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Abstract
In this paper, we introduce and study a new class of generalized functions, called
generalized geometrically convex functions. We establish several basic inequalities
related to generalized geometrically convex functions. We also derive several new
inequalities of the Hermite-Hadamard type for generalized geometrically convex
functions. Several special cases are discussed, which can be deduced from our main
results.
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1 Introduction
During the last few decades, the theory of convex analysis has turned into one of the most
interesting and useful fields to study a wide class of problems arising in pure and applied
sciences. Innovative techniques and calculations have yielded different directions for the
study of convex analysis. In recent years, various inequalities for convex functions and
their variant forms have been developed using novel techniques; see [–].

The theory of convex functions is closely related to theory of inequalities. It is well
known that a function is convex, if and only if it satisfies an integral inequality, which is
known as the Hermite-Hadamard inequality; see [, ]. Such types of integral inequalities
are useful in finding the upper and lower bounds. For recent developments and applica-
tions, see [–].

The convex sets and convex functions have been extended and generalized in different
directions using innovative ideas to study different problems in a general and unified frame
work; see [–]. One of the most recent significant generalizations of convex functions
is the ϕ-convex function, introduced by Gordji et al. []. These functions are non-convex
functions. For recent developments, see [, –] and the references therein.

The main purpose of this paper is to introduce a new class of generalized convex func-
tions, which are called generalized geometrically convex functions. We establish some
new results by using the basic inequalities. We derive new Hermite-Hadamard integral
inequalities for the generalized geometrically convex functions. Several special cases are
considered. Our results are a significant and important refinement of well-known results
for inequalities.
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2 Preliminaries
Let I be an interval in real line R. Let f : I ⊂ R+ = (,∞) → R be a differentiable function
on the interior I of I and let f : I = [x, y] → R and η(·, ·) : R × R → R be a continuous
bifunction. Throughout this paper, we will use the following notation:

R = (–∞, +∞), R+ = (,∞) and R– = (–∞, ).

Definition . ([]) Let I be an interval in real line R. A function f : I = [x, y] →R is said
to be generalized convex with respect to an arbitrary bifunction η(·, ·) : R×R →R, if

f
(
tx + ( – t)y

) ≤ f (y) + tη
(
f (x), f (y)

)
, ∀x, y ∈ I, t ∈ [, ].

If η(x, y) = x – y, then the generalized convex function reduces to a convex function.
Every convex function is a generalized convex function, but the converse is not true; see,

for example, Examples . and ..

Example . ([]) For a convex function f , we may find another function η other than
the function η(x, y) = x–y such that f is generalized convex. Consider f (x) = x and η(x, y) =
x + y. Then we have

f
(
tx + ( – t)y

)
=

(
tx + ( – t)y

)

≤ tx + y + t( – t)xy

≤ tx + y + t( – t)
(
x + y)

≤ y + t
(
x + x + y)

= y + t
(
x + y)

= f (y) + tη
(
f (x), f (y)

)
, ∀x, y ∈R, t ∈ (, ).

Also the fact that x ≤ y + (x + y) and y ≤ y, for all x, y ∈ R shows the correctness of
the inequality for t =  and t = , respectively. This means that f is a generalized convex
function. Note that the function f (x) = x is generalized convex with respect to all η(x, y) =
ax + by with a ≥ , b ≥ – and x, y ∈R.

Example . ([]) Consider f : R →R as

f (x) =

⎧
⎨

⎩
–x if x ≥ ,

x if x < ,

and define a bifunction η = –x – y for all x, y ∈ R
– = (–∞, ). Then f is η-convex, but the

converse is not true.

Definition . ([]) Let I ⊂R+. The set I is said to be a geometrically convex set, if

xty–t ∈ I, ∀x, y ∈ I, t ∈ [, ].
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Definition . ([]) A function f : I ⊂ R+ = (,∞) →R is said to be geometrically convex
on I , if

f
(
y–txt) ≤ ( – t)f (y) + t

(
f (x)

)
, ∀x, y ∈ I, t ∈ [, ],

where (y–txt) and ( – t)f (y) + t(f (x)) are the weighted geometric mean of two positive
numbers x and y and the weighted arithmetic mean of f (x) and f (y), respectively.

We now introduce a new class of generalized convex functions on the geometrically
convex set with respect to an arbitrary bifunction η(·, ·), which is called the generalized
geometrically convex function.

Definition . A function f : I ⊂R+ = (,∞) →R is said to be generalized geometrically
with respect to a bifunction η(·, ·) : R×R →R, if

f
(
y–txt) ≤ ( – t)f (y) + t

(
f (y)

)
+ η

(
f (x), f (y)

)
, ∀x, y ∈ I, t ∈ [, ]. (.)

