequality for the Hilbert-Schmidt norm as follows:

∥
∥ApXB–p∥∥

 ≤ ∥
∥pAX + ( – p)XB

∥
∥

, ()

where A, B are positive definite matrices, X is any matrix and p ∈ [, ]. In [], the authors
considered as a refined matrix Young inequality for the Hilbert-Schmidt norm

∥
∥ApXB–p∥∥

 + r‖AX – XB‖
 ≤ ∥

∥pAX + ( – p)XB
∥
∥


, ()

in which A, B are positive semidefinite matrices, X ∈Mn, p ∈ [, ] and r = min{p,  – p}.
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Based on the refined Young inequality (), Zhao and Wu [] proved that

∥
∥ApXB–p∥∥

 + r
∥
∥A


 XB


 – AX

∥
∥


 + ( – p)‖AX – XB‖

 ≤ ∥
∥pAX + ( – p)XB

∥
∥


, ()

for  < p ≤ 
 and

∥
∥ApXB–p∥∥

 + r
∥
∥A


 XB


 – XB

∥
∥


 + p‖AX – XB‖

 ≤ ∥
∥pAX + ( – p)XB

∥
∥


,

for 
 < p <  such that r = min{p,  – p} and r = min{r,  – r}.

In this paper, we obtain some operator and unitarily invariant norms inequalities.
Among other results, we obtain a refinement of inequality () and we also extend inequal-
ities (), () and () to the function f (t) = tp (p ∈R).

2 Main results
In this section, using some ideas of [, ], we extend the Audenaert results for the operator
norm.

Theorem  Let A, B, X ∈ Mn and f, f, g, g be non-negative continuous functions such
that f(t)f(t) = t and g(t)g(t) = t (t ≥ ). Then

∥
∥AXB∗∥∥ ≤ ∥

∥f
(

A∗A
)

Xg
(

B∗B
)∥
∥
∥
∥f

(

A∗A
)

Xg
(

B∗B
)∥
∥. ()

Proof It follows from

∥
∥AXB∗∥∥ =

∥
∥BX∗A∗AXB∗∥∥

= s
(

BX∗A∗AXB∗)

= λmax
(

BX∗A∗AXB∗) (

since BX∗A∗AXB∗ is positive semidefinite
)

= λmax
(

X∗A∗AXB∗B
)

= λmax
(

X∗f
(

A∗A
)

f
(

A∗A
)

Xg
(

B∗B
)

g
(

B∗B
))

= λmax
(

g
(

B∗B
)

X∗f
(
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)
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(
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)

Xg
(

B∗B
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≤ ∥
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(
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(
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)

Xg
(
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∥
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∥g

(
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(
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∥
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(
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)
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(
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)∥
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∥
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(
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)
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(

B∗B
)∥
∥
∥
∥f

(
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)

Xg
(

B∗B
)∥
∥

that we get the desired result. �

Corollary  If A, B, X ∈ Mn and m, n, s, t are real numbers such that m + n = s + t = ,
then

∥
∥AXB∗∥∥ ≤ ∥

∥
(

A∗A
)mX

(

B∗B
)s∥

∥
∥
∥
(

A∗A
)nX

(

B∗B
)t∥

∥. ()

In the next results, we show some generalizations of inequality () for the operator norm.
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Corollary  Let A, B ∈ Mn and let f, f, g, g be non-negative continuous functions such
that f(t)f(t) = t and g(t)g(t) = t (t ≥ ). Then

∥
∥AB∗∥∥ ≤ ∥

∥pf
(

A∗A
) 

p + ( – p)g
(

B∗B
) 

–p
∥
∥
∥
∥( – p)f

(
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) 

–p + pg
(

B∗B
) 

p
∥
∥,

where p ∈ [, ].

Proof Applying Theorem  for X = I , we have

∥
∥AB∗∥∥ ≤ ∥
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)
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∥
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)

g
(
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)∥
∥
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∥
∥
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f
(
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∥
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) 

–p
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p
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∥

(by Theorem )
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∥
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(
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(
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) 

p
∥
∥

(by the Young inequality). �

Corollary  Let A, B ∈ Mn and let f , g be non-negative continuous functions such that
f (t)g(t) = t (t ≥ ). Then
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)∥
∥


 ,

where p ∈ [, ].

Proof Applying Theorem  and the Young inequality we get
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(by the Young inequality). �

3 Some interpolations for unitarily invariant norms
In this section, applying some ideas of [], we generalize some interpolations for an arbi-
trary unitarily invariant norm.

