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Abstract
A new constantWD(X) is introduced into any real 2n-dimensional symmetric normed
space X . By virtue of this constant, an upper bound of the geometric constant D(X),
which is used to measure the difference between Birkhoff orthogonality and isosceles
orthogonality, is obtained and further extended to an arbitrarym-dimensional
symmetric normed linear space (m ≥ 2). As an application, the result is used to prove
a special case for the reverse Hölder inequality.
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1 Introduction
The notion of orthogonality has many forms when the underlying space is transferred from
inner product spaces to real normed spaces. For example, Birkhoff [] introduced Birkhoff
orthogonality in which X is assumed to be a real normed linear space. If ‖x + λy‖ ≥ ‖x‖,
∀λ ∈R, then x is said to be Birkhoff orthogonal to y. It can be written as x ⊥B y. James []
defined isosceles orthogonality, that is, if ‖x + y‖ = ‖x – y‖, then x is said to be isosceles
orthogonal to y. It is denoted by x ⊥I y. When X is an inner product space, these two types
of orthogonality are equivalent to inner-product orthogonality.

However, these two types of orthogonality are different in general linear normed spaces.
In order to quantify their difference in a real normed space X, Ji and Wu [] introduced
the geometric constant D(X)

D(X) = inf
{

inf
λ∈R

‖x + λy‖ : x, y ∈ S(X), x ⊥I y
}

,

where S(X) is the unit sphere of X, and obtained the bounds (
√

 – ) ≤ D(X) ≤ . In
particular, they provided the value of D(X) in any two-dimensional symmetric Minkowski
plane. Recently, the value of the constant D(X) in the normed plane whose unit circle is
affine regular (n)-gon was given in [], and a new lower bound cB(·) of D(·) was obtained
in []. Note that the constant D(X) is considered only in the unit sphere S(X). In refer-
ence [], the author considered two constants BI(X) and IB(X) to measure the difference
between Birkhoff orthogonality and isosceles orthogonality in the entire space X:

BI(X) = sup

{‖x + y‖ – ‖x – y‖
‖x‖ : x, y ∈ X, x, y 	= , x ⊥B y

}
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and

IB(X) = sup

{
infλ∈R ‖x + λy‖

‖x‖ : x, y ∈ X, x, y 	= , x ⊥I y
}

.

And the estimations  ≤ BI(X) ≤  and 
 ≤ IB(X) ≤  were also obtained. Other constants

used to measure the difference between Birkhoff orthogonality and Robert orthogonality
[] were studied by [] and []. For more conclusions about the difference between or-
thogonality types, please refer to literature of references [–] and so on.

In this study, by considering the constant D(X) in n-dimensional real symmetric
normed linear spaces, we obtain an upper bound WD(X). As we discuss in Corollary , this
bound can be extended to any m-dimensional symmetric normed linear space (m ≥ ).
This article is organized as follows. In Section , we present some notations and defini-
tions. In Section , the constant WD(X) is introduced and discussed. In Section , we
consider WD(X) for the space ln

p and present a special case for the reverse Hölder in-
equality.

2 Preliminaries
Let us fix some notations. Let X be an n-dimensional real linear normed space. By ‖ ·‖ and
‖ ·‖∗, we denote the norm of X and the norm of a dual space X∗, respectively. The notation
S(X) is the unit sphere of X. Let R and N denote the real field and a positive integer set,
respectively.

Definition Let X be an n-dimensional real normed linear space. If there exist e, e, . . . ,
en ∈ S(X) such that, for any ai ∈ R, i = , , . . . , n, the following equality

∥∥|a|e + |a|e + · · · + |an|en
∥∥ = ‖ae + ae + · · · + anen‖ =

∥∥∥∥∥
n∑

k=

±a�(i)ei

∥∥∥∥∥

always holds, where �(i) ∈ {, , . . . , n} and �(i) 	= �(j) (if i 	= j), then we call X a symmetric
normed linear space and {e, e, . . . , en} a group of symmetric axes of X. In particular, we
call

∑n
k= ±a�(i)ei a symmetric element of x.