If η(x, y) = x – y, then the generalized geometrically convex functions reduce to geomet-
rically convex functions given in Definition ..

If t = 
 in (.), then

f (
√

xy) ≤ f (y) +


η
(
f (x), f (y)

)
, ∀x, y ∈ I, t ∈ [, ], (.)

which is called a generalized Jensen geometrically convex function.
We will use the following notations throughout this paper:
() arithmetic mean:

A(a, b) =
a + b


∀a, b ∈R+, a 
= b,

() logarithmic mean:

L(a, b) =
b – a

log b – log a
∀a, b ∈R+, a 
= b,

() generalized logarithmic mean:

Ł(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

[ bp+–ap+

(p+)(b–a) ]

p if p 
= –, ,

L(a, b) if p = –,

e ( bb

aa )


b–a if p = .

3 Main results
In this section, we derive some new Hermite-Hadamard type inequalities for generalized
geometrically convex functions. We denote I = [a, b], unless otherwise specified.

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then

f (
√

ab) –


(ln b – ln a)

∫ b

a


x

[
η

(
f
(

ab
x

)
, f (x)

)]
dx
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≤
∫ b

a


x

f (x) dx ≤ f (a) + f (b)


+



(
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

))
.

Proof Let f be a generalized geometrically convex function on I . Then, ∀a, b ∈ I and t ∈
[, ], we have

f
(
atb–t) ≤ f (b) + tη

(
f (a), f (b)

)
. (.)

Integrating (.) over t on [, ], we have

∫ 


f
(
atb–t)dt ≤

∫ 



[
f (b) + tη

(
f (a), f (b)

)]
dt

=
[

f (b) +


η
(
f (a), f (b)

)]
.

Thus


ln b – ln a

∫ b

a


x
[
f (x)

]
dx ≤

[
f (b) +



η
(
f (a), f (b)

)]
.

Using (.) and taking x = (atb–t) and y = (a–tbt), we have

f (
√

ab) ≤
[

f
((

a–tbt)) +


η
(
f
((

atb–t)), f
((

a–tbt)))
]

.

Integrating (.) over t on [, ], we have

f (
√

ab) =


ln b – ln a

∫ b

a


x

[
f (x) +



η

(
f
(

ab
x

)
, f (x)

)]
dx.

Thus

f (
√

ab) –


(ln b – ln a)

∫ b

a


x
η

(
f
(

ab
x

)
, f (x)

)
dx ≤ 

ln b – ln a

∫ b

a


x
[
f (x)

]
dx.

Since f is a generalized geometrically convex function,

f
(
atb–t) ≤ f (b) + tη

(
f (a), f (b)

)
, (.)

f
(
a–tbt) ≤ f (a) + tη

(
f (b), f (a)

)
. (.)

Adding (.) and (.), we have

f
(
atb–t) + f

(
a–tbt) ≤ f (a) + f (b) + tη

(
f (b), f (a)

)
+ tη

(
f (a), f (b)

)
. (.)

Integrating (.) over t on [, ], we have


ln b – ln a

∫ b

a


x
[
f (x)

]
dx ≤ f (a) + f (b) +



(
η
(
f (a), f (b)

)
+ η

(
f (b), f (a)

))
.

This completes the proof. �
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Corollary . If η(b, a) = b – a in Theorem ., then

f (
√

ab) ≤
∫ b

a


x

f (x) dx ≤ f (a) + f (b)


.

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then


ln b – ln a

∫ b

a


x
[
f (x)g(x)

]
dx ≤ 


M(a, b) +




N(a, b),

where

M(a, b) =
[[

f (b) + η
(
f (a), f (b)

)][
g(b) + η

(
g(a), g(b)

)]
+ f (b)g(b)

]
, (.)

N(a, b) =
[
f (b)

[
g(b) + η

(
g(a), g(b)

)]
+ g(b)

[
f (b) + η

(
f (a), f (b)

)]]
. (.)

Proof Let f , g be generalized geometrically convex functions on I . Then, ∀a, b ∈ I and
t ∈ [, ], we have

f
(
atb–t) ≤ ( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]
, (.)

g
(
atb–t) ≤ ( – t)g(b) + t

[
g(b) + η

(
g(a), g(b)

)]
. (.)

From (.) and (.), we have

f
(
atb–t)g

(
atb–t)

≤ ( – t)f (b)g(b) + t( – t)
[
f (b)

[
g(b) + η

(
g(a), g(b)

)]
+ g(b)

[
f (b) + η

(
f (a), f (b)

)]]

+ t[[f (b) + η
(
f (a), f (b)

)][
g(b) + η

(
g(a), g(b)

)]]
. (.)