Let Qk,n denote the set of all strictly increasing k-tuples chosen from , , . . . , n, i.e. I ∈
Qk,n if I = (i, i, . . . , ik), where  ≤ i < i < · · · < ik ≤ n. The following lemma gives some
properties of the kth antisymmetric tensor powers of matrices in Mn; see [], p..
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Lemma  Let A, B ∈Mn. Then
(a) (

∧k A)(
∧k B) =

∧k(AB) for k = , . . . , n.
(b) (

∧k A)∗ =
∧k A∗ for k = , . . . , n.

(c) (
∧k A)– =

∧k A– for k = , . . . , n.
(d) If s, s, . . . , sn are the singular values of A, then the singular values of

∧k A are
si , si , . . . , sik , where (i, i, . . . , ik) ∈ Qk,n.

Now, we show inequality () for an arbitrary unitarily invariant norm.

Theorem  Let A, B, X ∈Mn and ||| · ||| be an arbitrary unitarily invariant norm. Then

∣
∣
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∣
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(
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)mX
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B∗B
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∣
∣
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A∗A
)nX

(

B∗B
)t∣

∣
∣
∣
∣
∣, ()

where m, n, s, t are real numbers such that m + n = s + t = . In particular, if A, B are positive
definite, then

∣
∣
∣
∣
∣
∣A


 XB



∣
∣
∣
∣
∣
∣
 ≤ ∣

∣
∣
∣
∣
∣ApXB–p∣∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣A–pXBp∣∣

∣
∣
∣
∣, ()

where p ∈ [, ].

Proof If we replace A, B and X by
∧k A,

∧k B and
∧k X, their kth antisymmetric tensor

powers in inequality () and apply Lemma , then we have

∥
∥
∥
∥

k
∧

AXB∗
∥
∥
∥
∥



≤
∥
∥
∥
∥

k
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)mX
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)s

∥
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∥
∥

∥
∥
∥
∥

k
∧(

A∗A
)nX

(

B∗B
)t

∥
∥
∥
∥

,

which is equivalent to
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( k
∧
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)
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( k
∧(
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)mX

(

B∗B
)s

)
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( k
∧(
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)nX

(

B∗B
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)

.

Applying Lemma (d), we have
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∏
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(
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∏
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)mX
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B∗B
)s)
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∏
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j
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A∗A
)mX

(

B∗B
)s)s



j
((

A∗A
)nX

(

B∗B
)t), ()

where k = , . . . , n. Inequality () implies that

k
∑

j=

sj
(

AXB∗) ≤
k
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j
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A∗A
)mX

(

B∗B
)s)s



j
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)nX

(

B∗B
)t)

≤
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∑
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)mX

(

B∗B
)s)
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)nX

(
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)t)
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(by the Cauchy-Schwarz inequality),
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where k = , . . . , n. Hence

∥
∥AXB∗∥∥

(k) ≤ ∥
∥
(

A∗A
)mX

(

B∗B
)s∥

∥
(k)

∥
∥
(

A∗A
)nX

(

B∗B
)t∥

∥
(k).

Now, using the Fan dominance theorem [], p., we get the desired result. �

Now, using inequality (), Theorem  and the same argument in the proof of Corol-
laries  and , we get the following results; these inequalities are generalizations of the
Audenaert inequality ().

Corollary  Let A, B ∈ Mn, m, n, s, t be real numbers such that m + n = s + t =  and let
||| · ||| be an arbitrary unitarily invariant norm. Then

∣
∣
∣
∣
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∣AB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
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(
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∣
∣
∣
∣
∣
∣
∣( – p)
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) n

–p + p
(

B∗B
) t

p
∣
∣
∣
∣
∣
∣,

where p ∈ [, ].

Corollary  Let A, B ∈ Mn, m, n, s, t be real numbers such that m + n = s + t =  and let
||| · ||| be an arbitrary unitarily invariant norm. Then

∣
∣
∣
∣
∣
∣AB∗∣∣∣∣∣∣ ≤ ∣

∣
∣
∣
∣
∣p

(

A∗A
)m + ( – p)

(

B∗B
)s∣

∣
∣
∣
∣
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∣
∣
∣
∣
∣
∣( – p)

(

A∗A
)m + p

(

B∗B
)s∣

∣
∣
∣
∣
∣




× ∣
∣
∣
∣
∣
∣p

(

A∗A
)n + ( – p)

(

B∗B
)t∣

∣
∣
∣
∣
∣



∣
∣
∣
∣
∣
∣( – p)

(

A∗A
)n + p

(

B∗B
)t∣

∣
∣
∣
∣
∣


 ()

in which p ∈ [, ].