Let X be an n-dimensional symmetric normed linear space and e, . . . , en be a group of
symmetric axes. For x ∈ X, x is denoted by the coordinate representation of this group of
symmetric axes, i.e., x = (x, . . . , xn) = xe + · · · + xnen.

3 Main results
Firstly, the following elementary results are presented. Throughout this paper, the symbol
〈·, ·〉 denotes the natural inner product of two n-dimensional vectors. The first two lemmas
are known, but we fail to find literature sources.

Lemma  Let X be a normed space (Rn,‖ · ‖) and e = (, , . . . , ), e = (, , , . . . , ), . . . ,
en = (, , . . . , , ) be a basis of X. Assume that B is a skew-symmetric matrix, i.e., BT = –B.
Then 〈x, Bx〉 =  for any x ∈ X.

Proof Given that 〈x, Bx〉 = 〈BT x, x〉 = –〈x, Bx〉, then 〈x, Bx〉 = . �
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Lemma  Let X be a normed space (Rn ,‖ · ‖) and e = (, , . . . , ), e = (, , , . . . , ), . . . ,
en = (, , . . . , , ) be a basis of X. There exist rank n matrices

Bn ,, Bn ,, . . . , Bn ,n–

such that
(i) each square matrix Bn ,i (i = , , . . . , n – ) is a skew-symmetric orthogonal matrix,

i.e., BT
n ,i = –Bn ,i, BT

n ,iBn ,i = Idn ;
(ii) each row and column in Bn ,i (i = , , . . . , n – ) has one and only one non-zero

element, and this element is  or –;
(iii) matrices BT

n ,iBn ,j, i 	= j, i, j = , , . . . , n – , satisfy the preceding two properties, i.e.,
(i) and (ii).

Proof The result is proven by induction. For n = , the only matrix

B, =

[
 –
 

]

satisfies conditions (i)-(iii).
Assume that this lemma holds for n = k, namely, the matrices Bk ,, Bk ,, . . . , Bk ,k –

exist, satisfying the conditions (i) to (iii).
Now, we shall prove this lemma holds for n = k + . First, we need to introduce three

rank  square matrices σ, σ, σ and zero matrix , which are defined as

σ =

[
 
 –

]
, σ =

[
 
 

]
, σ =

[
 –
 

]
,  =

[
 
 

]
,

respectively. Next, we claim that the set {Bk+,, Bk+,, . . . , Bk+,k+–} can be written as
the following set:

{
Bk ,i(σ), Bk ,i(σ), Idk (σ ) : i = , , . . . , k – 

}
. ()

So we only need to prove that the matrices in () satisfy the three properties in this lemma,
where Bk ,i(σj) denotes the matrix in which the entries , –,  in matrix Bk ,i are replaced
by the matrices σj, –σj,  respectively; and Idk (σ ) denotes the matrix in which the entries
,  in the unit matrix Idk are replaced by the matrices σ , , respectively.

Let

[
Bk ,i(σj)

]T Bk ,i(σj) = BT
k ,i

(
σ T

j
)
Bk ,i(σj) = Idk

(
σ T

j σj
)

= Idk+ ,

where i = , . . . , k – , j = , , and

[
Idk (σ )

]T Idk (σ ) = Idk
(
σ T)

Idk (σ ) = Idk
(
σ Tσ

)
= Idk+ .

Then the matrices in () are proven to be orthogonal.
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By induction, BT
k ,iBk ,l (where i 	= l, j = , ) is a skew-symmetric orthogonal matrix and

[
Bk ,i(σj)

]T Bk ,l(σj) = BT
k ,i

(
σ T

j
)
Bk ,l(σj) = BT

k ,iBk ,l
(
σ T

j σj
)

= BT
k ,iBk ,l(Id).