Integrating both sides of (.) over t on [, ], we have

∫ 


f
(
atb–t)g

(
atb–t)dt

≤ f (b)g(b)
∫ 


( – t) dt

+
[
f (b)

[
g(b) + η

(
g(a), g(b)

)]
+ g(b)

[
f (b) + η

(
f (a), f (b)

)]] ∫ 


t( – t) dt

+
[[

f (b) + η
(
f (a), f (b)

)][
g(b) + η

(
g(a), g(b)

)]] ∫ 


t dt

=



f (b)g(b) +



[
f (b)

[
g(b) + η

(
g(a), g(b)

)]
+ g(b)

[
f (b) + η

(
f (a), f (b)

)]]

+


[[

f (b) + η
(
f (a), f (b)

)][
g(b) + η

(
g(a), g(b)

)]]

=



M(a, b) +



N(a, b).
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Thus


ln b – ln a

∫ b

a


x
[
f (x)g(x)

]
dx ≤ 


M(a, b) +




N(a, b).

This completes the proof. �

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx ≤ 


M(a, b) +




N(a, b),

where M(a, b) and N(a, b) are defined by (.) and (.).

Proof Let f , g be generalized geometrically convex functions on I . Then, ∀a, b ∈ I and
t ∈ [, ], we have

f
(
atb–t) ≤ ( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]
, (.)

g
(
a–tbt) ≤ ( – t)g(a) + t

[
g(a) + η

(
g(b), g(a)

)]
. (.)

From (.) and (.), we have

f
(
atb–t)g

(
a–tbt)

≤ ( – t)f (b)g(a) + t( – t)
[
f (b)

[
g(a) + η

(
g(b), g(a)

)]

+ g(a)
[
f (b) + η

(
f (a), f (b)

)]]

+ t[[f (b) + η
(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]
. (.)

Integrating both sides of (.) over t on [, ], we have

∫ 


f
(
atb–t)g

(
a–tbt)dt

≤ f (b)g(a)
∫ 


( – t) dt

+
[
f (b)

[
g(a) + η

(
g(b), g(a)

)]
+ g(a)

[
f (b) + η

(
f (a), f (b)

)]] ∫ 


t( – t) dt

+
[[

f (b) + η
(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]] ∫ 


t dt

=



f (b)g(a) +



[
f (b)

[
g(a) + η

(
g(b), g(a)

)]
+ g(a)

[
f (b) + η

(
f (a), f (b)

)]]

+


[[

f (b) + η
(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]

=



N(a, b) +



M(a, b).
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Thus


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx ≤ 


M(a, b) +




N(a, b).

This completes the proof. �

Corollary . If f = g and η(x, y) = x – y in Theorem ., then


ln b – ln a

∫ b

a


x

[
f (x)f

(
ab
x

)]
dx ≤ 


f (b)f (a) +




[
f (b) + f (a)

]
.

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx

≤ 


{[
f (b) + g(a)

]

+
[[

g(a) + η
(
g(b), g(a)

)] +
[
f (b) + η

(
f (a), f (b)

)]]

+
[
f (b)

[
f (b) + η

(
f (a), f (b)

)]
+ g(a)

[
g(a) + η

(
g(b), g(a)

)]]}
.

Proof Let f , g be generalized geometrically convex functions on I . Then, ∀a, b ∈ I and
t ∈ [, ], we have

f
(
atb–t) ≤ ( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]
, (.)

g
(
a–tbt) ≤ ( – t)g(a) + t

[
g(a) + η

(
g(b), g(a)

)]
. (.)

Now,


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx

=
∫ 



(
f
(
atb–t)g

(
a–tbt))dt

≤ 


∫ 



[[
f
(
atb–t)] +

[
g
(
a–tbt)]]dt

≤ 


{∫ 



[
( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]]

+
[
( – t)g(a) + t

[
g(a) + η

(
g(b), g(a)

)]]
}

dt

=



{[
f (b) + g(a)

] ∫ 


( – t) dt

+
[[

g(a) + η
(
g(b), g(a)

)] +
[
f (b) + η

(
f (a), f (b)

)]]
∫ 


t dt

+
[[

f (b)
][

f (b) + η
(
f (a), f (b)

)]
+

[
g(a)

][
g(a) + η

(
g(b), g(a)

)]] ∫ 


t( – t) dt

}
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=



{[
f (b) + g(a)

]
+

[[
g(a) + η

(
g(b), g(a)

)] +
[
f (b) + η

(
f (a), f (b)

)]]

+
[
f (b)

[
f (b) + η

(
f (a), f (b)

)]
+ g(a)

[
g(a) + η

(
g(b), g(a)

)]]}
,

which is the required result. �

Corollary . If f = g and η(b, a) = b – a in Theorem ., then


ln b – ln a

∫ b

a


x

[
f (x)f

(
ab
x

)]
dx

≤ 


{

[
f (b) + f (a)

]
+

[
f (b)f (a) + f (a)f (b)

]}
.

