
Agarwal et al. Journal of Inequalities and Applications  (2017) 2017:204 
DOI 10.1186/s13660-017-1478-9

R E S E A R C H Open Access

Approximation of the multiplicatives on
random multi-normed space
Ravi P Agarwal1, Reza Saadati2* and Ali Salamati2

*Correspondence: rsaadati@eml.cc
2Department of Mathematics, Iran
University of Science and
Technology, Tehran, Iran
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider randommulti-normed spaces introduced by Dales and
Polyakov (Multi-Normed Spaces, 2012). Next, by the fixed point method, we
approximate the multiplicatives on these spaces.
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1 Introduction
The concept of random normed spaces and their properties are discussed in []. Also, the
concept of multi-normed spaces was introduced by Dales and Polyakov. In this paper we
combine the mentioned concepts and introduce random multi-normed spaces. Next, we
get an approximation for homomorphisms in these spaces. For more results and applica-
tions, one can see [–].

Definition . Let (E,μ,∗) be a random normed space. ∗ is a continuous t-norm. A multi-
random norm on {Ek , k ∈N} is sequence {Nk} such that Nk is a random norm on Ek (k ∈N),
μ

x(t) = μx(t) for each x ∈ E and t ∈ R and the following axioms are satisfied for each k ∈N

with k ≥ :
(NF) μk

Aσ (x)(t) = μk
x(t), for each σ ∈ σk , x ∈ Ek , t ∈R,

(NF) μk
Mα (x)(t) ≥ μk

maxi∈Nk |αi|x(t), for each α = (α, . . . ,αk) ∈R
k , x ∈ Ek , t ∈R,

(NF) μk+
(x,...,xk ,)(t) = μk

(x,...,xk )(t), for each x, . . . , xk ∈ E and t ∈R,
(NF) μk+

(x,...,xk ,xk )(t) = μk
(x,...,xk )(t), for each x, . . . , xk ∈ E and t ∈R.

In this case {(Ek ,μk ,∗), k ∈ N} is called a random multi-normed space. Moreover, if ax-
iom (NF) is replaced by the following axiom:

(DF) μk+
(x,...,xk ,xk )(t) = μk

(x,...,xk )(t), for each x, . . . , xk ∈ E and t ∈R,
then {μk} is called a dual random multi-normed and {(Ek ,μk ,∗), k ∈ N} is called a dual
random multi-normed space.

2 Approximation of the multiplicatives
We apply fixed point theory [] to get an approximation for multiplicatives. A metric d
on non-empty set ϒ with range [,∞] is called a generalized metric.
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Lemma . ([, ]) Let k ∈ N, and let E and F be linear spaces such that (Fk ,μk ,∗) is
a complete random multi-normed space. Let there exist  ≤ M < , λ > , and a function
ψ : Ek −→ [,∞) such that

ψ(λx, . . . ,λxk) ≤ λMψ(x, . . . , xk) (x, . . . , xk ∈ E). (.)

We set ϒ := {η : E −→ F : η() = }, and define d : ϒ × ϒ on [,∞] by

d(η, ζ )

= inf

{
c >  : μ(η(x)–ζ (x),...,η(xk )–ζ (xk ))(ct) ≥ t

t + ψ(x, . . . , xk)
, x, . . . , xk ∈ E

}
.

Then (ϒ , d) is a complete generalized metric space, and the mapping J : ϒ −→ ϒ defined
by (Jg)(x) := g(λx)

λ
(x ∈ ϒ ) is a strictly contractive mapping.

Theorem . Let E be a linear space and let ((Fn,μn,∗) : n ∈ N) be a complete random
multi-normed space. Let k ∈ N and let there exist  ≤ M <  and a function ϕ : Ek −→
[,∞) satisfying

ϕ(x, y, . . . , xk , yk) ≤ Mϕ(x, y, . . . , xk , yk) (.)

for all x, y, . . . , xk , yk ∈ E. Suppose that f : E −→ F is a mapping with f () =  and

μk
(f (λx+λy)–λf (x)–λf (y),...,f (λxk+λyk )–λf (xk )–λf (yk ))(t)

≥ t
t + ϕ(x, y, . . . , xk , yk)

, (.)

μk
(f (xy)–f (x)f (y),...,f (xk yk )–f (xk )f (yk ))(t) ≥ t

t + ϕ(x, y, . . . , xk , yk)
, (.)

for all λ ∈ T := {λ ∈C : |λ| = } and x, y, . . . , xk , yk ∈ E, t > .
Then

H(x) := lim
n→∞ nf

(
x
n

)
(.)

exists for any x, . . . , xk ∈ E and defines a random homomorphism H : E −→ F such that

μ(f (x)–H(x),...,f (xk )–H(xk ))(t) ≥ ( – M)t
( – M)t + Mψ(x, . . . , xk)

, (.)

