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Abstract
In this paper, we show several Turán type inequalities for a generalized Mittag-Leffler
function with four parameters via the (p, k)-gamma function.
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1 Introduction and main results
In , Turán established a remarkable inequality in the special function theory,

[
Pn+(r)

] > Pn(r)Pn+(r)

for all r ∈ (–, ) and n ∈ N, where Pn is the Legendre polynomial, that is,

Pn(r) = F
(

–n, n + ; ;
 – r



)
.

Here, for given complex numbers a, b and c with c �= , –, –, . . . , the Gaussian hypergeo-
metric function is the analytic continuation to the slit place C \ [,∞) of the series

F(a, b; c; z) = F(a, b; c; z) =
∞∑

n=

(a, n)(b, n)
(c, n)

zn

n!
, |z| < .

Here, (a, ) =  for a �= , and (a, n) is the shifted factorial function or the Appell symbol

(a, n) = a(a + )(a + ) · · · (a + n – )

for n ∈ Z+; see [, ]. There is an extensive topic dealing with Turán type inequalities, and
it has been generalized in many directions for various orthogonal, polynomial and special
functions.

The Mittag-Leffler function is defined by

Eα,β (z) =
∞∑

n=

zn

�(αn + β)
, z,α,β ∈C, Re(α) > , Re(β) > , (.)
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where �(·) is a classical gamma function. The Mittag-Leffler function plays an important
role in several branches of mathematics and engineering sciences, such as statistics, chem-
istry, mechanics, quantum physics, informatics and others. In particular, it is involved in
the explicit formula for the resolvent of Riemann-Liouville fractional integrals by Hille and
Tamarkin. Many properties and applications of Mittag-Leffler have been collected, for in-
stance, in references [, ]. We also refer to the references [–]. For a recent introduction
on the Mittag-Leffler functions and its generalizations, the reader may see [] and [].

In , Mehrez and Sitnik [] obtained some Turán type inequalities for Mittag-Leffler
functions by considering monotonicity for special ratios of sections for series of Mittag-
Leffler functions. Recently, in [], Yin and Huang also established some Turán type in-
equalities for the following generalized Mittag-Leffler function via the p-gamma function:

Eα,β ,p(z) =
∞∑

n=

zn

�p(αn + β)
, α,β , z ∈C, p ∈ (,∞), Re(α) > , Re(β) > . (.)

Motivated by [, ], we consider the following generalized Mittag-Leffler function with
four parameters:

Eα,β ,p,k(z) =
∞∑

n=

zn

�p,k(αn + β)
, α,β , z ∈C, p, k ∈ (,∞), Re(α) > , Re(β) > , (.)

where �p,k(x) is a classical (p, k)-gamma function defined by

�p,k(x) =
p!kp(kp)

x
k–

(x)p,k

and

(x)p,k = x(x + k) · · · (x + (p – )k
)
.

It is easily seen that the functions (.) and (.) are special cases of Wright-Fox functions
in the Wright series representation (or multi-index Mittag-Leffler functions) in [].

It is well known that limp→∞ �p,k(x) = �∞,k(x) = �k(x), and �∞,(x) = �(x), where �k(x) =
k!kx

x(x+)···(x+p) and �(x) =
∫ ∞

 tx–e–t dt, x >  are k-gamma and gamma functions, respectively.
These formulas and more properties can be found in [].

The logarithmic derivative of the (p, k)-gamma function

ψp,k(x) =
d

dx
log�p,k(x) =

�′
p,k(x)

�p,k(x)

is known as a generalized digamma function. Its derivatives ψ
(n)
p,k (x) are known as general-

ized polygamma functions.
Our results read as follows.

Theorem . For α,β , p, k >  and fixed z > , the function f : β �→ �p,k(β)Eα,β ,p,k(z) is
strictly log-convex on (,∞). As a result, we have the following inequality:

Eα,β+k,p,k
(z) <

(β + k)(β + pk)
β(β + (p + )k)

Eα,β ,p,k(z)Eα,β+k,p,k(z). (.)
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Corollary . For α, p, k > , β > β >  and fixed z ∈ (,∞), we have

Eα,β+k,p,k(z)
Eα,β,p,k(z)

<
β(β + pk)
β(β + pk)

Eα,β+k,p,k(z)
Eα,β,p,k(z)

. (.)

Putting

En
α,β ,p,k(z) = Eα,β ,p,k(z) –

n∑

m=

zm

�p,k(αm + β)
=

∞∑

m=n+

zm

�p,k(αm + β)
, (.)

we obtain the following results.

Theorem . For n ∈N, α,β , p, k, z > , we have

En
α,β ,p,k(z)En+

α,β ,p,k(z) ≤ [
En+

α,β ,p,k(z)
]. (.)

Remark . For proofs we apply a method introduced and studied in detail in Sitnik and
Mehrez (see [, –]).

2 Lemmas
Lemma . ([]) Let {an} and {bn} (n = , , , . . .) be real numbers, such that bn >  and
{ an

bn
}n≥ is increasing (decreasing). Then { a+a+···+an

b+b+···+bn
} is increasing (decreasing).

Lemma . ([]) Let {an} and {bn} (n = , , , . . .) be real numbers and let the power series
A(x) =

∑∞
n= anxn and B(x) =

∑∞
n= bnxn be convergent if |x| < r. If bn >  (n = , , , . . .)

and the sequence { an
bn

}n≥ is (strictly) increasing (decreasing), then the function A(x)
B(x) is also

(strictly) increasing (decreasing) on [, r).