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx

=



{[

f (b) + g(a)
] +

[[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]

+
(
f (b) + g(a)

)[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]}
.

Proof Let f , g be generalized geometrically convex functions on I . Then, ∀a, b ∈ I and
t ∈ [, ], we have

f
(
atb–t) ≤ ( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]
, (.)

g
(
a–tbt) ≤ ( – t)g(a) + t

[
g(a) + η

(
g(b), g(a)

)]
. (.)

Now,


ln b – ln a

∫ b

a


x

[
f (x)g

(
ab
x

)]
dx

=
∫ 



(
f
(
atb–t)g

(
a–tbt))dt

≤ 


∫ 



[[
f
(
atb–t)] +

[
g
(
a–tbt)]] dt

≤ 


{∫ 


[( – t)f (b) + t

[
f (b) + η

(
f (a), f (b)

)]

+
[
( – t)g(a) + t

[
g(a) + η

(
g(b), g(a)

)]]
}

dt

=



{∫ 



[
( – t)

[
f (b) + g(a)

]
+ t

[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]
}

dt

=



{∫ 


[( – t)[f (b) + g(a)

] + t[[f (b) + η
(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]

+ t( – t)
(
f (b) + g(a)

)[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]}
dt
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=



{[

f (b) + g(a)
] +

[[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]]

+
(
f (b) + g(a)

)[
f (b) + η

(
f (a), f (b)

)][
g(a) + η

(
g(b), g(a)

)]}
,

which is the required result. �

Corollary . If f = g and η(b, a) = b – a in Theorem ., then


ln b – ln a

∫ b

a


x

[
f (x)f

(
ab
x

)]
dx

≤ 


{[
f (b) + f (a)

] +
[
f (a)f (b)

] +
[
f (a)f (b)

(
f (b) + f (a)

)]}
.

Theorem . Let f , g : I = [a, b] → (,∞) be generalized geometrically convex functions
on I and a, b ∈ I with a < b. Then

f (
√

ab)g(
√

ab)

≤ 
ln b – ln a

∫ b

a


x
[
f (x)g(x)

]
dx

+


(ln b – ln a)

∫ b

a


x
[
f (x)

][
η

(
g
(

ab
x

)
, g(x)

)]

+
[
g(x)

][
η

(
f
(

ab
x

)
, f (x)

)]
dx

+


(ln b – ln a)

∫ b

a


x

[
η(f

(
ab
x

)
, f (x)

][
η

(
g
(

ab
x

)
, g(x)

)]
dx.

Proof Let f , g be generalized geometrically convex functions on I . Then, ∀a, b ∈ I and
t ∈ [, ], we have

f (
√

ab) ≤ f
(
a–tbt) +



η
(
f
(
atb–t), f

(
a–tbt)), (.)

g(
√

ab) ≤ g
(
a–tbt) +



η
(
g
(
atb–t), g

(
a–tbt)). (.)

From (.) and (.), we have

f (
√

ab)g(
√

ab)

≤
[

f
(
a–tbt) +



η
(
f
(
atb–t), f

(
a–tbt))

][
g
(
a–tbt) +



η
(
g
(
atb–t), g

(
a–tbt))

]

= f
(
a–tbt)[g

(
a–tbt)] +



[[

f
(
a–tbt)][η

(
g
(
atb–t), g

(
a–tbt))]

+
[
g
(
a–tbt)][η

(
f
(
atb–t), f

(
a–tbt))]]

+



[[
η
(
g
(
atb–t), g

(
a–tbt))][η

(
f
(
atb–t), f

(
a–tbt))]]. (.)
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Integrating (.) over t on [, ], we have

∫ 


f (

√
ab)g(

√
ab) dt

≤
∫ 


f
(
a–tbt)[g

(
a–tbt)]dt

+



∫ 



[[
f
(
a–tbt)][η

(
g
(
atb–t), g

(
a–tbt))]

+
[
g
(
a–tbt)][η

(
f
(
atb–t), f

(
a–tbt))]]dt

+



∫ 



[[
η
(
g
(
atb–t), g

(
a–tbt))][η

(
f
(
atb–t), f

(
a–tbt))]]dt.

Thus

f (
√

ab)g(
√

ab)

≤ 
ln b – ln a

∫ b

a


x
[
f (x)g(x)

]
dx

+


(ln b – ln a)

∫ b

a


x
[
f (x)

][
η

(
g
(

ab
x

)
, g(x)

)]

+
[
g(x)

]
[
η

(
f
(

ab
x

)
, f (x)

)]
dx

+


(ln b – ln a)

∫ b

a


x

[
η

(
f
(

ab
x

)
, f (x)

)][
η

(
g
(

ab
x

)
, g(x)

)]
dx.