ψ(x, . . . , xk) = ϕ

(
x


,

x


, . . . ,

xk


,

xk



)
, (.)

for all x, . . . , xk ∈ E and t > .

Proof Let x = x
 , . . . , xk = xk

 , y = y
 , . . . , yk = yk

 in (.). We get

ϕ(x, y, . . . , xk , yk) ≤ Mϕ

(
x


,

y


, . . . ,

xk


,

yk



)
, (.)
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since f is odd, f () = . So μf ()( t
 ) = . Letting λ =  and y = x, we get

μk
(f (x)–f (x),...,f (xk )–f (xk ))(t) ≥ t

t + ϕ(x, x, . . . , xk , xk)
(.)

for all x, y, . . . , xk , yk ∈ E. Consider the following set:

s =: {g : E −→ F}

and introduce the generalized metric on s:

d(g, h)

= inf

{
ν ∈R+ : μk

(g(x)–h(x),...,g(xk )–h(xk ))(νt) ≥ t
t + ϕ(x, . . . , xk)

, x, . . . , xk ∈ E, t > 
}

,

where, as usual, infφ = +∞. It is easy to show (s, d) is complete. Now, we consider the
linear mapping J : s −→ s such that

J
(
g(x)

)
:= g

(
x


)

for all x ∈ E. Let g, h ∈ s be given such that d(g, h) = ε. Then we have

μk
(g(x)–h(x),...,g(xk )–h(xk ))(εt) ≥ t

t + ϕ(x, x, . . . , xk , xk)
,

for all x, . . . , xk ∈ E and all t >  and hence we have

μk
(Jg(x)–Jh(x),...,Jg(xk )–Jh(xk ))(Mεt) = μk

g( x
 )–h( x

 ),...,g( xk
 )–h( xk

 ))
(Mεt)

= μk
g( x

 )–h( x
 ),...,g( xk

 )–h( xk
 ))

(
M


εt

)

≥
M

 t
M

 + ϕ( x
 , x

 , . . . , xk
 , xk

 )

≥
M

 t
M

 + M
 ϕ(x, x, . . . , xk , xk)

=
t

t + ϕ(x, x, . . . , xk , xk)

for all x, . . . , xk ∈ E and t > . Then d(g, h) = ε implies that d(Jg, Jh) ≤ Mε. This means
that

d(Jg, Jh) ≤ Mε

for all g, h ∈ s. It follows that

μ(f (x)–f ( x
 ),...,f (xk )–f ( xk

 ))

(
M


t
)

≥ t
t + ϕ(x, x, . . . , xk , xk)

for all x, . . . , xk ∈ E and t > . So d(f , Jf ) ≤ M
 .
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Now, there exists a mapping H : E −→ F satisfying the following:
() H is a fixed point of J , i.e.,

H
(

x


)
=




H(x) (.)

for all x ∈ E. Since f : E −→ E is odd, H : E −→ F is an odd mapping. The mapping H
is a unique fixed point of J in the set

M =
{

g ∈ s : d(f , g) < ∞}
.

This implies that H is a unique mapping satisfying (.) such that there exists a
ν ∈ (,∞) satisfying

μk
(f (x)–H(x),...,f (xk )–H(xk ))(νt) ≥ t

t + ϕ(x, . . . , xk)

for all x, . . . , xk ∈ E,
() d(Jnf , H) →  as n → ∞. This implies that

lim
n→∞ nf

(
x
n

)
= H(x)

for all x ∈ E,
() d(f , H) ≤ 

–M
d(f , Jf ), which implies

d(f , H) ≤ M

 – M
.

Put λ =  in (.). Then

μk
(n(f ( x

n + y
n )–f ( x

n )–f ( y
n )),...,n(f ( xk

n + yk
n )–f ( xk

n )–f ( yk
n )))

(t)

≥
t

n

t
n + Mn


n ϕ(x, y, . . . , xk , yk)

for all x, . . . , xk , y, . . . , yk ∈ E, t >  and n ≥ . Since

lim
n→∞

t
n

t
n + Mn


n ϕ(x, y, . . . , xk , yk)

= 

for all x, . . . , xk , y, . . . , yk ∈ E, t > . It follows that

μk
(H(x+y)–H(x)–H(y),...,H(xk +yk )–H(xk )–H(yk ))(t) = 

for all x, . . . , xk , y, . . . , yk ∈ E, t > . So mapping H : E −→ F is Cauchy additive.
Let y = x, . . . , yk = xk in (.). Then we have

μk
n(f ( βx

n )–f ( βx
n ),...,f ( βxk

n )–f ( βxk
n ))

(
nt

) ≥ t
t + ϕ( x

n , x
n , . . . , xk

n , xk
n )
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for all λ,β ∈ T, λ = β