We obtain that [Bk ,i(σj)]T Bk ,l(σj) is also a skew-symmetric orthogonal matrix that satis-
fies condition (ii). Similarly, [Bk ,i(σj)]T Bk ,l(σm), i 	= l, j 	= m and [Bk ,i(σj)]T Idk (σ ) satisfy
conditions (i) and (ii). Thus, the matrices in set () satisfy condition (iii). �

In order to present an upper bound of D(X), a new constant WD(X) for any real normed
linear space X = (Rn ,‖ · ‖) is introduced.

Definition  Let X be a normed space (Rn ,‖ · ‖) and e = (, , . . . , ), e = (, , , . . . , ),
. . . , en = (, , . . . , , ) be a basis of X. The geometric constant WD(X) is defined as

WD(X) = inf
{

inf
λ∈R

‖x + λy‖ : x ∈ S(X), y = Bx, B ∈ {Bn ,, Bn ,, . . . , Bn ,n–}
}

,

where Bn ,, Bn ,, . . . , Bn ,n– are given as in Lemma .

Proposition  Let X be a normed space (Rn ,‖ · ‖) and e = (, , . . . , ), e = (, , , . . . , ),
. . . , en = (, , . . . , , ) be a basis of X. And the normed space X is such that, for any x ∈ S(X)
and any y = Bn ,ix, Bn ,i ∈ {Bn ,, . . . , Bn ,n–}, there exists λ ∈ R such that x + λy ⊥B H ,
where H = span{y, Bn ,x, . . . , Bn ,i–x, Bn ,i+x, . . . , Bn ,n–x}. Then

WD(X) = min

{ 〈x, x〉
‖x‖∗ : x ∈ S(X)

}
= min

{ 〈x, x〉
‖x‖‖x‖∗ : x 	= , x ∈ X

}
. ()

Proof Assume that x ∈ S(X), y = Bx, where B ∈ {Bn ,, Bn ,, . . . , Bn ,n–}. Without losing
generality, let y = Bn ,x. Then there exists λ ∈ R such that ‖x + λy‖ = minλ∈R ‖x + λy‖,
i.e., x + λy ⊥B y. Based on Corollary . in [], we have the following equalities:

f(y) = , f(x + λy) = ‖x + λy‖, ‖f‖∗ = ,

for some f ∈ X∗. Let My = {f ∈ X∗ : f (y) = }. Then dim(My) = n – . Based on Lemma ,
the matrices Bn ,i and BT

n ,iBn ,j (i 	= j) are skew-symmetric. Then, by Lemma , the follow-
ing can be obtained:

〈x, Bn ,ix〉 = , 〈Bn ,ix, Bn ,jx〉 = , i 	= j,

which imply that all of the vectors x, Bn ,x, . . . , Bn ,n–x are in My and linearly indepen-
dent. Thus,

My = span{x, Bn ,x, . . . , Bn ,n–x}(⊂ X∗).

Given that f ∈ My, we may assume that f = αx + αBn ,x + · · · + αn–Bn ,n–x, where
α, . . . ,αn– ∈ R. We get f(x + λy) = 〈αx, x〉 = 〈αx, x + λy〉 = ‖x + λy‖. This leads to
f|span{x,y} = αx|span{x,y} and ‖αx|span{x,y}‖∗ ≥ . Hence, we obtain that  ≤ ‖f|span{x,y}‖∗ ≤
‖f‖∗ = . Then we have ‖αx|span{x,y}‖∗ = .
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Since x + λy ⊥B H , where H = span{y, Bn ,x, . . . , Bn ,n–x} ⊂ X, and x /∈ H , then X =
span{x + λy} + H . Thus, for any z ∈ H and any real number a, b, the following inequality