This completes the proof. �

Corollary . If f = g and η(b, a) = b – a in Theorem ., then

f (
√

ab)f (
√

ab) ≤ 
ln b – ln a

∫ b

a


x
[
f (x)f (x)

]
dx.

Theorem . Let f , g : I = [a, b] → (,∞) be increasing and generalized geometrically con-
vex functions on I and a, b ∈ I with a < b. Then


ln b – ln a

∫ b

a


x
[
f (x)

][
g(b) +



η
(
g(a), g(b)

)]
dx

+


ln b – ln a

∫ b

a


x
[
g(x)

]
[

f (b) +


η
(
f (a), f (b)

)
]

dx

≤ 
ln b – ln a

∫ b

a


x
[
f (x)

][
g(x)

]
dx

+
[

f (b) +


η
(
f (a), f (b)

)][
g(b) +



η
(
g(a), g(b)

)]
.

Proof Let f and g be generalized geometrically convex functions on I . Then ∀a, b ∈ I and
t ∈ [, ], we have

f
(
atb–t) ≤ [

f (b) + tη
(
f (a), f (b)

)]
, (.)
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and

g
(
atb–t) ≤ [

g(b) + tη
(
g(a), g(b)

)]
. (.)

Using the inequality

(a – b)(c – d) ≥  ∀a, b, c, d ∈R, a < b, c < d, (.)

we have

[
f
(
atb–t)][g(b) + tη

(
g(a), g(b)

)]
+

[
g
(
atb–t)][f (b) + tη

(
f (a), f (b)

)]

≤ f
(
atb–t)g

(
atb–t) +

[
f (b) + tη

(
f (a), f (b)

)][
g(b) + tη

(
g(a), g(b)

)]
.

Integrating the above inequality over t on [, ], we have

∫ 



[
f
(
atb–t)]dt

∫ 



[
g(b) + tη

(
g(a), g(b)

)]
dt

+
∫ 



[
g
(
atb–t)]dt

∫ 



[
f (b) + tη

(
f (a), f (b)

)]
dt

≤
∫ 


f
(
atb–t)dt

∫ 


g
(
atb–t)dt

+
∫ 



[
f (b) + tη

(
f (a), f (b)

)]
dt

∫ 



[
g(b) + tη

(
g(a), g(b)

)]
dt.

Now after simple integration, we have


ln b – ln a

∫ b

a


x
[
f (x)

]
[

g(b) +


η
(
g(a), g(b)

)
]

dx

+


ln b – ln a

∫ b

a


x
[
g(x)

]
[

f (b) +


η
(
f (a), f (b)

)
]

dx

≤ 
ln b – ln a

∫ b

a


x
[
f (x)

][
g(x)

]
dx

+
[

f (b) +


η
(
f (a), f (b)

)][
g(b) +



η
(
g(a), g(b)

)]
.

This completes the proof. �

Corollary . If f = g and η(b, a) = b – a in Theorem ., then


ln b – ln a

∫ b

a


x
[
f (x)

][ f (b) + f (a)


]
dx

≤ 
ln b – ln a

∫ b

a


x
[
f (x)

][
f (x)

]
dx +

[
f (b) + f (a)

]
.
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4 Integral inequalities
In this section, we will use the following result to obtain our main results.

Lemma . ([]) Let f : I ⊂ R+ = (,∞) → R be a differentiable function on the interior
I of I , where a, b ∈ I with a < b and f ′ ∈ L[a, b]. Then

bf (b) – af (a) –
∫ b

a
f (x) dx

=
(ln b – ln a)



[∫ 


b+ta–tf ′(b

+t
 a

–t


)
dt +

∫ 


b–ta+t f ′(b

–t
 a

+t


)
dt

]
.

Theorem . Let f : I ⊂ R+ = (,∞) → R be a differentiable function on the interior I

of I , where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q ≥ , then

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

≤ (b – a)– 
q

()

q +

{
b
[(

b – a – L(a, b)
)∣∣f ′(b)

∣∣q

+
(
L(a, b) – a

)∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q] 
q

+ a
[(

b – a + L(a, b)
)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q +
(
b – L(a, b)

)∣∣f ′(b)
∣∣q] 

q
}

.