 , x, . . . , xk ∈ E, t >  and n ≥ . So we have

μk
n(f ( βx

n )–f ( βx
n ),...,f ( βxk

n )–f ( βxk
n ))

(t) ≥
t

n

t
n + Mn


n ϕ(x, x, . . . , xk , xk)

for all β ∈ T, x, . . . , xk ∈ E, t >  and n ≥ . We have

lim
n→∞

t
n

t
n + Mn


n ϕ(x, x, . . . , xk , xk)

= 

for all x, . . . , xk ∈ E, t > , and

μk
(H(βx)–βH(x),...,H(βxk )–βH(xk ))(t) = 

for all β ∈ T, x, . . . , xk ∈ E, t > . Thus, the additive mapping H : E −→ F is R-linear. From
(.), we have

μk
(nf ( x

n
y
n )–nf ( x

n )nf ( y
n ),...,nf ( xk

n
yk
n )–nf ( xk

n )nf ( yk
n ))

(
nt

)

≥ t
t + ϕ( x

n , . . . , xk
n , y

n , . . . , yk
n )

for all x, . . . , xk ∈ E, t >  and n ≥ .
Then we have

μk
(nf ( x

n
y
n )–nf ( x

n )nf ( y
n ),...,nf ( xk

n
yk
n )–nf ( xk

n )nf ( yk
n ))

(
nt

)

≥
t

n

t
n + Mn


tn ϕ(x, . . . , xk , y, . . . , yk)

for all x, . . . , xk ∈ E, t >  and n ≥ .
Since

lim
n→∞

t
n

t
n + Mn


tn ϕ(x, . . . , xk , y, . . . , yk)

= 

for all x, . . . , xk ∈ E, t > , we have

μk
(H(xy)–H(x)H(y),...,H(xk yk )–H(xk )H(yk ))(t) = 

for all x, . . . , xk , y, . . . , yk ∈ E, t > . Thus, the mapping H : E −→ F is multiplicative. There-
fore, there exists a unique random homomorphism H : E −→ F satisfying (.), and this
completes the proof. �

3 Approximation in dual random multi-normed space
The following lemma is an immediate result of the definition of random multi-normed
space.
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Lemma . Let {(Ek ,μk ,∗), k ∈ N} be a dual random multi-normed space, k, n ∈ N,
x, x, . . . , xk , xk+, . . . , xk+n ∈ E and λ, . . . ,λk be real numbers of absolute value . Then we
have:

(i) μk
(λx,...,λkxk )(t) = μk

(x,...,xk )(t),
(ii) μk

(x,...,xk )(t) ≥ μk+
(x,...,xk ,xk+)(t),

(iii) μk+n
(x,...,xk ,xk+,...,xk+n)(t) ≥ TM(μk

(x,...,xk )(αt),μn
(xk+,...,xk+n)(βt)), where α,β ≥  and

α + β = ,
(iv) mini∈Nk μxi (t) ≥ μk

(x,...,xk )(t) ≥ mini∈Nk μxi (αit),
where α, . . . ,αk ≥  and

∑k
i= αi = . In particular, we have

μk
(x,...,xk )(t) ≥ min

i∈Nk
μkxi (t).

Theorem . Let E be a linear space, and {(Ek ,μk ,∗), k ∈N} be a random multi space. Let
α ∈ (, ) and f : E −→ F is a mapping satisfying f () =  and

μk
(f ( x+y

 )– f (x)
 – f (y)

 ,...,f ( xk +yk
 )– f (xk )

 – f (yk )
 )

(
t
s

)
≥  –

α

t
, (.)

where x, . . . , xk , y, . . . , yk ∈ E and t, s ∈N with the greatest common divisor (t, s) = .
Then there exists a unique additive mapping T : E −→ F such that

μk
(f (x)–T(x),...,f (xk )–T(xk ))

(
t
s

)
≥  –

α

t
(.)

for all x, . . . , xk ∈ E and t, s ∈N with (t, s) = .

Proof Replacing x, . . . , xk and y, . . . , yk by x, . . . , xk and , . . . ,  in (.), respectively,
yields

μk
(f (x)–f (x),...,f (xk )–f (xk ))

(
t
s

)
≥  –

α

t
. (.)

Replacing x, . . . , xk , t, s by x, . . . , xk , t, s, respectively, in (.) and repeating this
process for n-time (n ∈N), it follows that

μk

( f (n–x)
n– – f (nx)

n ,..., f (n–xk )
n– – f (nxk )

n )

(
t

n–s

)
≥  –

α

n–t
(.)

for n, m ∈N with n > m. Using (.) and (RN) we get

μk
( f (mx)

m – f (nx)
n ,..., f (mxk )

m – f (nxk )
n )

( n–∑
i=m

–i t
s

)
≥  –

α

mt
.