3 Proofs of main results

Proof of Theorem . Simple computation yields

∂

∂β

(
log

�p,k(β)
�p,k(αk + β)

)

=
�p,k(αk + β)

�p,k(β)
· �′

p,k(β)�p,k(αk + β) – �p,k(β)�′
p,k(αk + β)

(�p,k(αk + β))

= ψp,k(β) – ψp,k(αk + β),

and

∂

∂β

(
log

�p,k(β)
�p,k(αk + β)

)
= ψ ′

p,k(β) – ψ ′
p,k(αk + β) < ,

where we apply that the function ψp,k(x) is concave on R. Therefore, we find that the
function β �→ �p,k (β)

�p,k (αk+β) is strictly log-convex on (,∞). Using the fact that the sum of
log-convex functions is also log-convex, we see that the function f is strictly log-convex
on (,∞).
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Due to inequality (.), we easily derive

log f
(

β + β + k


)
<

log f (β) + log f (β + k)


.

That is,

Eα,β+k,p,k
(z) <

�p,k(β)�p,k(β + k)
[�p,k(β + k)] Eα,β ,p,k(z)Eα,β+k,p,k(z).

Using the definition of �p,k(x), we easily obtain

�p,k(β)�p,k(β + k)
[�p,k(β + k)] =

p!kp(kp)
β

k–
(β)p,k

p!kp(kp)
β+k
k–

(β+k)p,k

p!kp(kp)
β+k
k–

(β+k)p,k

=
(β + k)(β + pk)
β(β + (p + )k)

,

so we have

Eα,β+k,p,k
(z) <

(β + k)(β + pk)
β(β + (p + )k)

Eα,β ,p,k(z)Eα,β+k,p,k(z).

The proof of Theorem . is complete. �

Proof of Corollary . Since the function f (β) is strictly log-convex, we see that the func-
tion

f (β + k)
f (β)

=
�p,k(β + k)Eα,β+k,p,k(z)

�p,k(β)Eα,β ,p,k(z)

is strictly increasing on (,∞). By taking  < β < β, we have

�p,k(β + k)Eα,β+k,p.k(z)
�p,k(β)Eα,β,p,k(z)

<
�p,k(β + k)Eα,β+k,p,k(z)

�p,k(β)Eα,β,p,k(z)
.

By using the formula

�p,k(β + k)
�p,k(β)

· �p,k(β)
�p,k(β + k)

=
p!kp(kp)

β+k
k–

(β+k)p,k

p!kp(kp)
β
k–

(β)p,k

·
p!kp(kp)

β
k–

(β)p,k

p!kp(kp)
β+k
k–

(β+k)p,k

=
(β)p,k(β + k)p,k

(β)p,k(β + k)p,k
=

β(β + pk)
β(β + pk)

,

we complete the proof. �

Proof of Theorem . Using the formulas

En
α,β ,p,k(z) = En+

α,β ,p,k(z) +
zn+

�p,k[α(n + ) + β]
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and

En+
α,β ,p,k(z) = En+

α,β ,p,k(z) –
zn+

�p,k[α(n + ) + β]
,

we have

En
α,β ,p,k(z)En+

α,β ,p,k(z) –
[
En+

α,β ,p,k(z)
]

=
[

En+
α,β ,p,k(z) +

zn+

�p,k[α(n + ) + β]

]
·
[

En+
α,β ,p,k(z) –

zn+

�p,k[α(n + ) + β]

]

= En+
α,β ,p,k(z)

[
zn+

�p,k[α(n + ) + β]
–

zn+

�p,k[α(n + ) + β]

]

–
zn+

�p,k[α(n + ) + β]�p,k[α(n + ) + β]

=
∞∑

m=n+

zn+m+

�p,k(αm + β)�p,k[α(n + ) + β]

–
∞∑

m=n+

zn+m+

�p,k[α(m – ) + β]�p,k[α(n + ) + β]

=
∞∑

m=n+

�p,k[α(m – ) + β]�p,k[α(n + ) + β] – �p,k(αm + β)�p,k[α(n + ) + β]
�p,k(αm + β)�p,k[α(n + ) + β]�p,k[α(m – ) + β]�p,k[α(n + ) + β]

× zn+m+.

Since the function �p,k(x) is log-convex on (,∞), we know that the function x �→
�p,k (x+a)
�p,k (x) (a > ) is increasing on (,∞). Thus, with a = α, x = α(n + ) + β < α(n + ) +

β + α(m – (n + )) and using Lemma . and Lemma ., we obtain

�p,k[β + α(n + ) + α]
�p,k[β + α(n + )]

≤ �p,k[β + α(n + ) + α + α(m – (n + ))]
�p,k[β + α(n + ) + α(m – (n + ))]

.

That is,

�p,k[α(n + ) + β]
�p,k[α(n + ) + β]

≤ �p,k(αm + β)
�p,k[α(m – ) + β]

.

It follows that

En
α,β ,p,k(z)En+

α,β ,p,k(z) –
[
En+

α,β ,p,k(z)
] ≥ . �

4 Conclusions
In this paper, we show several Turán type inequalities for a generalized Mittag-Leffler
function with four parameters via the (p, k)-gamma function, and we generalize some
known results.
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