∥∥a(x + λy)
∥∥ ≤ ∥∥a(x + λy) + bz

∥∥

holds. Thus, the inequalities |〈αx, a(x + λy) + bz〉| ≤ ‖αx|span{x,y}‖∗‖a(x + λy)‖ ≤ ‖a(x +
λy) + bz‖ indicate that ‖αx‖∗ ≤ , and then ‖αx‖∗ = , namely, |α| = 

‖x‖∗ is independent
of y and ‖x + λy‖ = 〈αx, x〉. So Eq. () is obtained, and thereby we complete the proof. �

Lemma  Let X be a real symmetric linear normed space (Rn ,‖ · ‖) and e = (, , . . . , ),
e = (, , , . . . , ), . . . , en = (, , . . . , , ) be a basis of X.

() Assume that each row and each column in the n × n matrix B has only one
non-zero element, which takes the value of  or –. Then matrix B is an isometric
operator on X .

() Assume that
(i) B is a skew-symmetric and orthogonal matrix, i.e., BT = –B, BT B = Id;

(ii) Each row and each column in matrix B has only one non-zero element, which
takes the value of  or –.

Then ‖Bx‖ = ‖x‖ and x ⊥I Bx for any x ∈ X .

Proof () The equality y = Bx indicates that y is merely the vector in which the elements are
a rearrangement of the corresponding elements of x; some items in the elements change
their sign. Thus, based on the definition of a real symmetric linear normed space, we have
‖Bx‖ = ‖x‖.

() Let y = Bx, by Lemma (), B is an isometric operator. Thus, ‖Bx‖ = ‖x‖ = . Mean-
while, ‖x + y‖ = ‖(Id + B)x‖ = ‖B(Id – B)x‖ = ‖(Id – B)x‖ = ‖x – y‖, and x ⊥I y are ob-
tained. �

Then the main theorem can be obtained.

Theorem  Let X be a real symmetric linear normed space (Rn ,‖ · ‖) and e = (, , . . . , ),
e = (, , , . . . , ), . . . , en = (, , . . . , , ) be a basis of X. And the normed space X is such
that, for any x ∈ S(X) and any y = Bn ,ix, Bn ,i ∈ {Bn ,, . . . , Bn ,n–}, there exists λ ∈ R

such that x + λy ⊥B H , where H = span{y, Bn ,x, . . . , Bn ,i–x, Bn ,i+x, . . . , Bn ,n–x}. Then
(

√
 – ) ≤ D(X) ≤ WD(X) ≤ .

Proof The first inequality has been proven in Theorem  of []; thus, the last inequal-
ity can be easily obtained. The second inequality can be proven as follows by assuming
that x ∈ S(X). Given that X is a symmetric normed linear space and Bn ,i, i = , . . . , n – ,
satisfies properties (i) and (ii) in Lemma . By Lemma (), Bn ,ix ∈ S(X) and x ⊥I Bn ,ix
(i = , . . . , n – ) can be obtained. Hence, we get D(X) ≤ WD(X). �

It is easy to extend the above result to any m-dimensional real symmetric normed linear
space.

Corollary  Let X be a real symmetric linear normed space (Rm,‖ · ‖) and e = (, , . . . , ),
e = (, , , . . . , ), . . . , em = (, , . . . , , ) be a basis of X. And the normed space X is such
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that there exists a subspace Y ⊂ X with dim Y = n and, for any x ∈ S(Y ) and any y =
Bn ,ix, Bn ,i ∈ {Bn ,, . . . , Bn ,n–}, there exists λ ∈ R such that x + λy ⊥B H , where H =
span{y, Bn ,x, . . . , Bn ,i–x, Bn ,i+x, . . . , Bn ,n–x}. Then (

√
 – ) ≤ D(X) ≤ WD(Y ) ≤ .

It is worth mentioning that the upper bound WD(X) of the geometric constant D(X),
which is given in Theorem , has several advantages. Firstly, it is defined unrelated to
isosceles orthogonality compared to D(X). Secondly, due to (), WD(X) has a simple ex-
pression, which makes calculation feasible. Finally, it is less than one in general. For exam-
ple, we consider WD(X) for the space ln

p in the next section.