Then

μk
( f (mx)

m – f (nx)
n ,..., f (mxk )

m – f (nxk )
n )

(
t
s

)
≥  –

α

mt
(.)
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for x ∈ E. Then, replacing x, . . . , xk by x, x, . . . , k–x in (.), we have

μk
( f (mx)

m – f (nx)
n ,..., f (m+k–x)

m+k– – f (n+k–x)
n+k– )

(
t
s

)

≥  –
α

mt

≥  –
α

m . (.)

Let ε >  be given. Then there exists n ∈ N such that α
n < ε. Now we substitute m, n

with n, n + p (p ∈N), respectively, in (.), for each n ≥ n, and we get

μk

( f (nx)
n – f (n+px)

n+p ,..., f (n+k–x)
n+k– – f (n+p+k–x)

n+p+k– )

(
t
s

)
≥  –

α

nt

>  – ε.

By Lemma ., we have

μ f (nx)
n – f (n+px)

n+p

(
t
s

)
>  – ε (.)

for all n > n and p ∈ N. The density of rational numbers in R is useful in checking cor-
rectness of (.) with positive real number r instead of t

s . Then we have

μ f (nx)
n – f (n+px)

n+p
(r) >  – ε

for each x ∈ E, r ∈ R
+, n ≥ n and p ∈N. Then { f (nx)

n } is a Cauchy sequence, so it is conver-
gent in the random multi-Banach space {(Ek ,μk ,∗), k ∈ N}. Setting T(x) := limn→∞ f (nx)

n

and applying again Lemma ., for each r > , we have

μk
( f (nx)

n –T(x),..., f (nxk )
n –T(xk ))

(r) ≥ min
i∈Nk

μ f (nxi)
n –T(xi)

(
r
k

)
,

and

lim
n→∞

f (nxk)
n = T(xk).

We put m =  in (.), and we get

μk
(f (x)– f (nx)

n ,...,f (xk )– f (nxk )
n )

(
t
s

)
≥  –

α

t
. (.)

Then

μk
f (x)–T(x),...,f (xk )–T(xk )

(
t
s

)

≥ TM

(
μk

(f (x)– f (nx)
n ,...,f (xk )– f (nxk )

n )

(
t
s

)
,
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μk
( f (nx)

n –T(x),..., f (nxk )
n –T(xk ))

(
t
s

))

≥  –
α

t
(.)

by (.) and when n → ∞, which implies that (.).
Now, we show that T is additive. Let x, y ∈ E and replace x, . . . , xk by nx, y, . . . , yk by

ny, and t by nt in (.). We get

μk
(f (n x+y

 )– f (nx)
 – f (ny)

 ,...,f (n x+y
 )– f (nx)

 – f (ny)
 )

(
nt

s

)
≥  –

α

nt
.

Using (NF), we conclude that

μ f n( x+y
 )

n – 


f (nx)
n – 


f (ny)

n

(
t
s

)
≥  –

α

nt
. (.)

On the other hand, we obtain that

μT( x+y
 )– 

 T(x)– 
 T(y)

(
t
s

)
≥ TM

(
μ

T( x+y
 )–

f (n( x+y
 ))

n

(
t
s

)
,

μ T(x)
 – 


f (nx)

n

(
t
s

)
,

μ T(y)
 – 


f (ny)

n

(
t
s

)
,

μ f (n( x+y
 ))

n – 


f (n)
nx – 


f (ny)

n

(
t
s

))

≥  –
α

n (.)

for each x, y ∈ E, t, s ∈ N with (t, s) = . Utilizing again the density of Q in R, we find that
(.) remains true if t

s is substituted with a positive real number r.
Consequently,

μT( x+y
 )– 

 T(x)– 
 T(y)(r) ≥  –

α

n

for each x, y ∈ E and r ∈R. Letting n → ∞ reveals that T complies with Jensen, and using
the fact that T() = , we conclude that T is additive [, Theorem ].

It remains to show the uniqueness of T . Suppose that T ′ is another additive mapping
satisfying (.). Then, for each t, s ∈N, sufficiently large n in N and x ∈ E,

μT ′(x)–T(x)

(
t
s

)
= μ T ′(nx)

n – T(nx)
n

(
t
s

)

≥ TM

(
μT ′(nx)–f (nx)

(
n–t

s

)
,μT(nx)–f (nx)

(
n–t

s

))

≥  –
α

n–t

≥  –
α

n– .
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This inequality holds for each r ∈R
+ instead of t

s , too. Therefore, for each r ∈R
+, n ∈N,

μT ′(x)–T(x)(r) ≥  – α

n– , letting n → ∞, it follows that T = T ′. �

4 Conclusion
In this paper, we consider multi-Banach spaces, approximate by multiplicatives, and pro-
vide some controlled mappings, which are stable by control functions.
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