Proof Using Lemma . and Hölder’s inequality, we have

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

=
ab(ln b – ln a)



[∫ 



(
b
a

)t∣
∣f ′(b

+t
 a

–t


)∣∣dt +
∫ 



(
a
b

)t∣
∣f ′(b

–t
 a

+t


)∣∣dt
]

≤ ab(ln b – ln a)


{[∫ 



(
b
a

)t

dt
]– 

q
[∫ 



(
b
a

)t∣∣f ′(b
+t
 a

–t


)∣∣q dt
] 

q

+
[∫ 



(
a
b

)t

dt
]– 

q
[∫ 



(
a
b

)t∣
∣f ′(b

–t
 a

+t


)∣∣q dt
] 

q
}

. (.)

Now consider

I =
∫ 



(
b
a

)t∣
∣f ′(b

+t
 a

–t


)∣∣q dt

≤
∫ 



∣∣f ′(b)
∣∣q

(
 + t



)
+

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
(

 – t


)
dt

=
∣∣f ′(b)

∣∣q
∫ 



(
a
b

)t( + t


)
dt +

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
∫ 



(
b
a

)t( – t


)
dt

=
∣
∣f ′(b)

∣
∣q b – a – L(a, b)

a(ln b – ln a)
+

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q L(a, b) – a
a(ln b – ln a)

. (.)
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Similarly I becomes

∫ 



(
a
b

)t∣∣f ′(b
–t
 a

+t


)∣∣q dt

≤ ∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q b – a + L(a, b)
b(ln b – ln a)

+
∣
∣f ′(b)

∣
∣q b – L(a, b)

b(ln b – ln a)
. (.)

Also

[∫ 



(
b
a

)t

dt
]– 

q
=

(
b – a

a(ln b – ln a)

)– 
q

. (.)

Combining (.), (.), (.) and (.), we have

∣
∣∣
∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣
∣

≤ (b – a)– 
q

()

q +

{
b
[(

b – a – L(a, b)
)∣∣f ′(b)

∣∣q

+
(
L(a, b) – a

)∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q] 
q

+ a
[(

b – a + L(a, b)
)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q +
(
b – L(a, b)

)∣∣f ′(b)
∣
∣q] 

q
}

,

which is the required result. �

If η(b, a) = b – a, then Theorem . reduces to the following result.

Corollary . ([]) Let f : I ⊂R+ = (,∞) →R be a differentiable function on I (interior
of I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q ≥ , then

∣
∣∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣∣

≤ (b – a)– 
q

()

q +

{
b
[(

b – a – L(a, b)
)∣∣f ′(b)

∣∣q +
(
L(a, b) – a

)∣∣f ′(a)
∣∣q] 

q

+ a
[(

b – a + L(a, b)
)∣∣f ′(a)

∣
∣q +

(
b – L(a, b)

)∣∣f ′(b)
∣
∣q] 

q
}

.

Theorem . Let f : I ⊂ R+ = (,∞) → R be a differentiable function on I (interior of
I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q > , then

∣
∣∣
∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣
∣

≤ (ln b – ln a)

()+ 
q

[
L(a

q
q– , b

q
q–

]– 
q
{

b
[
A

(

∣
∣f ′(b)

∣
∣q,

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q)] 
q

+ a
[
A

(

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q),
∣
∣f ′(b)

∣
∣q] 

q
}

.
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Proof Using Lemma . and Hölder’s inequality, we have

∣∣
∣∣bf (b) – af (a) –


b – a

∫ b

a
f (x) dx

∣∣
∣∣

=
ab(ln b – ln a)



[∫ 



(
b
a

)t∣∣f ′(b
+t
 a

–t


)∣∣dt +
∫ 



(
a
b

)t∣∣f ′(b
–t
 a

+t


)∣∣dt
]

≤ ab(ln b – ln a)


{[∫ 



(
b
a

) qt
q–

dt
]– 

q
[∫ 



∣∣f ′(b
+t
 a

–t


)∣∣q dt
] 

q

+
[∫ 



(
a
b

) qt
q–

dt
]– 

q
[∫ 



∣
∣f ′(b

–t
 a

+t


)∣∣q dt
] 

q
}

. (.)

Now we consider

I =
∫ 



∣
∣f ′(b

+t
 a

–t


)∣∣q dt

≤
∫ 



∣∣f ′(b)
∣∣q

(
 + t



)
+

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
(

 – t


)
dt

=
∣
∣f ′(b)

∣
∣q

∫ 



(
 + t



)
dt +

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q
∫ 



(
 – t



)
dt

=



∣∣f ′(b)
∣∣q +




∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q. (.)

Similarly I becomes

∫ 



∣∣f ′(b
–t
 a

+t


)∣∣q dt ≤ 


∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q +



∣∣f ′(b)
∣∣q. (.)

Also

∫ 



(
b
a

) qt
q–

dt]– 
q =

(
b

q
q– – a

q
q–

( q
q– )a

q
q– (ln b – ln a)

)– 
q

. (.)