4 The case of l2n
p

The space ln
p is used to show that the aforementioned upper bound WD(X) is optimal for

D(X).

Proposition  Let p, q ≥  such that 
p + 

q = . Then

WD
(
ln
p

)
= inf

{
 + t

( + tq)

q ( + tp)


p

: t ∈ [, ]
}

.

Proof Assume that x = αe + αe + · · · + αn en ∈ S(ln
p ) and y = Bn ,ix, Bn ,i ∈ {Bn ,, . . . ,

Bn ,n–}. For simplicity, we may take αi ≥ , i = , , . . . , n, and

y =
n–∑
k=

αn––k+ek +
n–∑
k=

(–)αn––k+en–+k

+
n–∑
k=

αn–k+en–+k +
n–∑
k=

(–)αn–+n––k+en–+n–+k .

Let f (λ) = ‖x + λy‖p and

f(λ) =
n–∑
k=

(αk + λαn––k+)p +
n–∑
k=

(αn–+k – λαn––k+)p

+
n–∑
k=

(αn–+k + λαn–k+)p +
n–∑
k=

(αn–+n–+k – λαn–+n––k+)p.

Then the equality f(λ) = f (λ) holds on the interval [ξ ,η], where

ξ = max

{
n–
max
k=

{
–

αk

αn––k+

}
,

n–
max
k=

{
–

αn–+k

αn–k+

}}

and

η = min

{
n–

min
k=

{
αn–+k

αn––k+

}
,

n–

min
k=

{
αn–+n–+k

αn–+n––k+

}}
.
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Since f (λ) is a convex function on [ξ ,η], then f(λ) is also a convex function on [ξ ,η]. There
exists one case in which the following equalities about λ hold:

αn– (α + λαn– )p– = α(αn–+n– – λα)p–,

αn––(α + λαn––)p– = α(αn–– – λα)p–,

. . . ,

αn–+(αn– + λαn–+)p– = αn– (αn–+ – λαn– )p–,

. . . ,

αn (αn–+ + λαn )p– = αn–+(αn – λαn–+)p–,

. . . ,

αn–n–+(αn–+n– + λαn–n–+)p– = αn–+n– (αn–+n–+ – λαn–+n– )p–.

In this case, f ′
 (λ) = . If we let γk = ( αn––k+

αk
)


p– ,  ≤ k ≤ n–, then

λ =
αn––k+ – γkαk

αk + γkαn––k+
.

If we let γn–+k = ( αn–k+
αn–+k

)


p– ,  ≤ k ≤ n–, then

λ =
αn–k+ – γkαn–+k

αn–+k + γkαn–k+
.

On the one hand, we have

λ =
αn––k+ – γkαk

αk + γkαn––k+
≤ αn––k+

αk
,  ≤ k ≤ n–

and

λ =
αn–k+ – γkαn–+k

αn–+k + γkαn–k+
≤ αn–k+

αn–+k
,  ≤ k ≤ n–.

On the other hand, we have

λ –
(

–
αk

αn––k+

)
=

α
k + α

n––k+
αn––k+(αk + γkαn––k+)

≥ ,  ≤ k ≤ n–,

and

λ –
(

–
αn–+k

αn–k+

)
=

α
n–+k + α

n–k+

αn–k+(αn–+k + γkαn–k+)
≥ ,  ≤ k ≤ n–.