Remark  If we put n = m = s = t =  in inequality (), then we obtain the Audenaert
inequality (). Also, if we use inequality (), Corollaries  and , then similar to Corollaries
 and  we get the following inequalities:

∥
∥AXB∗∥∥

 ≤ ∥
∥p

(

A∗A
) m

p X + ( – p)X
(

B∗B
) s

–p
∥
∥



× ∥
∥( – p)

(

A∗A
) n

–p X + pX
(

B∗B
) t

p
∥
∥

, ()

where A, B ∈Mn, m, n, s, t are real numbers such that m + n = s + t = , p ∈ [, ] and

∥
∥AXB∗∥∥

 ≤ ∥
∥p

(

A∗A
)mX + ( – p)X

(

B∗B
)s∥

∥




∥
∥( – p)

(

A∗A
)mX + pX

(

B∗B
)s∥

∥




× ∥
∥p

(

A∗A
)nX + ( – p)X

(

B∗B
)t∥

∥




∥
∥( – p)

(

A∗A
)nX + pX

(

B∗B
)t∥

∥




for A, B ∈ Mn, real numbers m, n, s, t, in which m + n = s + t =  and p ∈ [, ]. These
inequalities are generalizations of () for the Hilbert-Schmidt norms.

In the following theorem, we show a refinement of inequality () for the Hilbert-
Schmidt norm.
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Theorem  Let A, B, X ∈Mn. Then

∥
∥AXB∗∥∥

 ≤ (∥
∥p

(

A∗A
) m

p X + ( – p)X
(

B∗B
) s

–p
∥
∥


 – r∥∥

(

A∗A
) m

p X – X
(

B∗B
) s

–p
∥
∥




)

× (∥
∥( – p)

(

A∗A
) n

–p X + pX
(

B∗B
) t

p
∥
∥


 – r∥∥

(

A∗A
) n

–p X – X
(

B∗B
) t

p
∥
∥




)

,

in which m, n, s, t are real numbers such that m+n = s+ t = , p ∈ [, ] and r = min{p, –p}.

Proof Applying inequality (), we deduce that

∥
∥AXB∗∥∥

 ≤ ∥
∥
(

A∗A
)mX

(

B∗B
)s∥

∥


∥
∥
(

A∗A
)nX

(

B∗B
)t∥

∥


=
∥
∥
((

A∗A
) m

p
)pX

((

B∗B
) s

–p
)–p∥

∥


∥
∥
((

A∗A
) n

–p
)–pX

((

B∗B
) t

p
)p∥

∥


≤ (∥
∥p

(

A∗A
) m

p X + ( – p)X
(

B∗B
) s

–p
∥
∥


 – r∥∥

(

A∗A
) m

p X – X
(

B∗B
) s

–p
∥
∥




)

× (∥
∥( – p)

(

A∗A
) n

–p X + pX
(

B∗B
) t

p
∥
∥


 – r∥∥

(

A∗A
) n

–p X – X
(

B∗B
) t

p
∥
∥




)

,

where p ∈ [, ] and r = min{p,  – p}, and the proof is complete. �

Theorem  includes a special case as follows.

Corollary  ([], Theorem .) Let A, B, X ∈Mn. Then

∥
∥AXB∗∥∥

 ≤ (∥
∥pA∗AX + ( – p)XB∗B

∥
∥


 – r∥∥A∗AX – XB∗B

∥
∥




)

× (∥
∥( – p)

(

A∗A
)

X + pXB∗B
∥
∥


 – r∥∥A∗AX – XB∗B

∥
∥




)

,

where p ∈ [, ] and r = min{p,  – p}.

Proof For p ∈ [, ], if we put m = t = p and n = s =  – p in Theorem , then we get the
desired result. �

The next result is a refinement of inequality ().

Theorem  Let A, B, X ∈Mn(C) and let p ∈ (, ). Then
(i) For  < p ≤ 

 ,

∥
∥AXB∗∥∥

 ≤ (∥
∥pA∗AX + ( – p)XB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – A∗AX
∥
∥




– ( – p)∥∥A∗AX – XB∗B
∥
∥




) 


× (∥
∥( – p)A∗AX + pXB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – A∗AX
∥
∥




– p∥∥A∗AX – XB∗B
∥
∥




) 
 . ()

(ii) For 
 < p < ,

∥
∥AXB∗∥∥

 ≤ (∥
∥pA∗AX + ( – p)XB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – X
(

B∗B
)∥
∥




– ( – p)∥∥A∗AX – XB∗B
∥
∥




) 
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× (∥
∥( – p)A∗AX + pXB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – X
(

B∗B
)∥
∥




– p∥∥A∗AX – XB∗B
∥
∥




) 
 , ()

where r = min{p,  – p} and r = min{r,  – r}.