Combining (.), (.), (.) and (.), we have

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

≤ (ln b – ln a)

()+ 
q

[
L
(
a

q
q– , b

q
q–

)]– 
q
{

b
[
A

(

∣∣f ′(b)

∣∣q,
∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q)] 
q

+ a
[
A

(

∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q),
∣∣f ′(b)

∣∣q] 
q
}

,

which is the required result. �

If η(b, a) = b – a, then Theorem . reduces to the following result.

Corollary . ([]) Let f : I ⊂R+ = (,∞) → R be a differentiable function on I (interior
of I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
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function on [a, b] for q > , then

∣
∣∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣∣

≤ (ln b – ln a)

()+ 
q

[
L
(
a

q
q– , b

q
q–

)]– 
q
{

b
[
A

(

∣
∣f ′(b)

∣
∣q,

∣
∣f ′(a)

∣
∣q)] 

q

+ a
[
A

(

∣∣f ′(a)

∣∣q),
∣∣f ′(b)

∣∣q] 
q
}

.

Theorem . Let f : I ⊂ R+ = (,∞) → R be a differentiable function on I (interior of
I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q ≥ , then

∣
∣∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣∣

≤ (ln b – ln a)– 
q

(q)

q

{
b
[(

L
(
aq, bq) – aq)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+
(
bq – aq – L

(
aq, bq))∣∣f ′(b)

∣
∣q] 

q

+ a
[∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q(bq – aq + L
(
aq, bq))

+
(
bq – L

(
aq, bq))∣∣f ′(b)

∣∣]

q
}

.

Proof Using Lemma . and Hölder’s inequality, we have

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

=
ab(ln b – ln a)



[∫ 



(
b
a

)t∣∣f ′(b
+t
 a

–t


)∣∣dt +
∫ 



(
a
b

)t∣∣f ′(b
–t
 a

+t


)∣∣dt
]

≤ ab(ln b – ln a)


{[∫ 


 dt

]– 
q
[∫ 



(
b
a

)qt∣
∣f ′(b

+t
 a

–t


)∣∣q dt
] 

q

+
[∫ 


 dt

]– 
q
[∫ 



(
a
b

)qt∣∣f ′(b
–t
 a

+t


)∣∣q dt
] 

q
}

. (.)

Now consider

I =
∫ 



(
b
a

)qt∣∣f ′(b
+t
 a

–t


)∣∣q dt

≤
∫ 



(
b
a

)qt[∣∣f ′(b)
∣∣t
(

 + t


)
+

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
(

 – t


)]
dt

=
∣∣f ′(b)

∣∣q
∫ 



(
b
a

)qt( + t


)
dt +

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
∫ 



(
b
a

)qt( – t


)
dt

=
∣
∣f ′(b)

∣
∣q bq – aq – L(aq, bq)

qaq(ln b – ln a)
+

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q L(aq, bq) – aq

qaq(ln b – ln a)
. (.)
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Similarly I becomes

∫ 



(
a
b

)qt∣∣f ′(b
–t
 a

+t


)∣∣q dt

≤ ∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q bq – aq + L(aq, bq)
qbq(ln b – ln a)

+
∣
∣f ′(b)

∣
∣q bq – L(aq, bq)

qbq(ln b – ln a)
. (.)

Combining (.), (.) and (.), we have

∣
∣∣
∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣
∣

≤ (ln b – ln a)– 
q

(q)

q

{
b
[(

L
(
aq, bq) – aq)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+
(
bq – aq – L

(
aq, bq))∣∣f ′(b)

∣∣q] 
q

+ a
[∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q(bq – aq + L
(
aq, bq)) +

(
bq – L

(
aq, bq))∣∣f ′(b)

∣
∣]


q
}

,

which is the required result. �

If η(b, a) = b – a, then Theorem . reduces to the following result.

Corollary . ([]) Let f : I ⊂ R+ = (,∞) →R be a differentiable function on I (interior
of I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q ≥ , then

∣
∣∣
∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣
∣

≤ (ln b – ln a)– 
q

(q)

q

{
b
[(

L
(
aq, bq) – aq)∣∣f ′(a)

∣∣q

+
(
bq – aq – L

(
aq, bq))∣∣f ′(b)

∣
∣q] 

q + a
[∣∣f ′(a)

∣
∣q(bq – aq + L

(
aq, bq))

+
(
bq – L

(
aq, bq))∣∣f ′(b)

∣∣]

q
}

.