These inequalities show that λ ∈ [ξ ,η]. Hence, if all γk and γn–+k ( ≤ k ≤ n–) are equal,
then the preceding equalities about λ are equal. If f(λ) has a minimum value on the inter-
val [ξ ,η], then f (λ) also has a minimum value on the interval [ξ ,η].
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Let tk = αn––k+
αk

and tn–+k = αn–k+
αn–+k

( ≤ k ≤ n–). If α = · · · = αn– = αn–+ = · · · =
αn–+n– and αn–+ = · · · = αn– = αn–n–+ = · · · = αn , then t = t = · · · = tn– are ob-
tained. We may assume that t = t = · · · = tn– = t, and take λ = t–tq–

+tq , where q is any
positive number such that 

p + 
q = , then f ′

 (λ) =  and

f(λ) = α
p

[
( + λt)p + (t – λ)p] + α

p

[
( + λt)p + (t – λ)p]

+ · · · + α
p
n–

[
( + λt)p + (t – λ)p] + α

p
n–+

[
( + λt)p + (t – λ)p]

+ · · · + α
p
n–+n–

[
( + λt)p + (t – λ)p]

=
( + t)p

( + tq)p–( + tp)
.

Moreover, we may assume that α ≥ αn– , then  ≤ t ≤ . If α ≤ αn– , then we can take
t = tk = αk

αn––k+
. The sufficient and necessary condition for the extreme points of a derived

convex function is that it must be the stagnation point. Since f(λ) is a strictly convex
function, then λ is unique. Hence, we have

WD
(
ln
p

)
= inf

{
inf

{
 + t



( + tq
 )


q ( + tp

 )

p

: t ∈ [, ]
}

, . . . ,

inf

{
 + t



( + tq
)


q ( + tp

)

p

: t ∈ [, ]
}

,

inf

{
 + t

n–

( + tq
n–)


q ( + tp

n–)

p

: tn– ∈ [, ]
}}

= inf

{
 + t

( + tq)

q ( + tp)


p

: t ∈ [, ]
}

. �

Remark  According to the above proof, WD(ln
p ) is independent of the selection of B.

Thus, it may verify the existence of the space X satisfying the condition of Proposition .

Corollary  Let m, n be any positive integer such that n ≤ m. Then

(
√

 – ) ≤ D
(
lm
p
) ≤ D

(
ln
p

) ≤ WD
(
ln
p

) ≤ .

Corollary  limp→∞ D(lm
p ) = (

√
 – ). Specially, WD(ln

 ) = (
√

 – ).

Corollary  Let p, q ≥  such that 
p + 

q = . Assume that ln
p has the property that, for

any x ∈ S(ln
p ) and any y = Bn ,ix, Bn ,i ∈ {Bn ,, . . . , Bn ,n–}, there exists λ ∈ R such that

x + λy ⊥B H , where

H = span{y, Bn ,x, . . . , Bn ,i–x, Bn ,i+x, . . . , Bn ,n–x}.

Then, for any x ∈ ln
p and x 	= , there exists a positive constant b = WD(ln

p ) such that

(
√

 – )‖x‖p‖x‖q ≤ b‖x‖p‖x‖q ≤ 〈x, x〉 ≤ ‖x‖p‖x‖q. ()
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The third inequality in () is the classical Hölder inequality

n∑
k=

akbk ≤
( n∑

k=

ap
k

) 
p
( n∑

k=

bq
k

) 
q

,

where ak ≥ , bk ≥  (k = , , . . . , n), p > , q >  and 
p + 

q = . This classical inequal-
ity plays a very important role in many areas of pure and applied mathematics. Various
generalizations and improvements of this classical inequality have been studied by many
mathematicians. The second inequality in () is a special case of the reverse version of
Hölder inequality, which differs from other known results (e.g., see []). One of its values
is that the constant b is always greater than or equal to (

√
 – ).

5 Conclusion
In this paper, by studying the geometric constant D(X) of any real n-dimensional symmet-
ric normed space X = (Rn ,‖·‖), we obtained an upper bound WD(X), which is not greater
than . And using the special properties of a finite dimensional normed space (Rn ,‖ · ‖)
and the constraints on (Rn ,‖ · ‖), we also give a simple formula for WD(X). In particular,
when X = ln

p , this formula is used to give a special form of the reverse Hölder inequality.
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