Proof The proof of inequality () is similar to that of inequality (). Thus, we only need
to prove the inequality ().

If  < p ≤ 
 , replacing A and B by A∗A and B∗B in inequality (), respectively, we have

∥
∥
(

A∗A
)pX

(

B∗B
)–p∥

∥
 ≤ (∥

∥pA∗AX + ( – p)XB∗B
∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – A∗AX
∥
∥




– ( – p)∥∥A∗AX – XB∗B
∥
∥




) 
 . ()

Interchanging the roles of p and  – p in the inequality (), we get

∥
∥
(

A∗A
)–pX

(

B∗B
)p∥

∥
 ≤ (∥

∥( – p)A∗AX + pXB∗B
∥
∥


 – r

∥
∥
(

A∗A
) 

 X
(

B∗B
) 

 – A∗AX
∥
∥




– p∥∥A∗AX – XB∗B
∥
∥




) 
 . ()

Applying inequalities (), () and (), we get the desired result. �

Corollary  Let A, B ∈Mn(C) and p ∈ (, ). Then
(i) For  < p ≤ 

 ,

∥
∥AB∗∥∥

 ≤ (∥
∥pA∗A + ( – p)B∗B

∥
∥


 – r

∥
∥
(

A∗A
) 


(

B∗B
) 

 – A∗A
∥
∥




– ( – p)∥∥A∗A – B∗B
∥
∥




) 


× (∥
∥( – p)A∗A + pB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 


(

B∗B
) 

 – A∗A
∥
∥




– p∥∥A∗A – B∗B
∥
∥




) 
 .

(ii) For 
 < p < ,

∥
∥AB∗∥∥

 ≤ (∥
∥pA∗A + ( – p)B∗B

∥
∥


 – r

∥
∥
(

A∗A
) 


(

B∗B
) 

 –
(

B∗B
)∥
∥




– ( – p)∥∥A∗A – B∗B
∥
∥




) 


× (∥
∥( – p)A∗A + pB∗B

∥
∥


 – r

∥
∥
(

A∗A
) 


(

B∗B
) 

 –
(

B∗B
)∥
∥




– p∥∥A∗A – B∗B
∥
∥




) 
 ,

where r = min{p,  – p} and r = min{r,  – r}.

Through the following, we would like to obtain upper bound for |||AXB∗|||, for every
unitary invariant norm.

The following lemma has been shown in [], and it is considered as a refined matrix
Young inequality for every unitary invariant norm.
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Lemma  Let A, B, X ∈ Mn such that A, B are positive semidefinite. Then, for  ≤ p ≤ ,
we have

∣
∣
∣
∣
∣
∣ApXB–p∣∣

∣
∣
∣
∣
 + r

(|||AX||| – |||XB|||) ≤ (

p|||AX||| + ( – p)|||XB|||), ()

where r = min{p,  – p}.

Proposition  Let A, B, X ∈Mn. Then

∣
∣
∣
∣
∣
∣AXB∗∣∣∣∣∣∣ ≤ ((

p
∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ + ( – p)

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
) – r


(∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ –

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)) 



× ((

( – p)
∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ + p

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
) – r


(∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ –

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)) 

 ,

where p ∈ [, ] and r = min{p,  – p}.

Proof In inequality (), if we replace A by A∗A and B by B∗B, then we have

∣
∣
∣
∣
∣
∣
(

A∗A
)pX

(

B∗B
)–p∣

∣
∣
∣
∣
∣ ≤ ((

p
∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ + ( – p)

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)

– r

(∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ –

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)) 

 . ()

Interchanging p with  – p in inequality (), we get

∣
∣
∣
∣
∣
∣
(

A∗A
)–pX

(

B∗B
)p∣

∣
∣
∣
∣
∣ ≤ ((

( – p)
∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ + p

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)

– r

(∣
∣
∣
∣
∣
∣A∗AX

∣
∣
∣
∣
∣
∣ –

∣
∣
∣
∣
∣
∣XB∗B

∣
∣
∣
∣
∣
∣
)) 

 . ()

Now applying inequalities (), () and () we get the desired inequality. �

4 Conclusions
Our application of the methods based on the Audenaert results is presented in this paper
to the operator norm and so are some interpolations for an arbitrary unitarily invariant
norm. Moreover, we refine some previous inequalities as regards the Cauchy-Schwarz in-
equality for the operator and Hilbert-Schmidt norms.
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