Theorem . Let f : I ⊂ R+ = (,∞) → R be a differentiable function on I (interior of
I), where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically convex
function on [a, b] for q >  and q > p > , then

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

≤ (ln b – ln a)

(p)

q

[
L
(
a

q–p
q– , b

q–p
q–

)]– 
q
{

a– p
q b

[(
L
(
ap, bp) – ap)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+
(
bp – ap – L

(
ap, bp))∣∣f ′(b)

∣
∣q] 

q
}

+
{

ab– p
q
[(

bp – ap + L
(
ap, bp))∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+
(
bq – L

(
ap, bp))∣∣f ′(b)

∣
∣q] 

q
}

.
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Proof Using Lemma . and Hölder’s inequality, we have

∣∣
∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣∣
∣∣

=
ab(ln b – ln a)



[∫ 



(
b
a

)t∣
∣f ′(b

+t
 a

–t


)∣∣dt +
∫ 



(
a
b

)t∣
∣f ′(b

–t
 a

+t


)∣∣dt
]

≤ ab(ln b – ln a)


{[∫ 



(
b
a

) (q–p)t
q–

dt
]– 

q
[∫ 



(
b
a

)pt∣∣f ′(b
+t
 a

–t


)∣∣q dt
] 

q

+
[∫ 



(
a
b

) (q–p)t
q–

dt
]– 

q
[∫ 



(
a
b

)pt∣
∣f ′(b

–t
 a

+t


)∣∣q dt
] 

q
}

. (.)

Now consider

I =
∫ 



(
b
a

)pt∣
∣f ′(b

+t
 a

–t


)∣∣q dt

≤
∫ 



(
b
a

)pt[∣∣f ′(b)
∣∣t
(

 + t


)
+

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
(

 – t


)]
dt

=
∣∣f ′(b)

∣∣q
∫ 



(
a
b

)pt( + t


)
dt +

∣∣f ′(b) + η
(
f ′(a), f ′(b)

)∣∣q
∫ 



(
b
a

)pt( – t


)
dt

=
∣
∣f ′(b)

∣
∣q bp – ap – L(ap, bp)

pap(ln b – ln a)
+

∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q L(ap, bp) – ap

pap(ln b – ln a)
. (.)

Similarly I becomes

[∫ 



(
a
b

)pt∣∣f ′(b
–t
 a

+t


)∣∣q dt
]

≤ ∣
∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q bp – ap + L(ap, bp)
pbp(ln b – ln a)

+
∣
∣f ′(b)

∣
∣q bp – L(ap, bp)

pbp(ln b – ln a)
. (.)

Also

[∫ 



(
b
a

) (q–p)t
q–

dt
]– 

q
=

(
b

q–p
q– – a

q–p
q–

( q–p
q– )a

q–p
q– (ln b – ln a)

)– 
q

. (.)

Combining (.), (.), (.) and (.), we have

∣
∣∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣∣

≤ (ln b – ln a)

(p)

q

[
L
(
a

q–p
q– , b

q–p
q–

)]– 
q
{

a– p
q b

[(
L
(
ap, bp) – ap)∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+ (bp – ap – L
(
ap, bp)∣∣f ′(b)

∣∣q] 
q
}

+
{

ab– p
q
[(

bp – ap + L
(
ap, bp))∣∣f ′(b) + η

(
f ′(a), f ′(b)

)∣∣q

+
(
bq – L

(
ap, bp))∣∣f ′(b)

∣∣q] 
q
}

,

which is the required result. �
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If η(b, a) = b – a, then Theorem . reduces to the following result.

Corollary . ([]) Let f : I ⊂ R+ = (,∞) → R be a differentiable function on the inte-
rior I of I , where a, b ∈ I with a < b and f ′ ∈ L[a, b]. If |f ′| is a generalized geometrically
convex function on [a, b] for q >  and q > p > , then

∣
∣∣∣bf (b) – af (a) –

∫ b

a
f (x) dx

∣
∣∣∣

≤ (ln b – ln a)

(p)

q

[
L
(
a

q–p
q– , b

q–p
q–

)]– 
q
{

a– p
q b

[(
L
(
ap, bp) – ap)∣∣f ′(a)

∣∣q

+
(
bp – ap – L

(
ap, bp))∣∣f ′(b)

∣∣q] 
q
}

+
{

ab– p
q
[(

bp – ap + L
(
ap, bp))∣∣f ′(a)

∣∣q

+
(
bq – L

(
ap, bp))∣∣f ′(b)

∣
∣q] 

q
}

.

5 Conclusion
In this paper, we have introduced and investigated a new class of generalized functions,
called generalized geometrically convex functions. Some basic inequalities related to gen-
eralized geometrically convex functions have been derived. Several new inequalities of the
Hermite-Hadamard type for generalized geometrically convex functions have been estab-
lished. Several special cases are discussed, which can be deduced from our main results.
The techniques and ideas of this paper may stimulate further research in this dynamic
field. It is an interesting problem to consider these estimates in the setting of fractional
calculus of meromorphic functions; see [, , , , ] and the references therein.
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